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Lecture 4: Cauchy Criterion, Bolzano-Weierstrass Theorem

In this lecture, we state and proof the Bolzano-Weierstrass theorem which is an important result
in calculus. We will see several applications of this result. Further, we will use this result to proof
that if a sequence satisfies the Cauchy criterion then it converges.

The following remark is useful for understanding the proof of the Bolzano-Weierstrass Theorem.

Remark 4.1. If a sequence (xn) is given, then the set {xn : n ∈ N} may have finite or infinite
number of elements. For instance, if xn = (−1)n, for all n ∈ N, then the set {xn : n ∈ N} has only
two elements. However, the sequence (xn) has infinite number of terms. That is, for each n, we
have the nth term xn.

Theorem 4.1 (Bolzano-Weierstrass theorem). Every bounded sequence in R has a convergent
subsequence.

Proof (*). Let (xn) be a bounded sequence. Then there exists an interval [a1, b1] such that
a1 ≤ xn ≤ b1 for all n ∈ N. Note that at least one of the intervals [a1,

a1+b1
2 ] or [a1+b1

2 , b1]

contains infinite number of terms of (xn). If [a1, a1+b1
2 ] has infinite number of terms of (xn) then

let [a2, b2] = [a1,
a1+b1

2 ]. Otherwise let [a2, b2] = [a1+b1
2 , b1]. Again, at least one of the intervals

[a2,
a2+b2

2 ] or [a2+b2
2 , b2] contains infinite number of terms of (xn). Let [a3, b3] be one of the intervals

[a2,
a2+b2

2 ] or [a2+b2
2 , b2] which contains infinite number of terms of (xn). If we proceed, then for

each n ∈ N, we obtain [an, bn] such that [an+1, bn+1] ⊂ [an, bn] for all n ∈ N and bn − an → 0.

Hence, by the nested interval theorem, there exists x0 ∈ R such that
∞⋂
n=1

[an, bn] = {x0}, an → x0

and bn → x0.

We now construct a subsequence (xnk
) of (xn) such that xnk

→ x0 as k → ∞. Note that as per
our construction, for each n ∈ N, the interval [an, bn] has infinite number of terms of (xn). If we
let n1 = 1 then xn1 ∈ [a1, b1]. Since [a2, b2] has infinite number of terms, find n2 > n1 such that
xn2 ∈ [a2, b2]. Similarly, find n3 > n2 such that xn3 ∈ [a3, b3]. Proceed to generate (xnk

) such that
xnk

∈ [ak, bk] for all k ∈ N. Since ak ≤ xnk
≤ bk for all k ∈ N, by the sandwich theorem, xnk

→ x0
as k → ∞. �

Theorem 4.2. If a sequence (xn) satisfies the Cauchy criterion then (xn) converges.

Proof (*). Let (xn) satisfy the Cauchy criterion. Since (xn) is bounded, by Theorem 4.1, there
exists a subsequence (xnk

) of (xn) such that xnk
→ x0 for some x0. We now show that xn → x0.

Let ε > 0 be given. Since (xn) satisfies the Cauchy criterion,

there exists N1 such that | xn − xm | < ε/2 for all n,m ≥ N1. (1)

Since xnk
→ x0,

there exists N2 such that | xnk
− x0 | < ε/2 for all k ≥ N2 (2)

(see Remark 3.2). Let N = max{N1, N2} and n ≥ N . Choose some k > n. Then nk ≥ k > n and
hence nk ≥ N . Therefore n, nk ≥ N1 and k ≥ N2. By (1) and (2) we have

| xn − x0 | ≤ | xn − xnk
| + | xnk

− x0 | <
ε

2
+

ε

2
= ε.

Thus |xn − x0| < ε for all n ≥ N . This proves that xn → x0. �

Please write to psraj@iitk.ac.in if any typos/mistakes are found in these notes.
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For a given sequence, if the limit theorem, sandwich theorem, ratio test and monotone criterion
cannot be applied for determining its convergence, then an available option is to check whether the
sequence satisfies the Cauchy criterion. Verifying the Cauchy criterion directly from the definition
can be very difficult. The following result, in which we deal only with the consecutive terms of a
given sequence, is useful to check whether the given sequence satisfies the Cauchy criterion.

Proposition 4.3. Let 0 < α < 1. Suppose that (xn) satisfis the contractive condition:

|xn+2 − xn+1| ≤ α|xn+1 − xn| for all n ∈ N.

Then (xn) satisfies the Cauchy criterion.

Proof (*). For n ∈ N,

|xn+2 − xn+1| ≤ α|xn+1 − xn| ≤ α2|xn − xn−1| ≤ · · · ≤ αn|x2 − x1|.

Let n,m ∈ N be such that n > m. Since |xn−xm| ≤ |xn−xn−1|+ |xn−1−xn−2|+ · · ·+ |xm+1−xm|,

|xn − xm| ≤ (αn−2 + αn−3 + · · ·+ αm−1)|x2 − x1| ≤
αm−1

1− α
|x2 − x1|.

Since αm → 0 as m → ∞, (xn) satisfies the Cauchy criterion. �

Example 3.5. 1. Let x1 = 1 and xn+1 =
1

2+xn
for n ∈ N. Then

| xn+2 − xn+1 | =
1

(2 + xn+1)(2 + xn)
| xn − xn+1 | <

1

4
| xn − xn+1 | .

Therefore (xn) satisfies the contractive condition with α = 1/4 < 1 and hence it satisfies the
Cauchy criterion. Therefore it converges by Theorem 4.2. Suppose xn → l. Then l = 1

2+l and
hence l =

√
2− 1.

2. Consider the well known Fibonacci sequence (see Wikipedia) which is defined inductively by
x1 = 1, x2 = 1 and xn+2 = xn + xn+1 for n ∈ N. We now show a well known result which says
that the sequence (xn+1

xn
) converges to the golden ratio 1+

√
5

2 . Let yn = xn+1

xn
for all n ∈ N. Then,

y1 = 1 and for n ∈ N,
yn+1 =

xn+2

xn+1
=

xn + xn+1

xn+1
= 1 +

1

yn
.

We now show that (yn) satisfies the contractive condition. Note that for all n ≥ 2,

|yn+1 − yn| = | 1
yn

− 1

yn−1
| = |yn−1 − yn

ynyn−1
|

and |ynyn−1| = |(1 + 1
yn−1

)yn−1| = |yn−1 + 1| ≥ 2. This implies that |yn+1 − yn| ≤ 1
2 |yn − yn−1|

for all n ≥ 2. Hence (yn) satisfies the contractive condition and therefore it satisfies the Cauchy
criterion. Hence (yn) converges. Showing that yn → 1+

√
5

2 is routine.

3. Recall the sequence (xn) defined inductively by x1 = 1, x2 = 2 and for n ∈ N, xn+2 = xn+1+xn

2 .
Now |xn+2 − xn+1| = 1

2 |xn+1 − xn| for n ∈ N. Since (xn) satisfies the contractive condition, it
converges. For finding the limit of (xn), observe that xn+1 +

1
2xn = xn + 1

2xn−1 = · · · = x2 +
1
2x1

for all n ∈ N. Hence if xn → `, then ` satisfies ` + 1
2` = x2 +

1
2x1 = 5

2 . Therefore ` = 5
3 . The

convergence of (xn) can also be directly determined from the nested interval theorem (see Problem
8 in PP4).
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Remark 4.2: 1. Whenever we use Proposition 4.3, we should make sure that the number α that
we get is a constant and satisfies 0 < α < 1. If (xn) satisfies |xn+2 − xn+1| < |xn+1 − xn| for all
n ∈ N, then the sequence (xn) need not satisfy the Cauchy criterion (see Problem 3 in PP4).

2. Proposition 4.3 says that if (xn) satisfies the contractive condition then it converges. The
converse need not be true. That is, if a sequence converges, then it need not satisfy the contractive
condition (see Problem 3 in PP4).

In the last four lectures, we discussed several results which basically deal with various properties
of R. These properties will be used in the subsequent lectures in which we deal with the real valued
functions.


