LECTURE 8: CAUCHY'S INTEGRAL FORMULA I

We start by observing one important consequence of Cauchy's theorem: Let D be a simply connected domain and C be a simple closed curve lying in D. For some $r>0$, let C_{r} be a circle of radius r around a point $z_{0} \in D$ lying in the region enclosed by C. If f is analytic on $D \backslash\left\{z_{0}\right\}$ then $\int_{C} f(z) d z=\int_{C_{r}} f(z) d z$. The proof

Figure 1
follows by breaking the region into two simply connected domains and by applying Cauchy's theorem (see the figure above).

We have already seen the fundamental integral $\int_{C(0,1)} \frac{1}{z-z_{0}} d z=2 \pi i$ where $C(0,1)$ is a circle around zero with radius one. We will see that under certain conditions on a function f and a closed curve C one has $\int_{C} \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right)$ which is a generalization of the fundamental integral.

Theorem 1. (Cauchy's integral formula)

Let f be analytic on a simply connected domain D. Suppose that $z_{0} \in D$ and C is a simple closed curve in D that encloses z_{0}. Then

$$
\int_{C} \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right)
$$

(the above integral is oriented in the counterclockwise sense).

Proof. It follows from a consequence of Cauchy's theorem (see above) that if $C\left(z_{0}, r\right)$ denotes the circle of radius r around z_{0} for a sufficiently small $r>0$ then

$$
\begin{aligned}
\left|\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-z_{0}} d z-f\left(z_{0}\right)\right| & =\left|\frac{1}{2 \pi i} \int_{C\left(z_{0}, r\right)} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z\right| \\
& =\left|\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{f\left(z_{0}+r e^{i \theta}\right)-f\left(z_{0}\right)}{r e^{i \theta}} i r e^{i \theta} d \theta\right| \\
& \leq \frac{1}{2 \pi} 2 \pi \times \sup _{\theta \in[0,2 \pi)}\left|f\left(z_{0}+r e^{i \theta}\right)-f\left(z_{0}\right)\right|
\end{aligned}
$$

(by $M L$ inequality).
As f is continuous it follows that the righthand side goes to zero as r tends to zero. This completes the proof.

Example 2. (1) $\int_{C(4,5)} \frac{\cos z}{z} d z=2 \pi i \cos (0)=2 \pi i$ (note that the integrand is not analytic in the region enclosed by the curve).
(2) $\int_{C(i, 1)} \frac{z^{2}}{z^{2}+1} d z=\int_{C(i, 1)} \frac{z^{2} /(z+i)}{z-i} d z=2 \pi i \frac{i^{2}}{i+i}=-\pi$.
(3) The integral $I=\int_{C(0,2)} \frac{e^{z}}{z(z-1)} d z$ cannot be evaluated directly from Cauchy's integral formula but we can rewrite $I=\int_{C(0,2)} \frac{e^{z}}{z-1} d z-\int_{C(0,2)} \frac{e^{z}}{z} d z$ and apply Cauchy's integral formula to get the value of the integral as $2 \pi i(e-1)$.

Using partial fraction, as we did in the last example, can be a laborious method. We will have more powerful methods to handle integrals of the above kind.

Fortunately Cauchy's integral formula is not just about a method of evaluating integrals. It has more serious theoretical impact. Next one is a very surprising result. Let f^{n} denotes the n-th derivative of f.

Theorem 3. If f is analytic on a simply connected domain D then f has derivatives of all orders in D (which are then analytic in D) and for any $z_{0} \in D$ one has

$$
f^{n}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
$$

where C is a simple closed contour (oriented counterclockwise) around z_{0} in D.
Proof. (*) Using Cauchy's integral formula we can write that

$$
f^{\prime}\left(z_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}=\lim _{h \rightarrow 0} \frac{1}{2 \pi i h} \int_{C}\left(\frac{f(z)}{z-z_{0}-h}-\frac{f(z)}{z-z_{0}}\right) d z
$$

(C is so chosen that the point $z_{0}+h$ is enclosed by C)
$=\lim _{h \rightarrow 0} \frac{1}{2 \pi i h} \int_{C} \frac{f(z) h}{\left(z-z_{0}-h\right)\left(z-z_{0}\right)} d z$.

So we need to prove that

$$
\begin{aligned}
& \left|\int_{C} \frac{f(z)}{\left(z-z_{0}-h\right)\left(z-z_{0}\right)} d z-\int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z\right| \\
= & \left|\int_{C} \frac{f(z) h}{\left(z-z_{0}-h\right)\left(z-z_{0}\right)^{2}} d z\right| \rightarrow 0, \text { as } \quad h \rightarrow 0 .
\end{aligned}
$$

We will basically use ML inequality to prove this. Note that, as f is continuous it is bounded on C by M (say). Let $\alpha=\min \left\{\left|z-z_{0}\right|: z \in C\right\}$. Then $\left|z-z_{0}\right|^{2} \geq \alpha^{2}$ and $\alpha \leq\left|z-z_{0}\right|=\left|z-z_{0}-h+h\right| \leq\left|z-z_{0}-h\right|+|h|$ and hence for $|h| \leq \frac{\alpha}{2}$ (after all h is going to be small) we get $\left|z-z_{0}-h\right| \geq \alpha-|h| \geq \frac{\alpha}{2}$. Therefore

$$
\left|\int_{C} \frac{f(z) h}{\left(z-z_{0}-h\right)\left(z-z_{0}\right)^{2}} d z\right| \leq \frac{M|h| l}{\frac{\alpha}{2} \alpha^{2}}=\frac{2 M|h| l}{\alpha^{3}} \rightarrow 0
$$

as $h \rightarrow 0$. By repeating exactly the same technique we get $f^{2}\left(z_{0}\right)=\frac{2!}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{3}} d z$ and so on.

Thus we got an important result which is very different from real analysis: if f is analytic at a point then all possible derivatives of f are analytic at that point.

Example 4. Cauchy's integral formula is very convenient for evaluation of some integrals.
(1) $\int_{\{z:|z|=1\}} e^{z} z^{-3} d z=\left.\frac{2 \pi i}{2} \frac{d^{2}}{d z^{2}}\left(e^{z}\right)\right|_{z=0}=i \pi$ (notice the power in the denominator and differentiate one time less).
(2) If C is a circle of radius $5 / 2$ around the point 1 then consider the integral $\int_{C} \frac{1}{(z-4)(z+1)^{4}} d z$. As -1 is enclosed by C the function $\frac{1}{(z+1)^{4}}$ is not analytic in the region enclosed by C, thus we consider $f(z)=\frac{1}{z-4}$ and apply Cauchy's integral formula to get

$$
\int_{C} \frac{1}{(z-4)(z+1)^{4}} d z=\left.\frac{2 \pi i}{3!} \frac{d^{3}}{d z^{3}}\left(\frac{1}{z-4}\right)\right|_{z=-1}
$$

