
LECTURE 8: CAUCHY’S INTEGRAL FORMULA I

We start by observing one important consequence of Cauchy’s theorem: Let D

be a simply connected domain and C be a simple closed curve lying in D. For some

r > 0, let Cr be a circle of radius r around a point z0 ∈ D lying in the region

enclosed by C. If f is analytic on D \ {z0} then
∫

C
f(z)dz =

∫
Cr

f(z)dz. The proof

Figure 1

follows by breaking the region into two simply connected domains and by applying

Cauchy’s theorem (see the figure above).

We have already seen the fundamental integral
∫

C(0,1)
1

z−z0
dz = 2πi where C(0, 1)

is a circle around zero with radius one. We will see that under certain conditions

on a function f and a closed curve C one has
∫

C
f(z)
z−z0

dz = 2πif(z0) which is a

generalization of the fundamental integral.

Theorem 1. (Cauchy’s integral formula)

Let f be analytic on a simply connected domain D. Suppose that z0 ∈ D and C

is a simple closed curve in D that encloses z0. Then
∫

C

f(z)

z − z0

dz = 2πif(z0)

(the above integral is oriented in the counterclockwise sense).
1



2 LECTURE 8: CAUCHY’S INTEGRAL FORMULA I

Proof. It follows from a consequence of Cauchy’s theorem (see above) that if C(z0, r)

denotes the circle of radius r around z0 for a sufficiently small r > 0 then

| 1

2πi

∫

C

f(z)

z − z0

dz − f(z0)| = | 1

2πi

∫

C(z0,r)

f(z)− f(z0)

z − z0

dz|

= | 1

2πi

∫ 2π

0

f(z0 + reiθ)− f(z0)

reiθ
ireiθdθ|

≤ 1

2π
2π × supθ∈[0,2π)|f(z0 + reiθ)− f(z0)|

( by ML inequality).

As f is continuous it follows that the righthand side goes to zero as r tends to zero.

This completes the proof.

¤

Example 2. (1)
∫

C(4,5)
cos z

z
dz = 2πi cos(0) = 2πi (note that the integrand is not

analytic in the region enclosed by the curve).

(2)
∫

C(i,1)
z2

z2+1
dz =

∫
C(i,1)

z2/(z+i)
z−i

dz = 2πi i2

i+i
= −π.

(3) The integral I =
∫

C(0,2)
ez

z(z−1)
dz cannot be evaluated directly from Cauchy’s

integral formula but we can rewrite I =
∫

C(0,2)
ez

z−1
dz− ∫

C(0,2)
ez

z
dz and apply

Cauchy’s integral formula to get the value of the integral as 2πi(e− 1).

Using partial fraction, as we did in the last example, can be a laborious method.

We will have more powerful methods to handle integrals of the above kind.

Fortunately Cauchy’s integral formula is not just about a method of evaluating

integrals. It has more serious theoretical impact. Next one is a very surprising

result. Let fn denotes the n-th derivative of f.

Theorem 3. If f is analytic on a simply connected domain D then f has derivatives

of all orders in D (which are then analytic in D) and for any z0 ∈ D one has

fn(z0) =
n!

2πi

∫

C

f(z)

(z − z0)n+1
dz,

where C is a simple closed contour (oriented counterclockwise) around z0 in D.

Proof. (*) Using Cauchy’s integral formula we can write that

f ′(z0) = lim
h→0

f(z0 + h)− f(z0)

h
= lim

h→0

1

2πih

∫

C

(
f(z)

z − z0 − h
− f(z)

z − z0

)dz

(C is so chosen that the point z0 + h is enclosed by C)

= lim
h→0

1

2πih

∫

C

f(z)h

(z − z0 − h)(z − z0)
dz.
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So we need to prove that

|
∫

C

f(z)

(z − z0 − h)(z − z0)
dz −

∫

C

f(z)

(z − z0)2
dz|

=
∣∣∣
∫

C

f(z)h

(z − z0 − h)(z − z0)2
dz

∣∣∣ → 0, as h → 0.

We will basically use ML inequality to prove this. Note that, as f is continuous it

is bounded on C by M (say). Let α = min{|z − z0| : z ∈ C}. Then |z − z0|2 ≥ α2

and α ≤ |z − z0| = |z − z0 − h + h| ≤ |z − z0 − h|+ |h| and hence for |h| ≤ α
2

(after

all h is going to be small) we get |z − z0 − h| ≥ α− |h| ≥ α
2
. Therefore

∣∣∣
∫

C

f(z)h

(z − z0 − h)(z − z0)2
dz

∣∣∣ ≤ M |h|l
α
2
α2

=
2M |h|l

α3
→ 0,

as h → 0. By repeating exactly the same technique we get f 2(z0) = 2!
2πi

∫
C

f(z)
(z−z0)3

dz

and so on.

¤

Thus we got an important result which is very different from real analysis:if f is

analytic at a point then all possible derivatives of f are analytic at that point.

Example 4. Cauchy’s integral formula is very convenient for evaluation of some

integrals.

(1)
∫
{z:|z|=1} ezz−3dz = 2πi

2
d2

dz2 (e
z)|z=0 = iπ (notice the power in the denominator

and differentiate one time less).

(2) If C is a circle of radius 5/2 around the point 1 then consider the integral∫
C

1
(z−4)(z+1)4

dz. As −1 is enclosed by C the function 1
(z+1)4

is not analytic in

the region enclosed by C, thus we consider f(z) = 1
z−4

and apply Cauchy’s

integral formula to get∫

C

1

(z − 4)(z + 1)4
dz =

2πi

3!

d3

dz3

( 1

z − 4

)∣∣∣
z=−1

.


