
LECTURE 9: CAUCHY’S INTEGRAL FORMULA II

Let us first summarize Cauchy’s theorem and Cauchy’s integral formula. Let C

be a simple closed curve contained in a simply connected domain D and f is an

analytic function defined on D. Then

∫

C

f(z)

(z − z0)n+1
dz =





2πif(z0), if n = 0 and z0 is enclosed by C.
2πi
n!

fn(z0), if n ≥ 1 and z0 is enclosed by C.

0, z0 lies out side the region enclosed by C.

By Cauchy’s integral formula one can also tackle integrals of the form∫
C

f(z)
(z−z0)(z−z1)

dz where the simple closed curve C includes two points z0, z1. By

using partial fraction we get that∫

C

f(z)

(z − z0)(z − z1)
dz =

∫

C

f(z)

z0 − z1

(
1

z − z0

− 1

z − z1

)dz

=
2πi(f(z0)− f(z1))

(z0 − z1)
.

Example 1. If a ∈ C then∫

{z:|z|=2}

eaz

z2 + 1
dz =

∫

{z:|z|=2}

eaz

(z + i)(z − i)
dz =

e−ia − eia

4π
.

We will now see some more serious application of CIF. For r > 0 let us define

Br(z0) = {z : |z − z0| ≤ r} and Sr(z0) = {z : |z − z0| = r}.
Theorem 2. (Cauchy’s estimate) Suppose that f is analytic on a simply connected

domain D and BR(z0) ⊂ D for some R > 0. If |f(z)| ≤ M for all z ∈ SR(z0), then

for all n ≥ 0,

|fn(z0)| ≤ n!M

Rn
.

Proof. From Cauchy’s integral formula and ML inequality we have

|fn(z0) = | n!

2πi

∫

SR(z0)

f(z)

(z − z0)n+1
dz| ≤ n!

2π
M

1

Rn+1
2πR =

n!M

Rn

¤

As a consequence of the above theorem we get the following miraculous result.

Theorem 3. (Liouville’s Theorem) If f is analytic and bounded on the whole C
then f is a constant function.
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Proof. To prove this we will prove that f ′ is the zero function. Choose ε > 0 arbitrary

and choose any point z0 ∈ C. Now consider BR(z0) such that R > M/ε (for small

ε, R will be very large but that is not a problem as f is analytic everywhere).By

Cauchy’s estimate now we have,

|f ′(z0)| ≤ M

R
< ε.

Hence f ′(z0) = 0. But z0 is arbitrary and hence f ′(z) = 0 for all z ∈ C. ¤

Remark: We have earlier observed that cos z and sin z are not bounded in C.

Another proof of the same fact now follows from Liouville’s theorem. Moreover it

shows that this behavior is typical of non constant analytic functions on C. Thus if

a function is bounded it cannot be analytic on whole C.

We now show another application of Liouville’s theorem to prove the Fundamental

Theorem of Algebra.

Theorem 4. Every polynomial p(z) of degree n ≥ 1 has a root (in C).

Proof. Suppose P (z) = zn + an−1z
n−1 + .... + a0 is a polynomial with no root in C.

Then 1
P (z)

is analytic on whole C. Since

|P (z)

zn
| = |1 +

an−1

z
+ . . . +

a0

zn
| → 1, as |z| → ∞,

it follows that |p(z)| → ∞ and hence |1/p(z)| → 0 as |z| → ∞ (we are just

proving a well known fact that polynomials are unbounded functions). Consequently
1

p(z)
is a bounded function. Hence by Liouville’s theorem 1

p(z)
is constant which is

impossible. ¤

We will now prove a partial converse to Cauchy’s theorem

Theorem 5. (Morera’s theorem) If f is continuous in a simply connected domain

D and if
∫

C
f(z)dz = 0 for every simple closed contour C in D then f is analytic

Proof. The idea is just to prove that there exists an analytic function F such that

F ′ = f. Then we can use CIF to conclude that f is analytic. So, fix a point z0 ∈ D

and define F (z) =
∫ z

z0
f(w)dw ( by hypothesis it does not matter which closed curve

I use). By using continuity, we can show as before that F is analytic and F ′ = f. ¤

The next theorem shows that an analytic function is always given by a power

series.
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Theorem 6. (Taylor’s Theorem)

Let f be analytic on D = {z : |z − z0| < R0}. Then

f(z) =
∞∑

n=0

an(z − z0)
n, for all z ∈ D,

where an = fn(z0)
n!

for n = 0, 1, 2, . . . .

Proof. (*) Without loss of generality we consider z0 = 0. Fix z ∈ D. Let |z| = r

and C0 be a circle with center 0 and radius r0 such that r < r0 < R0. We need the

following algebraic identity,

1

1− q
= 1 + q + q2 + ...... + q(n−1) +

qn

1− q
,

which follows easily from

1 + q + q2 + ..... + qn−1 =
1− qn

1− q
.

Thus for two complex numbers w and z we can write

(0.1)
1

w − z
=

1

w
+

z

w2
+

z2

w3
+ .... +

zn−1

wn
+

zn

(w − z)wn
.

By CIF and (0.1) we now have

f(z) =
1

2πi

∫

C0

f(z)dw

w − z

=
1

2πi

∫

C0

f(w)

[
1

w
+

z

w2
+

z2

w3
+ .... +

zn−1

wn

]
dw +

zn

2πi

∫

C0

f(w)dw

(w − z)wn

= f(0) +
f ′(0)

1!
z +

f ′′(0)

2!
z2 + ..... +

fn−1(0)

(n− 1)!
zn−1 + ρn(z)

where ρn(z) = zn

2πi

∫
C0

f(w)dw
(w−z)wn . Now, we just need to show that limn→∞ |ρn(z)| = 0.

Notice that the function w → f(w)
w−z

is a bounded function on the circle C0 (as it is

continuous). Thus by ML inequality it follows that

|ρn(z)| ≤ Kr0

∣∣∣ z

r0

∣∣∣
n

.

As |z| = r < r0 it follows that the right hand side goes to zero as n →∞. ¤


