Lecture 16: Riemann Integration (Part I)

At the high school level the indefinite and definite integrals are introduced as follows. For a given function f if there exists F such that $F^{\prime}(x)=f(x)$ for all x in the domain of f, then the indefinite integral $\int f(x) d x$ is defined to be $F(x)+C$ where C is a constant. Whereas, if f is continuous on $[a, b]$, then the definite integral $\int_{a}^{b} f(x) d x$ is defined (but not in a rigorous manner) as the area of the region bounded by the curve $y=f(x), a \leq x \leq b$, the x-axis and the ordinates $x=a$ and $x=b$. Usually, at the school level the following important result called Fundamental Theorem of Calculus (FTC), which enables us to evaluate definite integrals by making use of the indefinite integral, is stated without proof.

Theorem (FTC). If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$.

In this course, we define the definite integral (for functions which need not be continuous) in a rigorous manner and prove a stronger form of the FTC. We will not discuss the methods of evaluating the indefinite integrals as they are covered in the school level. However, we will present some applications of integration.

We will define the (definite) integral as the area of a region under a graph. A basic question is how to define the said area.

Let us look at a justification for defining the area of the region enclosed by a circle of radius r. We assume that we know the area of a given triangle and we approximate the region enclosed by the given circle as follows. For an arbitrary n, consider the n equal inscribed and superscibed triangles as shown in Figure 1.

Figure 1

Figure 2

Observe that the total area of the inscribed triangles is $n r^{2} \sin (\pi / n) \cos (\pi / n)$ and superscribed triangles is $n r^{2} \tan (\pi / n)$ (see Problem 1 of PP 16). Further, both $\left(n r^{2} \sin (\pi / n) \cos (\pi / n)\right)$ and $\left(n r^{2} \tan (\pi / n)\right)$ converge to πr^{2}. We will use this idea to define and evaluate the area of the region under a graph of a function.

Suppose f is a non-negative bounded function defined on an interval $[a, b]$. We first subdivide the interval into a finite number of subintervals. Then we squeeze the region under the graph of f between the region covered by the inscribed and superscribed rectangles constructed over the subintervals as shown in Figure 2. If the total areas of the inscribed and superscribed rectangles come closer to a common value as we make the partition of $[a, b]$ finer and finer then the area of the region under the graph of f can be defined as this common value and f is said to be integrable.

[^0]Let us define whatever has been explained above formally.

The Riemann Integral

Let $[a, b]$ be a given interval. A partition P of $[a, b]$ is a finite set of points $x_{0}, x_{1}, x_{2}, \ldots, x_{n}$ such that $a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b$ and we write $P=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\}$.

If $P=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a partition of $[a, b]$ we denote $\Delta x_{i}=x_{i}-x_{i-1}$ for $1 \leq i \leq n$. Throughout this and the next two lectures, we assume that f is a bounded function on $[a, b]$. For the given partition P of $[a, b]$, we define

$$
\begin{gathered}
M_{i}=\sup \left\{f(x): x_{i-1} \leq x \leq x_{i}\right\}, \quad m_{i}=\inf \left\{f(x): x_{i-1} \leq x \leq x_{i}\right\} \\
U(P, f)=\sum_{i=1}^{n} M_{i} \Delta x_{i} \text { and } L(P, f)=\sum_{i=1}^{n} m_{i} \Delta x_{i}
\end{gathered}
$$

The numbers $U(P, f)$ and $L(P, f)$ are called the upper and lower Riemann sums for the partition P (see Figure 2).

Consider two partitions P_{1} and P_{2} of $[a, b]$ such that $P_{1} \subset P_{2}$, i.e., the points which are in P_{1} are also in P_{2} and P_{2} has some extra points. Intuitively, it is clear that $L\left(P_{1}, f\right) \leq L\left(P_{2}, f\right)$ and $U\left(P_{2}, f\right) \leq U\left(P_{1}, f\right)$. Moreover, intuitively, we feel that if we add more and more points to a partition then the upper sums get smaller and the lower sums get larger. Let us formally prove the above statements, which we guessed intuitively.

Definition 16.1. A partition P_{2} of $[a, b]$ is said to be finer than a partition P_{1} if $P_{2} \supset P_{1}$. In this case we say that P_{2} is a refinement of P_{1}.

Theorem 16.1. Let P_{2} be a refinement of P_{1} then $L\left(P_{1}, f\right) \leq L\left(P_{2}, f\right)$ and $U\left(P_{2}, f\right) \leq U\left(P_{1}, f\right)$.
Proof (*). We first assume that P_{2} contains just one more point than P_{1}. Let this extra point be x^{\star}. Suppose $x_{i-1}<x^{\star}<x_{i}$, where x_{i-1} and x_{i} are consecutive points of P_{1}. Let

$$
w_{1}=\inf \left\{f(x): x_{i-1} \leq x \leq x^{\star}\right\} \quad \text { and } \quad w_{2}=\inf \left\{f(x): x^{\star} \leq x \leq x_{i}\right\}
$$

Then $w_{1} \geq m_{i}$ and $w_{2} \geq m_{i}$ where $m_{i}=\inf \left\{f(x): x_{i-1} \leq x \leq x_{i}\right\}$. Then

$$
\begin{aligned}
L\left(P_{2}, f\right)-L\left(P_{1}, f\right) & =w_{1}\left(x^{\star}-x_{i-1}\right)+w_{2}\left(x_{i}-x^{\star}\right)-m_{i}\left(x_{i}-x_{i-1}\right) \\
& =\left(w_{1}-m_{i}\right)\left(x^{\star}-x_{i-1}\right)+\left(w_{2}-m_{i}\right)\left(x_{i}-x^{\star}\right) \\
& \geq 0
\end{aligned}
$$

If P_{2} contains k more points then we repeat this process k-times. The other inequality is analogously proved.

Our aim is to make the upper sums as large as possible and the lower sums as small as possible by considering different partitions so that the "area" of the region under the graph which is to be defined is squeezed between the lower sums and the upper sums. One may think that we can start with a partition and then go on taking its refinements so that this aim can be achieved. But which partition to start with and which way to refine it are the natural questions. So, why not considering all the possible partitions to achieve our goal. In light of this, we define

$$
\int_{a}^{b} f(x) d x=\inf \{U(P, f): P \text { is a partition of }[a, b]\}
$$

and

$$
\int_{a}^{b} f(x) d x=\sup \{L(P, f): P \text { is a partition of }[a, b]\} .
$$

Note that, since f is bounded, there exist real numbers m and M such that $m \leq f(x) \leq M$, for all $x \in[a, b]$. Thus for every partition P of $[a, b]$,

$$
m(b-a) \leq L(P, f) \leq U(P, f) \leq M(b-a)
$$

Hence the sets $\{U(P, f): P$ is a partition of $[a, b]\}$ and $\{L(P, f): P$ is a partition of $[a, b]\}$ are bounded. Therefore, $\bar{\int}_{a}^{b} f d x$ and $\underline{\int}_{a}^{b} f(x) d x$ exist and are called the upper and lower Riemann integrals of f over $[a, b]$ respectively.

Definition 16.2. (i) A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is said to be Riemann integrable or integrable (on $[a, b]$) if $\bar{\int}_{a}^{b} f(x) d x=\int_{a}^{b} f(x) d x$.
(ii) If f is integrable on $[a, b]$, then the common value $\int_{a}^{b} f(x) d x\left(=\int_{a}^{b} f(x) d x\right)$ is called the Riemann integral of f and it is denoted by $\int_{a}^{b} f(x) d x$.

Examples 16.1. 1. Consider the function $f:[0,1] \rightarrow \mathbb{R}$ defined by

$$
f\left(\frac{1}{2}\right)=1 \text { and } f(x)=0 \text { for all } x \in[0,1] \backslash\left\{\frac{1}{2}\right\} .
$$

Then f is integrable. We show this using the definition as follows. For any partition P of $[0,1]$, $L(P, f)$ is always 0 and hence the lower integral is 0 . Let us evaluate the upper integral. Let $P=\left\{x_{0}, x_{1}, x_{2}, . ., x_{n}\right\}$ be any partition of $[0,1]$ and $\frac{1}{2} \in\left[x_{i-1}, x_{i}\right]$ for some i. If $\frac{1}{2} \in\left(x_{i-1}, x_{i}\right)$ then

$$
U(P, f)=M_{i} \Delta x_{i}=\triangle x_{i} \leq \max \left\{\Delta x_{j}: 1 \leq j \leq n\right\} \leq 2 \max \left\{\Delta x_{j}: 1 \leq j \leq n\right\}
$$

If $\frac{1}{2}=x_{i-1}$, then

$$
U(P, f)=M_{i-1} \triangle x_{i-1}+M_{i} \triangle x_{i}=\triangle x_{i-1}+\triangle x_{i} \leq 2 \max \left\{\Delta x_{j}: 1 \leq j \leq n\right\} .
$$

Similarly, if $\frac{1}{2}=x_{i}$, then we can show that $U(P, f) \leq 2 \max \left\{\Delta x_{j}: 1 \leq j \leq n\right\}$. Since we can always choose a partition P such that $\max \left\{\Delta x_{j}: 1 \leq j \leq n\right\}$ is as small as possible, the upper integral, which is the infimum of $U(P, f)^{\prime} s$, is 0 . Hence, f is integrable and $\int_{0}^{1} f(x) d x=0$.
2. Not every bounded function is integrable. For example, consider the function f defined by

$$
f(x)= \begin{cases}1 & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational } .\end{cases}
$$

Consider an interval $[a, b]$. For any partition P of $[a, b], U(P, f)=b-a$ and $L(P, f)=0$. Hence the upper integral of f is 1 and the lower integral is 0 . Therefore f is not integrable over any interval $[a, b]$.

In general, determining whether a bounded function on $[a, b]$ is integrable, using the definition, is difficult. For the purpose of checking the integrability, we give a criterion for integrability, called Riemann criterion, which is analogous to the Cauchy criterion for the convergence of a sequence.

Let us define some concepts and results before presenting the criterion.
Definition 16.3. Given two partition P_{1} and P_{2}, the partition $P_{1} \cup P_{2}=P$ is called their common refinement.

The geometric interpretation suggests that the lower integral is less than or equal to the upper integral. So the next result is also anticipated.

Theorem 16.2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. Then $\bar{\int}_{a}^{b} f(x) d x \geq \underline{\int}_{a}^{b} f(x) d x$.
Proof (*). Let P_{1}, P_{2} be two partitions of $[a, b]$ and let P be their common refinement. Then by Theorem 16.1,

$$
L\left(P_{1}, f\right) \leq L(P, f) \leq U(P, f) \leq U\left(P_{2}, f\right)
$$

Thus for any two partitions P_{1} and P_{2}, we have $L\left(P_{1}, f\right) \leq U\left(P_{2}, f\right)$. Fix P_{2} and take supremum over all P_{1}. Then $\underline{\int}_{a}^{b} f(x) d x \leq U\left(P_{2}, f\right)$. Now take infimum over all P_{2} to get the desired result.

In the following result we present the Reimann criterion (a necessary and sufficient condition for the existence of the integral of a bounded function).

Theorem 16.3. (Riemann's criterion for integrability). Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. Then f is integrable if and only if for every $\epsilon>0$ there exists a partition P such that

$$
\begin{equation*}
U(P, f)-L(P, f)<\epsilon \tag{1}
\end{equation*}
$$

Proof (*). Suppose that condition (1) holds. Let $\epsilon>0$ and P satisfy (1). Then

$$
L(P, f) \leq \int_{a}^{b} f(x) d x \leq \int_{a}^{b} f(x) d x \leq U(P, f)
$$

Therefore, (1) implies that $\bar{\int}_{a}^{b} f(x) d x-\underline{\int}_{a}^{b} f(x) d x<\epsilon$. Since ϵ is arbitrary, $\underline{\int}_{a}^{b} f(x) d x=\bar{\int}_{a}^{b} f(x) d x$. Ths shows that f is integrable.

Conversely, suppose f is integrable and $\epsilon>0$. Then there exist partitions P_{1} and P_{2} such that

$$
L\left(P_{1}, f\right)>\int_{a}^{b} f(x) d x-\epsilon / 2 \text { and } \quad U\left(P_{2}, f\right)<\int_{a}^{b} f(x) d x+\epsilon / 2 .
$$

Let P be the common refinement of P_{1} and P_{2}. Then

$$
\int_{a}^{b} f(x) d x-\frac{\epsilon}{2}<L\left(P_{1}, f\right) \leq L(P, f) \leq U(P, f) \leq U\left(P_{2}, f\right)<\int_{a}^{b} f(x) d x+\frac{\epsilon}{2}
$$

Therefore $U(P, f)-L(P, f)<\epsilon$.

[^0]: Please write to psraj@iitk.ac.in if any typos/mistakes are found in these notes.

