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Lectures 12: Infinite Series, Absolute convergence, Leibniz’s test

It follows from Taylor’s theorem that if f : R → R and f (n+1) exists on R, then for any x 6= 0,
there exists c between 0 and x such that

f(x) = f(0) + f ′(0)(x) +
f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn +

f (n+1)(c)

(n+ 1)!
xn+1.

If we assume f (n) exists for all n ∈ N, a natural question is whether we can write

f(x) = f(0) + f ′(0)(x) +
f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn + · · ·.

for any x ∈ R. For instance, can we write ex = 1 + x
1! +

x2

2! +
x3

3! + · · · for any x ∈ R? Observe

that in the right hand side of the preceding equation, we add 1, x
1! ,

x2

2! ,
x3

3! , ... which is a sequence
of real numbers. The first question is: how do we add a given sequence of real numbers (xn)? For
instance if xn = (−1)n−1 and if we add x1, x2, ... in the following ways:

1− 1 + 1− 1 + · · · = (1− 1) + (1− 1) + (1− 1) + · · ·

and
1− 1 + 1− 1 + · · · = 1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + · · ·

we end up with different answers. So, first of all, we need to define the ”sum” of a given sequence
(xn) of real numbers in a rigorous manner.

Let us start with a familiar sequence 1, 12 ,
1
4 ,

1
8 ,

1
16 , .... We attempt to sum the sequence as

follows. Define

S1 = 1, S2 = 1 +
1

2
, S3 = 1 +

1

2
+

1

4
, S4 = 1 +

1

2
+

1

4
+

1

8
, S5 = 1 +

1

2
+

1

4
+

1

8
+

1

16
, ....

Observe that 2− S1 = 1, 2− S2 =
1
2 , 2− S3 =

1
4 , 2− S4 =

1
8 , ..... It is clear that no Sn can be equal

to 2 but Sn tends to 2 as n → ∞. In light of the above, there is a temptatation to say that

2 = 1 +
1

2
+

1

4
+

1

8
+

1

16
+ · · · .

We will follow the process used above for summing up a sequence of real numbers.

Series and its convergence

Definition 12.1. Let (an) be a sequence of real numbers. Then an expression of the form a1 +
a2 + a3 + · · ·, denoted by

∑∞
n=1 an, is called a series.

For each n ∈ N, Sn = a1 + a2 + a3 + · · ·+ an is called the nth partial sum of the series
∑∞

n=1 an.

If Sn → S for some S then we say that the series
∑∞

n=1 an converges to S. If (Sn) does not converge
then, we say that the series

∑∞
n=1 an diverges.

If a series
∑∞

n=1 an converges to S, then we write S =
∑∞

n=1 an.

Note that the notation
∑∞

n=1 an is used to denote the series a1 + a2 + a3 + · · ·, as well as the
sum of the series if it converges.

Please write to psraj@iitk.ac.in if any typos/mistakes are found in these notes.
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Example 12.2. We use Definition 12.1 and test the convergence/divergence of some series.

1. The series
∑∞

n=1(−1)n−1 diverges, because, (Sn) does not converge. We remark here that the
given series can also be written as

∑∞
n=0(−1)n. However, in both the cases Sn denotes the sum of

the first n terms.

2.
∑∞

n=1
1

n(n+1) converges, because, Sn = (1− 1
2) + (12 − 1

3) + · · ·+ ( 1n − 1
n+1) = 1− 1

n+1 → 1.

3. The series
∑∞

n=1 ln(
n+1
n ) diverges, because, Sn = ln(n+ 1) and (Sn) does not converge.

4. If 0 < |x| < 1, then the geometric series
∑∞

n=0 x
n converges to 1

1−x , because, Sn+1 = 1+ x+ · ·
·+ xn = 1−xn+1

1−x . Hence we write 1 + x+ x2 + x3 + · · · = 1
1−x if |x| < 1.

In particular, 1 + 1
2 + 1

22
+ 1

23
+ · · · = 2 which is already seen.

Similarly, 0.99999.... = 9
10 + 9

102
+ 9

103
+ · · · = 9

10(1 +
1
10 + 1

102
+ · · ·) = 1.

5. We now verify that
∑∞

n=1
1
n diverges. By Example 3.2, the sequence (Sn) does not satisfy the

Cauchy criterion. Hence (Sn) does not converge and therefore
∑∞

n=1
1
n diverges.

Verifying the convergence/divergence of a given series using the definition is not an easy task.
We will consider several tests which can be used for this purpose. We start with a simple result.

Necessary condition for convergence

Theorem 12.3. If
∑∞

n=1 an converges then an → 0.

Proof. Suppose
∑∞

n=1 an converges. Then Sn → S for some S ∈ R. Observe that for every n ∈ N,
an+1 = Sn+1 − Sn. Since Sn → S, we get an+1 → S − S = 0. �

The condition given in Theorem 12.3 is necessary but not sufficient i.e., it is possible that an → 0
but

∑∞
n=1 an diverges. For example, by Example 12.2,

∑∞
n=1

1
n diverges; however, 1

n → 0

Example 12.4. We now use Theorem 12.3 to test the divergence of certain series.

1. If | x | ≥ 1, then the geometric series
∑∞

n=1 x
n diverges, because, an 9 0.

2. The series
∑∞

n=1 cos
1
n diverges as cos 1

n → 1.

3. If p ≤ 0, then both
∑∞

n=1
1
np and

∑∞
n=1

(−1)n−1

np diverge.

4. Consider
∑∞

n=1
en

n3 . By the ratio test for sequence (Theorem 2.3), n3

en → 0. This implies that
en

n3 → ∞. Therefore, the given series diverges.

Absolute convergence

Definition 12.5. A series
∑∞

n=1 an is said to be absolutely convergent if
∑∞

n=1 |an| converges.

The following result is useful.

Theorem 12.6. If a series converges absolutely then it converges.

Proof. Suppose
∑∞

n=1 | an | converges. Let (Sn) and (Sn) denote the sequences of partial sums of∑∞
n=1 an and

∑∞
n=1 | an | respectively. We will show that (Sn) satisfies the Cauchy criterion which
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proves the result. Note that for any n > m,

|Sn − Sm| = |
n∑

k=m+1

ak| ≤
n∑

k=m+1

|ak| = |Sn − Sm|.

Since (Sn) satisfies the Cauchy criterion, by the preceding inequality, (Sn) satisfies the Cauchy
criterion. �

We need the following result to illustrate that a convergent series need not converge absolutely.

Theorem 12.7.(Leibniz test). If (an) is decreasing and an → 0, then
∑∞

n=1(−1)n+1an converges.

Proof. Since (an) is decreasing and an ≥ 0, we have

a1 ≥ a1 − a2 + a3 ≥ a1 − a2 + a3 − a4 + a5 ≥ ...

and
a1 − a2 ≤ (a1 − a2) + (a3 − a4) ≤ (a1 − a2) + (a3 − a4) + (a5 − a6) ≤ ....

This shows that (S2n+1) is decreasing and (S2n) is increasing. Now, for every n,

S1 ≥ S2n+1 = S2n + a2n+1 ≥ S2n ≥ S2,

which implies that (S2n+1) and (S2n) are bounded. Hence (S2n+1) and (S2n) converge. Since
S2n+1 − S2n = a2n+1 → 0, both (S2n+1) and (S2n) converge to the same limit. Therefore, (Sn)
converges. �

The series of the form
∑∞

n=1(−1)n+1an, where an ≥ 0 for all n, is called an alternating series.

Example 12.8. 1. By Theorem 12.7, the series
∑∞

n=1(−1)n+1 1
n converges. But, we have seen in

Example 12.2 that it does not converge absolutely.

2. By Theorem 12.7, the series
∑∞

n=1(−1)n+1 1
n2 and

∑∞
n=2(−1)n 1

ln n converge.

Elementary results

The first statement of the following result says that if we remove first few terms from a con-
vergent (respectively divergent) series then the resulting series is also convergent (respectively
divergent).

Theorem 12.9. 1.
∑∞

n=1 an converges if and only if
∑∞

n=1 ap+n converges for any p ≥ 1.

2. If
∑∞

n=1 an and
∑∞

n=1 bn converge then
∑∞

n=1(an + bn) converges and
∑∞

n=1 λan converges for
any λ ∈ R.

Proof. We prove the first statement. The proof of the second statement follows similarly.

Let p > 1. Suppose (Sn) and (Sn) denote the sequences of partial sums of
∑∞

n=1 an and∑∞
n=1 an+p respectively. Now, for any n ∈ N, Sn = Sn − (a1 + a2 + · · · + ap). Observe that (Sn)

converges if and only if (Sn) converges which proves the first statement. �

Example 12.10. 1. It follows from Theorem 12.9 that the series
∑∞

n=1(
1
3n − 1

4n ) converges.

2. Consider the series
∑∞

n=1(
1
n − 1

2n ). If this series converges, then by Theorem 12.9, the series∑∞
n=1(

1
n − 1

2n + 1
2n ) should converge which is not the case. Hence

∑∞
n=1(

1
n − 1

2n ) diverges.
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3. Consider the series 1 + 1
2 − 1

3 − 1
4 + 1

5 + 1
6 − 1

7 − 1
8 + · · ·. The series is not an alternating series

and hence Leibniz’s test cannot be applied. However, note that the series is
∑∞

n=1(an + bn) where

an = (−1)n+1

2n−1 and bn = (−1)n+1

2n . By Leibniz’s test both
∑∞

n=1 an and
∑∞

n=1 bn converge and hence
by Theorem 12.9, the given series converges.


