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Lectures 13: Comparison, Limit Comparison and Cauchy Condensation Tests

In this and the next lecture, we consider certain tests which deal with the absolute convergence
or divergence of series. In this lecture, we discuss an important test called comparison test. The
other tests which will be discussed will follow from the comparison test.

We will use the following elementary result.

Theorem 13.1. Let an ≥ 0 for all n. Then
∑∞

n=1 an converges if and only if (Sn) is bounded.

Proof. Since an ≥ 0 for all n, (Sn) is an increasing sequence and Sn ≥ 0 for all n. Hence (Sn)
converges if and only if (Sn) is bounded, which proves the result. �

Comparison test

Comparison test determines the convergence or the divergence of a series by comparing it to
the one whose behavior is already known.

Theorem 13.2 (Comparison test). Let 0 ≤ an ≤ bn for all n.

(1) If
∑∞

n=1 bn converges, then
∑∞

n=1 an converges.

(2) If
∑∞

n=1 an diverges, then
∑∞

n=1 bn diverges.

Proof. (1) Suppose
∑∞

n=1 bn converges. Then the sequence of partial sums of
∑∞

n=1 bn is bounded.
Since 0 ≤ an ≤ bn for all n, the sequence of partial sums

∑∞
n=1 an is bounded. Now, by Theorem

13.1,
∑∞

n=1 an converges.

(2) If
∑∞

n=1 bn converges, then by (1),
∑∞

n=1 an converges which is a contradiction. �

Example 13.3. 1. The series
∑∞

n=1
1

(n+1)2
converges because 1

(n+1)(n+1) 6 1
n(n+1) . By Theorem

12.9,
∑∞

n=1
1
n2 converges.

2. The series
∑∞

n=1
1√
n
diverges because 1

n 6 1√
n
.

3. The series
∑∞

n=1

√
n4−3
n4+7

converges, because,
√
n4−3
n4+7

≤
√
n4

n4 .

4. The series
∑∞

n=1
1
n! converges because

1
n! <

1
2n−1 .

5. Consider
∑∞

n=1 an where an = (sin n)(cos n)
en . To apply the comparison test, the terms have to be

non-negative. Note that |an| ≤ 1
en . Since

∑∞
n=1

1
en converges, by the comparison test, the series∑∞

n=1 |an| converges. By Theorem 12.6,
∑∞

n=1 an converges.

Limit Comparison Test

To apply the comparison test, the given series needs to be compared to another series whose
convergence/divergence is already known. In general, finding a suitable series for comparison can
be difficult or tricky. Let us illustrate with a simple example. Consider the series

∑∞
n=4

1
n2−5n+6

.

This series cannot be directly compared with the series such as 1
n2 or 1

n . However, observe that

1

n2 − 5n+ 6
=

1

(n− 3)(n− 2)
≤ 1

(n− 3)2

Please write to psraj@iitk.ac.in if any typos/mistakes are found in these notes.
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which allows us to use the comparison test. The limit comparison test, which is user friendly, is a
modification of the comparison test.

Theorem 13.4 (Limit Comparison Test). Let an ≥ 0 and bn > 0 for all n. Suppose an
bn

→ L.

(1) If L ∈ R and L > 0, then both
∑∞

n=1 bn and
∑∞

n=1 an converge or diverge together.

(2) If L = 0, and
∑∞

n=1 bn converges then
∑∞

n=1 an converges.

(3) If L = ∞ and
∑∞

n=1 bn diverges then
∑∞

n=1 an diverges.

Proof. (1) Suppose L > 0. Choose some ε > 0 such that L− ε > 0. Since an
bn

→ L there exists n0

such that L− ε < an
bn

< L+ ε for all n ≥ n0. Hence (L− ε)bn < an < (L+ ε)bn for all n ≥ n0. Now,
(1) follows from the comparison test.

(2) Since an
bn

→ 0, there exists n0 such that an
bn

< 1 for all n > n0. This implies that an < bn for all
n > n0. Apply the comparison test.

3. Since an
bn

→ ∞, there exists n0 such that an
bn

> 1 for all n > n0. Hence an > bn for all n > n0.
Use the comparison test. �

Example 13.5. 1. Consider the series
∑∞

n=4 an where an = 1
n2−5n+6

. This series is already
considered above. We will show the convergence using the limit comparison test (in short, LCT).
We need to find (bn) such that an

bn
→ L for some L ≥ 0 and

∑∞
n=1 bn converges. In this problem, it

is easy to guess (bn), because, as n grows to infinity, the most dominating term in the denominator
is n2. This intuition suggest to choose bn = 1

n2 for all n. Indeed, an
bn

→ 1. Hence by the LCT,∑∞
n=4 an converges.

2. Consider the series
∑∞

n=1 an where an = n2+sin2 n
1+

√
n5+cos n

. Observe that an ≥ 0 for all n. As guessed

in the preceding example, the intuition suggest to choose bn = n2
√
n5
. Verify that an

bn
→ 1. Therefore,

by the LCT,
∑∞

n=1 an diverges.

3. Let an = (n+3)3n

(2n+1)5n and consider
∑∞

n=1 an. In this case, a guess is that as n is large, an behaves

a bit like bn = 3n

5n . In fact, an
bn

→ 1
2 . Hence by the LCT,

∑∞
n=1 an converges.

4. Let an = 1 − n sin 1
n and consider

∑∞
n=1 an. First, observe that an ≥ 0 for all n as sin 1

n ≤ 1
n .

By Taylor’s theorem, there exists c ∈ (0, 1
n) such that

sin
1

n
=

1

n
− 1

3!

(
1

n

)3

+
cos c

5!

(
1

n

)5

.

This implies that 1− n sin 1
n = 1

6
1
n2 − cos c

5!
1
n4 which implies that

1−nsin 1
n

1
n2

→ 1
6 (How ? See below).

Hence, in this case we can take bn = 1
n2 . Since

∑∞
n=1 bn converges, by LCT,

∑∞
n=1 an converges.

The above method leads us to guess bn as follows. If we use the symbol ≈ for approximately
equal to, then by Taylor’s theorem, we can consider either sin 1

n ≈ 1
n or sin 1

n ≈ 1
n − 1

3!

(
1
n

)3
. In this

case, we opt for the second one as the first one does not serve the purpose. Hence, we consider,

1 − n sin 1
n ≈ 1

6n2 . This process leads us to guess bn = 1
6n2 . For finding limn→∞

1−nsin 1
n

1
6n2

, we may

use the L’hospital rule as follows. Note that

lim
x→∞

1− x sin 1
x

1
6x2

= lim
x→0+

1− 1
x sinx
x2

6

= lim
x→0+

6(x− sinx)

x3
= 1.
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We used the L’hospital rule to obtain the last equality in the preceding equation. Since

lim
x→∞

1− x sin 1
x

1
6x2

= 1,

by the definition of the limit of a function (see Lecture 6), limn→∞
1−nsin 1

n
1

6n2
= 1.

5. Consider the series
∑∞

n=1 sin
1
n . In this case, we may try with sin 1

n ≈ 1
n . Now, limn→∞

sin 1
n

1
n

=

limx→0+
sin x
x = 1. By the LCT, the given series diverges.

6. Consider
∑∞

n=1 an where an = 1
n ln(1 + 1

n). In this case, we may try with ln(1 + x) ≈ x. So,

1
n ln(1 + 1

n) ≈
1
n2 . Choose bn = 1

n2 . Now, limn→∞
1
n
ln(1+ 1

n
)

1
n2

= limx→0+
ln(1+x)

x = 1. Hence, by the

LCT, the given series converges.

Cauchy condensation test

So far, we have not discussed the behavior of the series
∑∞

n=1
1
np , where 1 < p < 2. We will

obtain the convergence of this series as a consequence of the Cauchy condensation test.

Theorem 13.6 (Cauchy condensation test). If an ≥ 0 and an+1 ≤ an for all n, then
∑∞

n=1 an
converges if and only if

∑∞
k=0 2

ka2k converges.

Proof (*). Let Sn = a1 + a2 + · · ·+ an and Tk = a1 + 2a2 + · · ·+ 2ka2k for every n and k in N.

Suppose
∑∞

k=0 2
ka2k converges, i.e., (Tk) converges as k → ∞. Hence, there exists M such that

Tk ≤ M for all k ∈ N. For a fixed n, choose k such that 2k ≥ n. Then,

Sn = a1 + a2 + · · ·+ an

≤ a1 + (a2 + a3) + · · ·+ (a2k + · · ·+ a2k+1−1)

≤ a1 + 2a2 + · · ·+ 2ka2k

= Tk

≤ M.

This shows that (Sn) is bounded above and hence
∑∞

n=1 an converges.

Suppose
∑∞

n=1 an converges, i.e., (Sn) converges. For a fixed k, choose n such that n ≥ 2k.
Then

Sn = a1 + a2 + · · ·+ an

≥ a1 + a2 + (a3 + a4) + · · ·+ (a2k−1+1 + · · ·+ a2k)

≥ 1

2
a1 + a2 + 2a4 + · · ·+ 2k−1a2k

=
1

2
Tk.

This shows that (Tk) is bounded above and hence (Tk) converges, i.e.,
∑∞

k=0 2
ka2k converges. �

Example 13.7. 1. We show that
∑∞

n=1
1
np converges if p > 1 and diverges if p ≤ 1. We have seen

in Example 12.4 that
∑∞

n=1
1
np diverges if p ≤ 0. Suppose p > 0. To apply Theorem 13.6, consider

∞∑
k=0

2k
1

(2k)p
=

∞∑
k=0

2k
1

2kp
=

∞∑
k=0

2(1−p)k =

∞∑
k=0

[
2(1−p)

]k
.
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Since the series given above is geometric, it converges if and only if 2(1−p) < 1, i.e., p > 1.

2. We show that
∑∞

n=2
1

n(ln n)p converges if and only if p > 1. To apply Theorem 13.6, consider∑∞
k=1 2

k 1
2k(ln 2k)p

=
∑∞

k=1
1

kp(ln 2)p . Now, by the preceding example
∑∞

n=2
1

kp(ln 2)p converges if and

only if p > 1, as (ln 2)p is a constant for a given p.

3. Consider the series
∑∞

n=1 an where an = ln n
np and p ∈ R. Suppose p ≤ 1. Note that an ≥ 1

np for
n ≥ 2. Hence by the comparison test

∑∞
n=1 an diverges for p ≤ 1. Suppose p > 1. In this case, if

we want to use the LCT, then lnx ≈ x may not help for guessing bn. Note that for any fixed p > 1,
the series

∑∞
n=1 an has to either converge or diverge. So, a candidate for bn is 1

nq for some q. This
suggests us to choose bn = 1

nq , where q is unknown, and apply the LCT. Now,

an
bn

=
lnn/np

1/nq
=

lnn

np−q
.

If we choose q such that 1 < q < p, in particular q = 1+p
2 , then, by the L’Hospitial rule, an

bn
→ 0.

Since
∑∞

n=1
1
nq converges, the series

∑∞
n=1 an converges for p > 1.


