Lectures 12: Infinite Series, Absolute convergence, Leibniz’s test

It follows from Taylor’s theorem that if f : R — R and f(®t1 exists on R, then for any x # 0,
there exists ¢ between 0 and x such that
70
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f(x) = £(0) + f'(0)(x) +

If we assume f(") exists for all n € N, a natural question is whether we can write

an () (0
£a) = 1)+ FO@) + T2 g Oy
for any z € R. For instance, can we write e = 1 + {5 + “TZ—? + %? + - - for any x € R? Observe
that in the right hand side of the preceding equation, we add 1, , %?, %T, ... which is a sequence

of real numbers. The first question is: how do we add a given sequence of real numbers (x,,)? For
instance if x,, = (—1)"~! and if we add z1, 29, ... in the following ways:

1-1+1-14---=1-D+(1-1)+(1-1)+---
and
1-14+1—-14---=14+(-14+D)+(-1+1)+(-14+1)+---
we end up with different answers. So, first of all, we need to define the ”sum” of a given sequence
() of real numbers in a rigorous manner.

111 1

557> 8> 1)+ We attempt to sum the sequence as

Let us start with a familiar sequence 1
follows. Define
1 1 1 1 1 1 1

1 1 1
S =1, 52—14-5, Sg—l+§+1, S4—1+§+1+§, S5_1+§+1+§+E7””

Observe that 2 -5 =1,2—- 55 = %,2 —S3 = %,2 — Sy = %, ..... It is clear that no S, can be equal
to 2 but .S, tends to 2 as n — oo. In light of the above, there is a temptatation to say that

2—1+1+1+1+ ! +
2 4 8 16 ‘
We will follow the process used above for summing up a sequence of real numbers.
Series and its convergence

Definition 12.1. Let (a,) be a sequence of real numbers. Then an expression of the form a; +
az + a3 + - - -, denoted by > >° | a,, is called a series.

For each n € N, S, = a; +az + az + - - - + a, is called the nth partial sum of the series Y 2 | ay.

If S, — S for some S then we say that the series Y | a,, converges to S. If (S,,) does not converge
then, we say that the series > 7, a,, diverges.

. o0 . _ (o.9]
If a series > | a, converges to S, then we write S =" | a,.

Note that the notation Zle an, is used to denote the series a; + as + az + - - -, as well as the
sum of the series if it converges.

Please write to psraj@iitk.ac.in if any typos/mistakes are found in these notes.



Example 12.2. We use Definition 12.1 and test the convergence/divergence of some series.

1. The series Y o2 (—1)"~1 diverges, because, (S,) does not converge. We remark here that the
given series can also be written as Y .~ (—1)". However, in both the cases S,, denotes the sum of
the first n terms.

2. Zleﬁ converges, because, S, = (1 — %)4—(%—%)—1—4—(%—%“) = 1—7#1 — 1.

3. The series Yoo | In(ZtL) diverges, because, S, = In(n + 1) and (S,) does not converge.

4. If 0 < |z| < 1, then the geometric series > 7 ;2™ converges to ﬁ, because, Sp41 =1+2x + - -

'—i-:c":%.Hencewewrite1+x+x2+x3+"-:ﬁ if |z| < 1.
In particular, 1 + % + 2% + 2% + - - - = 2 which is already seen.
Similarly, 0.99999.... = 5 + 10z + 155 - =1+ + =+ ) =L

5. We now verify that Y 7, % diverges. By Example 3.2, the sequence (5,,) does not satisfy the
Cauchy criterion. Hence (S,,) does not converge and therefore 7, % diverges.

Verifying the convergence/divergence of a given series using the definition is not an easy task.
We will consider several tests which can be used for this purpose. We start with a simple result.

Necessary condition for convergence
Theorem 12.3. If Y > | a, converges then a, — 0.

Proof. Suppose > 2, a, converges. Then S, — S for some S € R. Observe that for every n € N,
Gnt1 = Spy1 — Sp. Since S, — S, we get apy1 — S — 5 =0. ]

The condition given in Theorem 12.3 is necessary but not sufficient i.e., it is possible that a,, — 0
but Y, a, diverges. For example, by Example 12.2, ">, % diverges; however, % — 0

Example 12.4. We now use Theorem 12.3 to test the divergence of certain series.
1. If |z | > 1, then the geometric series y_° ; z™ diverges, because, a, — 0.

: o0 1 3. 1
2. The series ) >~ | cos - diverges as cos -- — 1.

3. If p <0, then both >°°° | L and >°° (_ln):ildiverge.

n=1 nP

4. Consider Y°°, €. By the ratio test for sequence (Theorem 2.3), Z—z — 0. This implies that

n=1 n3
n . . .
“3 — o0o. Therefore, the given series diverges.

Absolute convergence

Definition 12.5. A series > 7, ay is said to be absolutely convergent if > >, |a,| converges.
The following result is useful.

Theorem 12.6. If a series converges absolutely then it converges.

Proof. Suppose > 7, | a, | converges. Let (Sy,) and (S,,) denote the sequences of partial sums of
Yol an and > 07 | ap | respectively. We will show that (.S,,) satisfies the Cauchy criterion which

n=1



proves the result. Note that for any n > m,

n n
|Sn — S| = | Z ag| < Z |ax| = [Sn — Sl
k=m+1 k=m+1

Since (S,) satisfies the Cauchy criterion, by the preceding inequality, (S,) satisfies the Cauchy
criterion. g

We need the following result to illustrate that a convergent series need not converge absolutely.
Theorem 12.7.(Leibniz test). If (ay,) is decreasing and a,, — 0, then Y o (—=1)""a, converges.
Proof. Since (a,) is decreasing and a,, > 0, we have

ap > ay—ag+as>ay —az+az3—ayg+as > ...

and
ai —az < (a1 —az2) + (a3 — aq) < (a1 — az) + (a3 — aq) + (a5 — ag) <

This shows that (S2,+1) is decreasing and (S2,) is increasing. Now, for every n,
S1 2 Sopt1 = Son + a2nt1 = Son = 52,

which implies that (S2;,4+1) and (S2,) are bounded. Hence (S3,+1) and (S3,) converge. Since
Sont1 — Son = agp+1 — 0, both (So,41) and (S2,) converge to the same limit. Therefore, (.S,)
converges. ]

The series of the form Y °° | (—1)""!a,, where a,, > 0 for all n, is called an alternating series.

Example 12.8. 1. By Theorem 12.7, the series Zle(—l)’“rl% converges. But, we have seen in
Example 12.2 that it does not converge absolutely.
2. By Theorem 12.7, the series > 00 (—1)"*1 L and °°° ,(—1)" L converge.

n? Inn

Elementary results

The first statement of the following result says that if we remove first few terms from a con-
vergent (respectively divergent) series then the resulting series is also convergent (respectively
divergent).

Theorem 12.9. 1. > >° | a, converges if and only if Y > | a,4n converges for any p > 1.

2. If >°>° 1 an and Y o7 | b, converge then > >, (ay, + by) converges and Y~ Aa,, converges for
any X € R.

Proof. We prove the first statement. The proof of the second statement follows similarly.

Let p > 1. Suppose (S,) and (S,) denote the sequences of partial sums of Y °, a, and
>0 | Gntp respectively. Now, for any n € N, S, = S, — (a1 + az + - - - + ap). Observe that (S,)

converges if and only if (S5,,) converges which proves the first statement. O
Example 12.10. 1. It follows from Theorem 12.9 that the series 22021(3% - 4%) converges.

2. Consider the series E;’;l(% — 2%) If this series converges, then by Theorem 12.9, the series

>0 (2 — 5 + 5=) should converge which is not the case. Hence > oo (1 — L) diverges.



3. Consider the series 1 + % — % — i +:+§5—7— 5+ - The series is not an alternating series

and hence Leibniz’s test cannot be applied. However, note that the series is >, (a, + b,) where
n+1 _1\n+1
ap = (_231)_; and b, = 12)n+ . By Leibniz’s test both 7, a, and >, b, converge and hence

by Theorem 12.9, the given series converges.




