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Lecture 6: Intermediate Value Theorem, Limit of a function, Differentiability

In the previous lecture, we discussed two properties of continuous functions which are defined
on closed bounded intervals (see Theorems 5.2 and 5.3). In this lecture, we will derive one more
property in Theorem 6.2 which has several applications.

Consider a function f : [a, b] → R such that f is continuous and satisfies f(a) < 0 and f(b) > 0.
Intuitively, we feel that the graph of f should cross the x-axis between a and b. The following
result is formulated based on this observation.

Theorem 6.1. Let f be continuous on [a, b], and let f(a) < 0 < f(b).Then there exists c such that
a < c < b and f(c) = 0.

Proof (*). Let S = {x ∈ [a, b] : f(x) ≤ 0}. Since a ∈ S, we have S 6= ∅. Note that S is
bounded above by b. Hence S has the least upper bound and we denote it by c. We claim that
f(c) = 0. Since c is the least upper bound of S, there exists a sequence (xn) from S such that
xn → c (see Problem 9 of PP2). Since xn ∈ [a, b] for all n ∈ N, c ∈ [a, b]. By the continuity of f at
c, f(xn) → f(c). Since f(xn) ≤ 0 for all n, we have f(c) ≤ 0.

We show that f(c) ≥ 0 which proves the result. First note that b > c. Let yn = c+(b− c)/n for
every n ∈ N. Observe that yn → c. By the continuity of f , we get f(yn) → f(c). Since f(yn) > 0
for all n, f(c) ≥ 0. �

Theorem 6.1 motivates us to state the following result.

Theorem 6.2 (Intermediate value theorem). Let f : [a, b] → R. Suppose α is a real number
between f(a) and f(b) (i.e., α is an intermediate value between f(a) and f(b)). Then there exists
c ∈ (a, b) such that f(c) = α.

Proof. Define g(x) = f(x) − α for all x ∈ [a, b]. Suppose f(a) < α < f(b). Then g(a) < 0 and
g(b) > 0. Since g is also continuous on [a, b], by Theorem 6.1, there exists c ∈ (a, b) such that
g(c) = 0. That is, f(c) = α. The proof is similar in case f(a) > α > f(b). �

We now present some applications of the intermediate value theorem. For given a ∈ R, we
let [a,∞) = {x ∈ R : x ≥ 0}, (a,∞) = {x ∈ R : x > 0}, (−∞, a] = {x ∈ R : x ≤ a} and
(−∞, a) = {x ∈ R : x < a}.

Application 6.1. Existence of solutions of various equations can be obtained using the interme-
diate value theorem (in short, IVT). We present a few examples here and some more examples are
given in PP6 and PP7.

1. Consider the equation (1 − x) cosx = sinx. We use the IVT and show that the equation has
a soultion in the interval (0, 1). Let f(x) = (1 − x) cosx − sinx for x ∈ R. Then f(0) = 1 and
f(1) = − sin 1 < 0. By the IVT, applied for f on [0, 1], there is c ∈ (0, 1) such that f(c) = 0. That
is, (1− c) cos c = sin c.

2. (Existence of fixed points). Let f : [a, b] → [a, b] be continuous. We show that the equation
f(x) = x has a solution in [a, b], i.e., there is c ∈ [a, b] such that f(c) = c (such a point c is called a
fixed point of f). As we did in the proceeding application, let g(x) = f(x)− x for x ∈ [a, b]. Then
g is continuous, g(a) ≥ 0 and g(b) ≤ 0. If g(a) = 0 or g(b) = 0 then f(a) = a or f(b) = b. If
g(a) < 0 < g(b), by the IVT, there exists c ∈ (a, b) such that g(c) = 0. That is, f(c) = c.
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3. (Existence of n-th roots). Let α ∈ [0,∞) and n ∈ N. We prove that the equation xn = α has
a solution in [0,∞). (This was also discussed in Example 1.3). Let f(x) = xn − α for x ∈ [0,∞).
Then f(0) ≤ 0 and f(N) > 0 for some N ∈ N. By the IVT, applied for f on [0, N ], there exists
β ∈ [0, N ] such that βn = α.

Application 6.2. Let f : [a, b] → R be a continuous function. Then, either f is a constant function
or the range {f(x) : x ∈ [a, b]} is a closed bounded interval.

To prove this, suppose that f is not a constant function. Let A = {f(x) : x ∈ [a, b]}. Since
f is continuous on [a, b], by Theorem 5.3, there exist x0, y0 ∈ [a, b] such that f(x0) = inf A and
f(y0) = supA. Since f is not a constant function, x0 6= y0. Suppose x0 < y0. Then for every
α ∈ [inf A, supA], by the IVT applied for [x0, y0], there exists c ∈ [x0, y0] such that f(c) = α. Hence
A = [inf A, supA].

Limit of a function

Let f : R → R and x0 ∈ R. We have seen in Theorem 5.1 that f is continuous at x0 if
f(xn) → f(x0) whenever xn → x0. In some cases when f is not continuous at x0 or f is not even
defined at x0, there may be a number L such that f(xn) → L for some L ∈ R whenever xn → x0
and xn 6= x0 for all n. In this case we call such a number L the limit of f at x0. Let us take a simple
example to illustrate. Consider the function f defined by f(x) = x+ 2 for all x 6= 1. Observe that
f is not defined at 1. In this case, if we take x0 = 1, then L = 3. Even if we assign any value for f
at x0 in this example, the value of L does not change. Let us define the limit formally.

We say that I ⊆ R is an interval if I is any one of the following subsets of R:

R, [a, b], (a, b), (a, b], [a, b), (a,∞), (−∞, b), [a,∞), (−∞, b]

for some a, b ∈ R and a < b. In this topic and the subsequent lectures, I will denote an interval.

Definition 6.1. Let x0 ∈ I and f : I \ {x0} → R or f : I → R. We say that a real number L is a
limit of f at x0 if f(xn) → L whenever xn ∈ I \ {x0} for all n and xn → x0.

It is clear from Definition 6.1 that a function cannot have more than one limit at a point. If L
is the limit of f at x0, then we write lim

x→x0

f(x) = L or f(x) → L as x → x0. If lim
x→x0

f(x) = L for

some L, then we say that limit of f at x0 exists.

Example 6.1. 1. Let f : R \ {0} → R be given by f(x) = x sin( 1x) for all x ∈ R \ {0}. We show
that the limit of f at 0 is 0. Since |f(x)| ≤ |x| for all x ∈ R \ {0}, f(xn) → 0 whenever xn ∈ R \ {0}
for all n ∈ N and xn → 0. Hence lim

x→0
f(x) = 0.

2. Let f : R → R be given by f(x) = sin(1/x) for all x 6= 0 and f(0) = 0. We show that the limit of
f at 0 does not exist. Define xn = 2/{π(2n+1)} for n = 1, 2, . . .. Then xn → 0 and f(xn) = (−1)n

for every n ∈ N. Note that (f(xn)) does not converge to any element as n → ∞. Hence the limit
of f at 0 does not exist

Remark 6.1: 1. Let x0 ∈ I and f : I → R. It is clear from Definition 6.1 that f is continuous at
x0 if and only if lim

x→x0

f(x) = f(x0).

2. To define the continuity of a function f at a point x0, the function f has to be defined at x0.
To define the limit of a function at a point the function need not be defined at that point.

Let us define the one sided limits lim
x→x+

0

f(x) and lim
x→x−

0

f(x). Let x0 ∈ I, x0 < y for some
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y ∈ I and f : I \ {x0} → R or f : I → R. We say that lim
x→x+

0

f(x) = L if f(xn) → L whenever

xn ∈ I \ {x0}, xn > x0 for all n and xn → x0. Similarly, we define lim
x→x−

0

f(x).

Let us define lim
x→∞

f(x). Let I be any one of the sets: R, [a,∞) or [a,∞). Let f : I → R and

L ∈ R. We say that lim
x→∞

f(x) = L if f(xn) → L whenever xn ∈ I for all n and xn → ∞. In this

case we also write f(x) → L as x → ∞. We define lim
x→∞

f(x) = ∞, lim
x→x0

f(x) = ∞ lim
x→−∞

f(x) = L,

lim
x→−∞

f(x) = −∞, ... similarly.

The proof of the following result is similar to that of Theorem 5.1.

Theorem 6.3. Let x0 ∈ I, f : I \ {x0} → R or f : I → R and L ∈ R.

1. lim
x→x0

f(x) = L if and only if for every ε > 0 there exists δ > 0 such that |f(x) − L| < ε

whenever x ∈ I and 0 < |x− x0| < δ.

2. Suppose x0 < y for some y ∈ I. Then lim
x→x+

0

f(x) = L if and only if for every ε > 0 there

exists δ > 0 such that |f(x)− L| < ε whenever x ∈ I, x > x0 and 0 < |x− x0| < δ.

3. Suppose y < x0 for some y ∈ I. Then lim
x→x−

0

f(x) = L if and only if for every ε > 0 there

exists δ > 0 such that |f(x)− L| < ε whenever x ∈ I, x < x0 and 0 < |x− x0| < δ.

Limits of addition, multiplication, division and compositions of two functions are discussed in
Problem 5 in PP6. The relation between the limit and the one sided limit is discussed in Problem
6 in PP6.

Differentiation

At the introductory level, the concept of derivative is generally introduced for finding the
tangent line at a point to a graph of a function. We will see that the notion of a derivative has
many applications. In particular, information about a given function can be extracted by looking
at its derivative if it exists.

Definition 6.2. Let I be an interval and x0 ∈ I. Let f : I → R. We say that f is differentiable
at x0 if the limit

lim
x→x0

f(x)− f(x0)

x− x0
(6.1)

exists.

If the above limit exists, it is called the derivative of f at x0 and is denoted by f ′(x0). If f is
differentiable at each x ∈ I, then we say that f is differentiable on I.

Remark 6.2. 1. If x0 is an end point of I, for instance, x0 is the left end point of I, then we only
consider x > x0 in (6.1) (see Theorem 6.3).

2. If we use the variable h in place of x− x0 in (6.1) (see Problem 3 of PP6), we obtain that f is

differentiable at x0 ∈ I if and only if lim
h→0

f(x0+h)−f(x0)
h exists.

We now prove that differentiability implies continuity.
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Theorem 6.4. Let f : I → R. If f is differentiable at a point x0 ∈ I, then it is continuous at x0.

Proof: Let x ∈ I and x 6= x0. Then f(x)−f(x0) =
f(x)−f(x0)

x−x0
(x−x0). Hence lim

x→x0

(f(x)−f(x0)) =

f ′(x0) · 0 = 0. Thus lim
x→x0

f(x) = f(x0). Therefore, by Remark 6.1, f is continuous at x0. �

Example 6.2. 1. Let f(x) = sin 1
x , if x 6= 0 and f(0) = 0. By Example 5.3, f is not continuous at

0 and hence it is not differentiable at 0.

2. Let f(x) = x sin 1
x for x 6= 0 and f(0) = 0. Then by Example 6.1, lim

x→0

f(x)−0
x−0 does not exist.

Hence f is not differentiable at 0. We have seen in Example 5.2 that f is continuous at 0.

3. Let f(x) = x2 sin 1
x for x 6= 0 and f(0) = 0. By Example 6.1, lim

x→0

x2sin 1
x

x = 0. Hence f is

differentiable at 0 and f ′(0) = 0.

The following two results enable us to evaluate the derivatives of certain combinations of func-
tions.

Theorem 6.5. Let f, g : I → R be differentiable at x0 ∈ I. Then

(i) f + g is differentiable and x0 and (f + g)′(x0) = f ′(x0 + g′(x0);

(ii) fg is differentiable at x0 and (fg)(x0) = f ′(x0)g(x0) + f(x0)g
′(x0);

(iii) if f(x0) 6= 0, then 1
f (see Problem 10 of PP5) is differentiable at x0 and ( 1f )

′(x0) = − f ′(x0)
f(x0)2

.

Theorem 6.6 (Chain Rule). Let I and J be intervals. Suppose g : I → R and f : J → R. Let
x0 ∈ J and f(J) ⊆ I. If f is differentiable at x0 and g is differentiable at f(x0) then (g ◦ f) is
differentiable at x0 and (g ◦ f)′(x0) = g′(f(x0))f

′(x0).

Example 6.3. Let f : R → R be defined by f(x) = x2 sin 1
x if x 6= 0 and f(0) = 0. It is already

shown in Example 6.2 that f is differentiable at 0. Since f = g(h ◦ p) where g(x) = x2, h(x) = sinx
and p(x) = 1

x for all x ∈ R\{0}, by Theorems 6.5 and 6.6, f is differentiable on R\{0} and
f ′(x) = 2x sin 1

x − cos 1
x for all x ∈ R\{0}. Observe that the derivative f ′ is continues on R\{0} but

it not continuous at 0 which is verified as follows. Since lim
x→0

cos 1
x does not exist and lim

x→0
2x sin 1

x

exists, lim
x→0

f ′(x) does not exist. Hence f ′ is not continuous at 0.


