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Lecture 3 : Monotone and Cauchy criteria, subsequences

In Lecture 2, we used the limit theorem, sandwich theorem and ratio test for determining the
convergence of certain sequences as well as their limits. These results are not applicable in many
instances. Hence we look for some sufficient conditions (also called criteria) which ensure at least
the convergence of a sequence (without having any knowledge of its limit). Once the convergence
is established, finding the limit can be considered as a different task. We will discuss two criteria.
One is called monotone criterion and the other Cauchy criterion.

Before presenting a criterion (a sufficient condition), let us see a necessary condition for the
convergence of a sequence. For stating a necessary condition, we need the following definition.

Definition 3.1. Let A be a subset of R. We say that A is bounded if it is both bounded above
and bounded below. A sequence (xn) is said to be bounded if the set {xn : n ∈ N} is bounded.

Let A be a subset of R. It is easy to verify that A is a bounded set if and only if there exits
M > 0 such that |x| ≤ M for all x ∈ A.

Theorem 3.1. Every convergent sequence is a bounded sequence.

Proof. Let xn → x. Then, for ε = 1, there exist N ∈ N such that

|xn − x| ≤ 1 for all n ≥ N.

This implies that |xn| ≤ |x| + 1 for all n ≥ N . If we let L = max{|x1|, |x2|, . . . , |xN−1|}, then
|xn| ≤ L+ |x|+ 1 for all n ∈ N. Therefore (xn) is a bounded sequence. �

Remark 3.1. Theorem 3.1 says that if a sequence is convergent then it is necessary that the
sequence has to be bounded. Whereas bounded sequence need not converge. For example, the
sequence ((−1)n) is a bounded sequence but it does not converge. The necessary condition stated
in Theorem 3.1 can be used to establish the divergence of certain sequences. For example, the
sequences (n), (

√
n) and ((−1)nn) diverge, because, they are not bounded.

One naturally asks the following question: Can an additional condition on a bounded sequence
ensure the convergence? As an answer to this question, we show that if the terms of a bounded
sequence either increase or decrease then the sequence converges.

Monotone Sequences

Definition 3.2. We say that a sequence (xn) is increasing if xn ≤ xn+1 for all n ∈ N. Similarly
we define decreasing sequence. Sequences which are either increasing or decreasing are called
monotone.

Theorem 3.2. If a sequence is bounded and monotone then it converges.

Proof. Suppose that (xn) is a bounded and increasing sequence. Observe that an obvious candidate
for the limit of (xn) is β = sup {xn : n ∈ N}. Hence we claim that xn → β. Let ε > 0 be given.
Since β − ε is not an upper bound of {xn : n ∈ N}, there exists N ∈ N such that β − ε < xN . Since
(xn) is increasing, we have xN ≤ xn for all n ≥ N . This implies that

β − ε < xn ≤ β ≤ β + ε for all n ≥ N.

This shows that xn → β.
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Similarly, we can show that if (xn) is bounded and decreasing, then xn → inf {xn : n ∈ N}. �

In light of Theorem 3.2, we say that a sequence satisfies monotone criterion if it is both monotone
and bounded.

Examples 3.1. 1. Let x1 = 4, xn = n+1
n−1 for n ≥ 2 and yn = n

n+1 for n ∈ N. Then xn+1 − xn < 0
and yn+1 − yn > 0 for n ∈ N. Hence (xn) is decreasing and (yn) is increasing.

2. Let (xn) be defined inductively by x1 =
√
2 and xn =

√
2 + xn−1 for n > 1. We use Theorem

3.2 and show that (xn) converges. Note that 0 < x1 < x2 < 2. Now we use induction and show
that xn ≤ 2 and xn+1 ≥ xn for all n ∈ N. These facts are already verified for n = 1. Suppose
xk ≤ 2 for some k > 1. Then xk+1 =

√
2 + xk ≤ 2. Hence by induction xn ≤ 2 for all n ≥ 1.

Next we show that (xn) is increasing using induction. Suppose xk−1 ≤ xk for some k > 2. Then
xk =

√
2 + xk−1 ≤

√
2 + xk = xk+1. Hence by induction xn ≤ xn+1 for all n ∈ N. Therefore, by

Theorem 3.2, (xn) converges. Let us find the limit of (xn). Suppose xn → λ. Then using the fact
that xn → λ on the left and right hand sides of the expression xn =

√
2 + xn−1, we obtain that

λ =
√
2 + λ. This implies that λ must satisfy the equation λ2 − λ− 2 = 0. Hence either λ = 2 or

λ = −1. Since xn > 0 for all n ∈ N, we must have λ ≥ 0. Therefore we conclude that xn → 2.

3. Let x1 = 8 and xn+1 = 1
2xn + 2 for n ≥ 1. We show that (xn) converges as follows. Note that

x2 = 6 and x3 = 5. If xn → λ, then λ must satisfy λ = λ
2 +2 and therefore, λ = 4. Further, if (xn)

is deceasing and bounded, then λ = inf {xn : n ∈ N}. From this information we guess that (xn)
is decreasing and xn ≥ 4 for all n ∈ N. First show that xn ≥ 4 by induction. Then it is easy to
verify that xn+1

xn
≤ 1 for all n ∈ N. Hence the sequence is decreasing and bounded. Therefore (xn)

converges and its limit is 4.

Cauchy Criterion

Theorem 3.2 is applicable only to sequences that are monotone. Consider the sequence (xn)
which is defined inductively by x1 = 1, x2 = 2 and xn+2 = xn+xn+1

2 for n ≥ 1. The sequence (xn)
is bounded but not monotone. However, there is an impression that this sequence might converge
and, in fact, it does which will be seen. At first look, guessing a candidate for the limit of this
sequence does not seem to be obvious. Hence it appears that there is no possibility of applying
the sandwich theorem or ratio test for (xn). Therefore we look for a sufficient condition, which is
different from the monotone criterion, on a bounded sequence that can ensure the convergence.

Let us start with a convergent sequence and find out a necessary condition which does not
involve the limit of the sequence. Suppose that a sequence (xn) converges to x. Let ε > 0 be given.
Then there exists N ∈ N such that |xn − x| < ε/2 for all n ≥ N . Hence for n,m ≥ N we have

|xn − xm| = |xn − x+ x− xm| ≤ |xn − x|+ |x− xm| < ε.

Thus we arrive at the following conclusion:

“If a sequence (xn) converges then it is necessary that it satisfies the Cauchy criterion which is
stated in the following definition”.

Definition 3.3. We say that a sequence (xn) satisfies the Cauchy criterion if for every ε > 0, there
exists N ∈ N such that |xn − xm| < ε whenever n,m ≥ N .

In case xn → x0 we can, roughly, say that |xn−x0| moves “closer” to 0 when n becomes larger.
Whereas, if (xn) satisfies the Cauchy criterion, then |xn − xm| gets closer to 0 when both n and m
become larger. To understand Definition 3.3, let us see some examples.
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Example 3.2. 1. Let xn = 1 + 1
2 + 1

3 + · · · + 1
n for all n ∈ N. Let us verify that (xn) does not

satisfy the Cauchy criterion. Let n ∈ N. Then x2n − xn = 1
n+1 + 1

n+2 + · · · + 1
2n ≥ n 1

2n = 1
2 . This

shows that (xn) does not satisfy the Cauchy criterion.

2. Using Definition 3.3, we show that the sequence (n
2−1
n2 ) satisfies the Cauchy criterion. Let ε > 0

be given. We have to find N ∈ N such that |xn−xm| = | 1
m2 − 1

n2 | < ε whenever m,n ≥ N . Observe
that if m,n ≥ N for some N ∈ N, then | 1

n2 − 1
m2 | < 1

n2 + 1
m2 ≤ 2

N2 . Therefore choose N such that

N >
√

2
ε so that we get |xn − xm| < ε for all n,m ≥ N .

Note that a sequence satisfying the Cauchy criterion is a bounded sequence (see Problem 2 in
PP4) with some additional property. Therefore it is natural to ask whether a sequence satisfying
the Cauchy criterion will converge. We will show that a sequence satisfying Cauchy criterion does
converge. We need some results to prove this.

If a, b ∈ R and a < b then the closed bounded interval from a to b is the set [a, b] = {x ∈ R :
a ≤ x ≤ b}.

Theorem 3.3 (Nested interval Theorem). Let In = [an, bn] be such that In ⊇ In+1 for all

n ∈ N and lim
n→∞

(bn − an) = 0. Then there exists x0 ∈ R such that
∞⋂
n=1

In = {x0}, an → x0 and

bn → x0.

Proof (*). Note that the sequences (an) and (bn) are respectively increasing and decreasing.
Moreover both are bounded. Hence, by Theorem 3.2 both converge, say an → a and bn → b. It
follows from the proof of Theorem 3.2 that a = sup {an : n ∈ N} and b = inf {bn : n ∈ N}.
Therefore an ≤ a and b ≤ bn for all n ∈ N . Since b − a = lim

n→∞
(bn − an) = 0, a = b. Thus we

have an ≤ a = b ≤ bn for all n. Therefore a ∈
∞⋂
n=1

In. Suppose c ∈
∞⋂
n=1

In for some c ∈ R. Then

|c− a| ≤ bn − an for all n ∈ N. Since bn − an → 0, a = c. This proves the result. �

We need a notion called subsequence which is defined below.

Subsequences

Definition 3.4. Let (xn) be a sequence and let (nk) be any sequence of positive integers such that
n1 < n2 < n3 < . . .. The sequence (xnk

) is called a subsequence of (xn).

We can, roughly, say that a subsequence is formed by deleting some of the terms of the sequence
and retaining the remaining in the same order. Note that in Definition 3.4, k varies from 1 to ∞
and nk ≥ k for all k ∈ N.

Example 3.3. 1. Sequences (1, 1, 1, . . .) and (0, 0, 0, . . .) are both subsequences of (1, 0, 1, 0, . . .).

2. The sequence (14 ,
1
2 ,

1
8 ,

1
6 . . .) is not a subsequence of ( 1n), because, here n1 = 4, n2 = 2, n3 = 8, . . ..

3. The sequences ( 1
k2
) and ( 1

2k
) are subsequences of ( 1n).

Theorem 3.4. Let (xnk
) be a subsequence of (xn). If xn → x0 then xnk

→ x0 as k → ∞.

Proof. (*) For every k ∈ N, let yk = xnk
. It is enough to show that yk → x0 as k → ∞. Let ε > 0

be given. Since xn → x0, there exists N ∈ N, such that |xk − x0| < ε for all k ≥ N . Observe that
if k ≥ N then nk ≥ k ≥ N . Therefore, for all k ≥ N , |xnk

− x0| < ε and hence |yk − x0| < ε. This
shows that yk → x0 as k → ∞. �
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Remark 3.2. From the proof of Theorem 3.4, we conclude that a subsequence (xnk
) converges to

some x0 if and only if for every given ε > 0, there exists N ∈ N such that |xnk
− x0| < ε whenever

k ≥ N.

We see from Example 3.3 that a given sequence may have convergent subsequences but the
sequence itself may not converge. It may happen that a sequence may not have a convergent
subsequence at all, for instance, take (n). In the next lecture we will address the question: under
what condition on a given sequence, we can extract a convergent subsequence from the sequence?


