Lectures 12: Infinite Series, Absolute convergence, Leibniz's test

It follows from Taylor's theorem that if $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f^{(n+1)}$ exists on \mathbb{R}, then for any $x \neq 0$, there exists c between 0 and x such that

$$
f(x)=f(0)+f^{\prime}(0)(x)+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}+\frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}
$$

If we assume $f^{(n)}$ exists for all $n \in \mathbb{N}$, a natural question is whether we can write

$$
f(x)=f(0)+f^{\prime}(0)(x)+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}+\cdots
$$

for any $x \in \mathbb{R}$. For instance, can we write $e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$ for any $x \in \mathbb{R}$? Observe that in the right hand side of the preceding equation, we add $1, \frac{x}{1!}, \frac{x^{2}}{2!}, \frac{x^{3}}{3!}, \ldots$ which is a sequence of real numbers. The first question is: how do we add a given sequence of real numbers $\left(x_{n}\right)$? For instance if $x_{n}=(-1)^{n-1}$ and if we add x_{1}, x_{2}, \ldots in the following ways:

$$
1-1+1-1+\cdots=(1-1)+(1-1)+(1-1)+\cdots
$$

and

$$
1-1+1-1+\cdots=1+(-1+1)+(-1+1)+(-1+1)+\cdots
$$

we end up with different answers. So, first of all, we need to define the "sum" of a given sequence $\left(x_{n}\right)$ of real numbers in a rigorous manner.

Let us start with a familiar sequence $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots$. We attempt to sum the sequence as follows. Define

$$
S_{1}=1, S_{2}=1+\frac{1}{2}, S_{3}=1+\frac{1}{2}+\frac{1}{4}, S_{4}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}, S_{5}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}, \ldots
$$

Observe that $2-S_{1}=1,2-S_{2}=\frac{1}{2}, 2-S_{3}=\frac{1}{4}, 2-S_{4}=\frac{1}{8}, \ldots$. It is clear that no S_{n} can be equal to 2 but S_{n} tends to 2 as $n \rightarrow \infty$. In light of the above, there is a temptatation to say that

$$
2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots
$$

We will follow the process used above for summing up a sequence of real numbers.

Series and its convergence

Definition 12.1. Let $\left(a_{n}\right)$ be a sequence of real numbers. Then an expression of the form $a_{1}+$ $a_{2}+a_{3}+\cdots$, denoted by $\sum_{n=1}^{\infty} a_{n}$, is called a series.

For each $n \in \mathbb{N}, S_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}$ is called the nth partial sum of the series $\sum_{n=1}^{\infty} a_{n}$.
If $S_{n} \rightarrow S$ for some S then we say that the series $\sum_{n=1}^{\infty} a_{n}$ converges to S. If (S_{n}) does not converge then, we say that the series $\sum_{n=1}^{\infty} a_{n}$ diverges.

If a series $\sum_{n=1}^{\infty} a_{n}$ converges to S, then we write $S=\sum_{n=1}^{\infty} a_{n}$.
Note that the notation $\sum_{n=1}^{\infty} a_{n}$ is used to denote the series $a_{1}+a_{2}+a_{3}+\cdots$, as well as the sum of the series if it converges.

[^0]Example 12.2. We use Definition 12.1 and test the convergence/divergence of some series.

1. The series $\sum_{n=1}^{\infty}(-1)^{n-1}$ diverges, because, $\left(S_{n}\right)$ does not converge. We remark here that the given series can also be written as $\sum_{n=0}^{\infty}(-1)^{n}$. However, in both the cases S_{n} denotes the sum of the first n terms.
2. $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converges, because, $S_{n}=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{n}-\frac{1}{n+1}\right)=1-\frac{1}{n+1} \rightarrow 1$.
3. The series $\sum_{n=1}^{\infty} \ln \left(\frac{n+1}{n}\right)$ diverges, because, $S_{n}=\ln (n+1)$ and $\left(S_{n}\right)$ does not converge.
4. If $0<|x|<1$, then the geometric series $\sum_{n=0}^{\infty} x^{n}$ converges to $\frac{1}{1-x}$, because, $S_{n+1}=1+x+\cdots$ $\cdot+x^{n}=\frac{1-x^{n+1}}{1-x}$. Hence we write $1+x+x^{2}+x^{3}+\cdots=\frac{1}{1-x}$ if $|x|<1$.

In particular, $1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots=2$ which is already seen.
Similarly, $0.99999 \ldots=\frac{9}{10}+\frac{9}{10^{2}}+\frac{9}{10^{3}}+\cdots=\frac{9}{10}\left(1+\frac{1}{10}+\frac{1}{10^{2}}+\cdots\right)=1$.
5. We now verify that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. By Example 3.2 , the sequence $\left(S_{n}\right)$ does not satisfy the Cauchy criterion. Hence $\left(S_{n}\right)$ does not converge and therefore $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Verifying the convergence/divergence of a given series using the definition is not an easy task. We will consider several tests which can be used for this purpose. We start with a simple result.

Necessary condition for convergence

Theorem 12.3. If $\sum_{n=1}^{\infty} a_{n}$ converges then $a_{n} \rightarrow 0$.
Proof. Suppose $\sum_{n=1}^{\infty} a_{n}$ converges. Then $S_{n} \rightarrow S$ for some $S \in \mathbb{R}$. Observe that for every $n \in \mathbb{N}$, $a_{n+1}=S_{n+1}-S_{n}$. Since $S_{n} \rightarrow S$, we get $a_{n+1} \rightarrow S-S=0$.

The condition given in Theorem 12.3 is necessary but not sufficient i.e., it is possible that $a_{n} \rightarrow 0$ but $\sum_{n=1}^{\infty} a_{n}$ diverges. For example, by Example 12.2, $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges; however, $\frac{1}{n} \rightarrow 0$

Example 12.4. We now use Theorem 12.3 to test the divergence of certain series.

1. If $|x| \geq 1$, then the geometric series $\sum_{n=1}^{\infty} x^{n}$ diverges, because, $a_{n} \nrightarrow 0$.
2. The series $\sum_{n=1}^{\infty} \cos \frac{1}{n}$ diverges as $\cos \frac{1}{n} \rightarrow 1$.
3. If $p \leq 0$, then both $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ and $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{p}}$ diverge.
4. Consider $\sum_{n=1}^{\infty} \frac{e^{n}}{n^{3}}$. By the ratio test for sequence (Theorem 2.3), $\frac{n^{3}}{e^{n}} \rightarrow 0$. This implies that $\frac{e^{n}}{n^{3}} \rightarrow \infty$. Therefore, the given series diverges.

Absolute convergence

Definition 12.5. A series $\sum_{n=1}^{\infty} a_{n}$ is said to be absolutely convergent if $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges.
The following result is useful.
Theorem 12.6. If a series converges absolutely then it converges.
Proof. Suppose $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges. Let $\left(S_{n}\right)$ and $\left(\bar{S}_{n}\right)$ denote the sequences of partial sums of $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty}\left|a_{n}\right|$ respectively. We will show that $\left(S_{n}\right)$ satisfies the Cauchy criterion which
proves the result. Note that for any $n>m$,

$$
\left|S_{n}-S_{m}\right|=\left|\sum_{k=m+1}^{n} a_{k}\right| \leq \sum_{k=m+1}^{n}\left|a_{k}\right|=\left|\bar{S}_{n}-\bar{S}_{m}\right|
$$

Since $\left(\bar{S}_{n}\right)$ satisfies the Cauchy criterion, by the preceding inequality, $\left(S_{n}\right)$ satisfies the Cauchy criterion.

We need the following result to illustrate that a convergent series need not converge absolutely.
Theorem 12.7.(Leibniz test). If $\left(a_{n}\right)$ is decreasing and $a_{n} \rightarrow 0$, then $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges.
Proof. Since $\left(a_{n}\right)$ is decreasing and $a_{n} \geq 0$, we have

$$
a_{1} \geq a_{1}-a_{2}+a_{3} \geq a_{1}-a_{2}+a_{3}-a_{4}+a_{5} \geq \ldots
$$

and

$$
a_{1}-a_{2} \leq\left(a_{1}-a_{2}\right)+\left(a_{3}-a_{4}\right) \leq\left(a_{1}-a_{2}\right)+\left(a_{3}-a_{4}\right)+\left(a_{5}-a_{6}\right) \leq \ldots
$$

This shows that $\left(S_{2 n+1}\right)$ is decreasing and $\left(S_{2 n}\right)$ is increasing. Now, for every n,

$$
S_{1} \geq S_{2 n+1}=S_{2 n}+a_{2 n+1} \geq S_{2 n} \geq S_{2}
$$

which implies that $\left(S_{2 n+1}\right)$ and $\left(S_{2 n}\right)$ are bounded. Hence $\left(S_{2 n+1}\right)$ and $\left(S_{2 n}\right)$ converge. Since $S_{2 n+1}-S_{2 n}=a_{2 n+1} \rightarrow 0$, both $\left(S_{2 n+1}\right)$ and $\left(S_{2 n}\right)$ converge to the same limit. Therefore, $\left(S_{n}\right)$ converges.

The series of the form $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$, where $a_{n} \geq 0$ for all n, is called an alternating series.
Example 12.8. 1. By Theorem 12.7, the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}$ converges. But, we have seen in Example 12.2 that it does not converge absolutely.
2. By Theorem 12.7, the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{2}}$ and $\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{\ln n}$ converge.

Elementary results

The first statement of the following result says that if we remove first few terms from a convergent (respectively divergent) series then the resulting series is also convergent (respectively divergent).

Theorem 12.9. 1. $\sum_{n=1}^{\infty} a_{n}$ converges if and only if $\sum_{n=1}^{\infty} a_{p+n}$ converges for any $p \geq 1$.
2. If $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ converge then $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ converges and $\sum_{n=1}^{\infty} \lambda a_{n}$ converges for any $\lambda \in \mathbb{R}$.

Proof. We prove the first statement. The proof of the second statement follows similarly.
Let $p>1$. Suppose $\left(S_{n}\right)$ and $\left(\bar{S}_{n}\right)$ denote the sequences of partial sums of $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} a_{n+p}$ respectively. Now, for any $n \in \mathbb{N}, \bar{S}_{n}=S_{n}-\left(a_{1}+a_{2}+\cdots+a_{p}\right)$. Observe that $\left(S_{n}\right)$ converges if and only if $\left(\bar{S}_{n}\right)$ converges which proves the first statement.

Example 12.10. 1. It follows from Theorem 12.9 that the series $\sum_{n=1}^{\infty}\left(\frac{1}{3^{n}}-\frac{1}{4^{n}}\right)$ converges.
2. Consider the series $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{2^{n}}\right)$. If this series converges, then by Theorem 12.9 , the series $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{2^{n}}+\frac{1}{2^{n}}\right)$ should converge which is not the case. Hence $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{2^{n}}\right)$ diverges.
3. Consider the series $1+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+\frac{1}{5}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}+\cdots$. The series is not an alternating series and hence Leibniz's test cannot be applied. However, note that the series is $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ where $a_{n}=\frac{(-1)^{n+1}}{2 n-1}$ and $b_{n}=\frac{(-1)^{n+1}}{2 n}$. By Leibniz's test both $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ converge and hence by Theorem 12.9, the given series converges.

[^0]: Please write to psraj@iitk.ac.in if any typos/mistakes are found in these notes.

