LECTURE 9: CAUCHY'S INTEGRAL FORMULA II

Let us first summarize Cauchy's theorem and Cauchy's integral formula. Let C be a simple closed curve contained in a simply connected domain D and f is an analytic function defined on D. Then

$$
\int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z= \begin{cases}2 \pi i f\left(z_{0}\right), & \text { if } n=0 \text { and } z_{0} \text { is enclosed by } C . \\ \frac{2 \pi i}{n!} f^{n}\left(z_{0}\right), & \text { if } n \geq 1 \text { and } z_{0} \text { is enclosed by } C . \\ 0, & z_{0} \text { lies out side the region enclosed by } C .\end{cases}
$$

By Cauchy's integral formula one can also tackle integrals of the form $\int_{C} \frac{f(z)}{\left(z-z_{0}\right)\left(z-z_{1}\right)} d z$ where the simple closed curve C includes two points z_{0}, z_{1}. By using partial fraction we get that

$$
\begin{aligned}
\int_{C} \frac{f(z)}{\left(z-z_{0}\right)\left(z-z_{1}\right)} d z & =\int_{C} \frac{f(z)}{z_{0}-z_{1}}\left(\frac{1}{z-z_{0}}-\frac{1}{z-z_{1}}\right) d z \\
& =\frac{2 \pi i\left(f\left(z_{0}\right)-f\left(z_{1}\right)\right)}{\left(z_{0}-z_{1}\right)}
\end{aligned}
$$

Example 1. If $a \in \mathbb{C}$ then

$$
\int_{\{z:|z|=2\}} \frac{e^{a z}}{z^{2}+1} d z=\int_{\{z:|z|=2\}} \frac{e^{a z}}{(z+i)(z-i)} d z=\frac{e^{-i a}-e^{i a}}{4 \pi} .
$$

We will now see some more serious application of CIF. For $r>0$ let us define $\overline{B_{r}\left(z_{0}\right)}=\left\{z:\left|z-z_{0}\right| \leq r\right\}$ and $S_{r}\left(z_{0}\right)=\left\{z:\left|z-z_{0}\right|=r\right\}$.

Theorem 2. (Cauchy's estimate) Suppose that f is analytic on a simply connected domain D and $\overline{B_{R}\left(z_{0}\right)} \subset D$ for some $R>0$. If $|f(z)| \leq M$ for all $z \in S_{R}\left(z_{0}\right)$, then for all $n \geq 0$,

$$
\left|f^{n}\left(z_{0}\right)\right| \leq \frac{n!M}{R^{n}}
$$

Proof. From Cauchy's integral formula and $M L$ inequality we have

$$
\left|f^{n}\left(z_{0}\right)=\left|\frac{n!}{2 \pi i} \int_{S_{R}\left(z_{0}\right)} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z\right| \leq \frac{n!}{2 \pi} M \frac{1}{R^{n+1}} 2 \pi R=\frac{n!M}{R^{n}}\right.
$$

As a consequence of the above theorem we get the following miraculous result.
Theorem 3. (Liouville's Theorem) If f is analytic and bounded on the whole \mathbb{C} then f is a constant function.

Proof. To prove this we will prove that f^{\prime} is the zero function. Choose $\epsilon>0$ arbitrary and choose any point $z_{0} \in \mathbb{C}$. Now consider $\overline{B_{R}\left(z_{0}\right)}$ such that $R>M / \epsilon$ (for small ϵ, R will be very large but that is not a problem as f is analytic everywhere).By Cauchy's estimate now we have,

$$
\left|f^{\prime}\left(z_{0}\right)\right| \leq \frac{M}{R}<\epsilon
$$

Hence $f^{\prime}\left(z_{0}\right)=0$. But z_{0} is arbitrary and hence $f^{\prime}(z)=0$ for all $z \in \mathbb{C}$.
Remark: We have earlier observed that $\cos z$ and $\sin z$ are not bounded in \mathbb{C}. Another proof of the same fact now follows from Liouville's theorem. Moreover it shows that this behavior is typical of non constant analytic functions on \mathbb{C}. Thus if a function is bounded it cannot be analytic on whole \mathbb{C}.

We now show another application of Liouville's theorem to prove the Fundamental Theorem of Algebra.

Theorem 4. Every polynomial $p(z)$ of degree $n \geq 1$ has a root (in \mathbb{C}).
Proof. Suppose $P(z)=z^{n}+a_{n-1} z^{n-1}+\ldots .+a_{0}$ is a polynomial with no root in \mathbb{C}. Then $\frac{1}{P(z)}$ is analytic on whole \mathbb{C}. Since

$$
\left|\frac{P(z)}{z^{n}}\right|=\left|1+\frac{a_{n-1}}{z}+\ldots+\frac{a_{0}}{z^{n}}\right| \rightarrow 1, \text { as }|z| \rightarrow \infty
$$

it follows that $|p(z)| \rightarrow \infty$ and hence $|1 / p(z)| \rightarrow 0$ as $|z| \rightarrow \infty$ (we are just proving a well known fact that polynomials are unbounded functions). Consequently $\frac{1}{p(z)}$ is a bounded function. Hence by Liouville's theorem $\frac{1}{p(z)}$ is constant which is impossible.

We will now prove a partial converse to Cauchy's theorem
Theorem 5. (Morera's theorem) If f is continuous in a simply connected domain D and if $\int_{C} f(z) d z=0$ for every simple closed contour C in D then f is analytic

Proof. The idea is just to prove that there exists an analytic function F such that $F^{\prime}=f$. Then we can use CIF to conclude that f is analytic. So, fix a point $z_{0} \in D$ and define $F(z)=\int_{z_{0}}^{z} f(w) d w$ (by hypothesis it does not matter which closed curve I use). By using continuity, we can show as before that F is analytic and $F^{\prime}=f$.

The next theorem shows that an analytic function is always given by a power series.

Theorem 6. (Taylor's Theorem)
Let f be analytic on $D=\left\{z:\left|z-z_{0}\right|<R_{0}\right\}$. Then

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, \quad \text { for all } z \in D
$$

where $a_{n}=\frac{f^{n}\left(z_{0}\right)}{n!}$ for $n=0,1,2, \ldots$.
Proof. (*) Without loss of generality we consider $z_{0}=0$. Fix $z \in D$. Let $|z|=r$ and C_{0} be a circle with center 0 and radius r_{0} such that $r<r_{0}<R_{0}$. We need the following algebraic identity,

$$
\frac{1}{1-q}=1+q+q^{2}+\ldots \ldots+q^{(n-1)}+\frac{q^{n}}{1-q},
$$

which follows easily from

$$
1+q+q^{2}+\ldots . .+q^{n-1}=\frac{1-q^{n}}{1-q}
$$

Thus for two complex numbers w and z we can write

$$
\begin{equation*}
\frac{1}{w-z}=\frac{1}{w}+\frac{z}{w^{2}}+\frac{z^{2}}{w^{3}}+\ldots .+\frac{z^{n-1}}{w^{n}}+\frac{z^{n}}{(w-z) w^{n}} . \tag{0.1}
\end{equation*}
$$

By CIF and (0.1) we now have

$$
\begin{aligned}
& f(z)=\frac{1}{2 \pi i} \int_{C_{0}} \frac{f(z) d w}{w-z} \\
& =\frac{1}{2 \pi i} \int_{C_{0}} f(w)\left[\frac{1}{w}+\frac{z}{w^{2}}+\frac{z^{2}}{w^{3}}+\ldots .+\frac{z^{n-1}}{w^{n}}\right] d w+\frac{z^{n}}{2 \pi i} \int_{C_{0}} \frac{f(w) d w}{(w-z) w^{n}} \\
& =f(0)+\frac{f^{\prime}(0)}{1!} z+\frac{f^{\prime \prime}(0)}{2!} z^{2}+\ldots . .+\frac{f^{n-1}(0)}{(n-1)!} z^{n-1}+\rho_{n}(z)
\end{aligned}
$$

where $\rho_{n}(z)=\frac{z^{n}}{2 \pi i} \int_{C_{0}} \frac{f(w) d w}{(w-z) w^{n}}$. Now, we just need to show that $\lim _{n \rightarrow \infty}\left|\rho_{n}(z)\right|=0$. Notice that the function $w \rightarrow \frac{f(w)}{w-z}$ is a bounded function on the circle C_{0} (as it is continuous). Thus by $M L$ inequality it follows that

$$
\left|\rho_{n}(z)\right| \leq K r_{0}\left|\frac{z}{r_{0}}\right|^{n}
$$

As $|z|=r<r_{0}$ it follows that the right hand side goes to zero as $n \rightarrow \infty$.

