
Practice Problems 10: Tests for local maximum and minimum, Curve sketching

1. Let h : R → R be defined by h(x) = f(x)g(x) where f and g are non-negative functions.
Show that h has a local maximum at a if f and g have a local maximum at a.

2. Let f : R → R be defined by f(x) = (sinx− cosx)2. Find the maximum value of f on R.

3. Let f : [−2, 0] → R be defined by f(x) = 2x3 + 2x2 − 2x − 1. Find the maximum and
minimum values of f on [−2, 0].

4. Let f : R → R be such that f ′(x) = 14(x− 2)(x− 3)2(x− 4)3(x− 5)4, x ∈ R. Find all the
points of local maxima and local minima.

5. Let x1, x2, ..., xn ∈ R and f(x) =
√

(x− x1)2 + (x− x2)2 + ...+ (x− xn)2, x ∈ R. Find the
point of minimum of the function f .

6. Find the points of local maximum and minimum of f : R → R defined by f(x) = 1
x4−2x3+2

.

7. (a) Let α ∈ R. Among all positive real numbers x and y satisfying x + y = α, show that
the product xy is largest when x = y = α

2 .

(b) Among all rectangles of given perimeter, show that the square has the largest area.

8. (a) Find the point of absolute maximum of the function f(x) = x
1
x for x > 0.

(b) Show that eπ > πe.

9. (a) Show that ln a
a > ln b

b when b > a > e.

(b) For b > a > e, show that ab > ba.

10. (a) For x ≥ 0 and 0 ≤ p ≤ 1, show that (1 + x)p ≤ 1 + xp.

(b) Show that (a+ b)p ≤ ap + bp for all 0 ≤ p ≤ 1 and a, b > 0.

11. An open-top box with square base is to be made. The volume of the box should be 13500
cm2. Find the width and height of the box that minimize the amount of material to be
used.

12. Let f : R → R be a twice differentiable function with the following properties:

f(−1) = 4, f(0) = 2, f(1) = 0, f ′(x) > 0 for |x| > 1, f ′(x) < 0 for |x| < 1,

f ′(1) = 0, f ′(−1) = 0, f ′′(x) < 0 for x < 0 and f ′′(x) > 0 for x > 0.

Sketch the graph of f .

13. Sketch the graphs of the following functions after finding the intervals of decrease/increase,
intervals of concavity/convexity, points of local minima/local maxima, points of inflection
and asymptotes.

(a) f(x) = x2+x−5
x−1 (b) f(x) = 2x2−1

x2−1
(c) f(x) = x2

x2+1

(d) f(x) = x2|x− 3| (e) f(x) = 3x4 − 8x3 + 12.

14. (a) Let f : (0,∞) → R be defined by f(x) = x2

x3+200
. Find the point of maximum of f in

(0,∞).

(b) Let (an) be a sequence defined by an = n2

n3+200
, n ∈ N. Show that the largest term of

the sequence (an) is a7.

Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.



15. Let x0 ∈ (a, b) and n ≥ 2. Suppose f ′, f ′′, .., f (n) are continuous on (a, b) and f ′(x0) = .. =
f (n−1)(x0) = 0. Then, if n is even and f (n)(x0) > 0, then f has a local minimum at x0.
Similarly, if n is even and f (n)(x0) < 0, then f has a local maximum at x0.

16. (*) Let f : (a, b) → R and c ∈ (a, b). If f ′′(c) = 0 and f ′′′(c) 6= 0 then c is a point of
inflection.

17. (*) Let f(x) = (x + 1) ln(x + 1) − x lnx − ln(2x + 1) for x > 0. Show that f is strictly

increasing on (0,∞). Further, show that the sequence
(
(n+1)n+1

nn(2n+1)

)
is strictly increasing.



Practice Problems 10: Hints/Solutions

1. Find δ1 > 0 such that f(a) ≥ f(x) for all x ∈ (a−δ1, a+δ1) and δ2 > 0 such that g(a) ≥ g(x)
for all x ∈ (a− δ2, a+ δ2). Then h(a) ≥ h(x) for all x ∈ (a− δ, a+ δ) for δ = min{δ1, δ2}.

2. Since f(x + 2π) = f(x) ∀ x ∈ R, i.e., f is periodic with period 2π, sup{f(x) : x ∈ R} =
sup{f(x) : x ∈ [0, 2π]}. Note that, on (0, 2π), f ′(x) = 0 at x = π

4 ,
3π
4 , 5π4 and 7π

4 . Since f
achieves its supremum on [0, 2π], the greatest value among the points mentioned above and
the end points 0 and 2π is the maximum value of the function. Comparing the values of f
at these points, we find that the maximum value of f is 2.

3. Note that, on (−2, 0), f ′(x) = 0 only at x = −1. Comparing the values of f at x = −1 and
the end points −2 and 0, we find that the maximum value of f is 1 and the minimum value
is −5.

4. Observe that f ′ changes sign from positive to negative at x = 2 and negative to positive at
x = 4. The local maximum is x = 2 and local minimum is x = 4.

5. Let g(x) = (x − x1)
2 + (x − x2)

2 + ... + (x − xn)
2. Note that the point of minimum of f

and g are same. At x = x1+x2+...+xn
n , g′(x) = 0 and g′′(x) = 2n > 0. Therefore the point of

minimum of f is x1+x2+...+xn
n .

6. Then f ′(x) = −(4x3−4x)
(x4−2x2+2)2

= −4x(x−1)(x+1)
(x4−2x2+2)2

and f ′(x) = 0 for x = −1, 0, 1. Using the changes

of sign of f ′, observe that 0 is the point of local minimum and −1, 1 are the points of local
maximum.

7. (a) If x + y = α then xy = x(α − x). So, let f(x) = αx − x2. Then x = α
2 is the point of

maximum of f .

(b) Let α be the perimeter and x and y denote the lengths of the sides of the rectangle.
Then x+ y = α

2 . The area is xy which is maximum when x = y by (a).

8. (a) The derivative f ′(x) = x
1
x
1−ln x
x2 vanishes only at x = e. Since the sign of f ′ changes

from positive to negative at x = e, the point of maximum is x = e.

(b) By (a), f(e) = e
1
e > f(π) = π

1
π . Therefore (e

1
e )

eπ
> (π

1
π )

eπ
.

9. (a) Let f(x) = ln x
x for x > 0. Because f ′(x) = 1−ln x

x2 < 0 for x > e, f is decreasing on

(e,∞). Therefore ln a
a > ln b

b when b > a > e.

(b) For b > a > e, by (a), b ln a > a ln b. This implies that eb ln a > ea ln b; i.e, eln ab > eln ba .

10. (a) Let f(x) = 1 + xp − (1 + x)p for x ≥ 0. Then f ′(x) = p
[

1
x1−p − 1

(1+x)1−p

]
> 0 for all

x > 0. This implies that f(x) > f(0) = 0 for x > 0.

(b) It is sufficient to show that (ab + 1)p ≤ (ab )
p + 1 which follows from (a).

11. Let x be the width of the square base. Then the height of the box is 13500
x2 . Therefore the

surface area is S(x) = x2 + 413500
x . Hence x = 30 is the point of minimum of S.

12. See Figure 1 for the graph of f.

13. (a) Note that f(x) = x+2− 3
x−1 , f

′(x) = 1+ 3
(x−1)2

and f ′′(x) = −6
(x−1)3

. The asymptotes

are x = 1 and y = x+2. The function is increasing on (−∞, 1) and (1,∞). The function
is convex for x < 1 and concave for x > 1. The function has no point of inflection
(note that f is not defined at x = 1). There is no point of local maximum and local
minimum. The graph of f is given in Figure 2.



(b) Observe that f(x) = 2+ 1
x2−1

, f ′(x) = −2x
(x2−1)2

and f ′′(x) = 2(3x2+1)
(x2−1)3

. The asymptotes

are x = 1, x = −1 and y = 2. The function is increasing on (−∞,−1) and (−1, 0)
and decreasing on (0, 1) and (1,∞). The point of local maximum is 0. The function is
convex on (−∞,−1) and (1,∞) and concave on (−1, 1). There is no point of inflection.
See Figure 3 for the graph.

(c) We have f(x) = 1 − 1
x2+1

, f ′(x) = 2x
(x2+1)2

and f ′′(x) = 2(1−3x2)
(x2+1)3

. The asymptote is

y = 1. The function is decreasing on (−∞, 0) and increasing on (0,∞). The function is
concave on (−∞,− 1√

3
) and ( 1√

3
,∞); and convex on (− 1√

3
, 1√

3
). The points of inflection

are − 1√
3
and 1√

3
. The function has local minimum at x = 0. For the graph see Figure

4.

(d) Note that on (−∞, 3], f(x) = x2(3− x), f ′(x) = 3x(2− x) and f ′′(x) = 6(1− x). On
[3,∞), f(x) = x2(x − 3), f ′(x) = 3x(x − 2) and f ′′(x) = 6(x − 1). The function is
decreasing on (−∞, 0) and (2, 3), and increasing on (0, 2) and (3,∞). The points of
local minimum are 0, 3 and the point of local maximum is 2. The function is convex
on (−∞, 1) and (3,∞) and concave on (1, 3). The points of inflection are 1 and 3.

(e) Here f ′(x) = 12x2(x − 2) and f ′′(x) = 12x(3x − 4). Therefore f is decreasing on
(−∞, 2) and increasing on (2,∞). There is no asymptote. The point of local minimum
is 2. The function is convex on (−∞, 0) and (43 ,∞) and concave on (0, 43). The points
of inflections are 0 and 4

3 . See the graph in Figure 6.

14. (a) Since f ′(x) = x(400−x3)
(x3+200)2

, f is increasing on (0, 400
1
3 ) and decreasing on (400

1
3 ,∞).

Therefore, the point of maximum is 400
1
3 .

(b) We will use (a). Note that 7 < 400
1
3 < 8. Thus the largest term of the sequence can

be either a7 or a8. But a7 =
49
543 > a8 =

8
89 . Therefore a7 is the largest term.

15. By Taylor’s theorem, for x ∈ (a, b) there exists c between x and x0 such that

f(x) = f(x0) +
f (n)(c)

n!
(x− x0)

n. (1)

Let f (n)(x0) > 0 and n is even. Then by the continuity of f (n) there exists a δ−neighborhood
(x0 − δ, x0 + δ) of x0 such that f (n)(x) > 0 for all x ∈ (x0 − δ, x0 + δ). This implies that
f (n)(c)

n! (x− x0)
n ≥ 0 whenever c ∈ (x0 − δ, x0 + δ). Hence by equation (1), f(x) ≥ f(x0) for

all x ∈ (x0 − δ, x0 + δ) which implies that x0 is a point of local minimum.

16. Follow the proof of Corollary 10.2.

17. Note that f ′(x) = ln(x+ 1)− lnx− 2
2x+1 and f ′′(x) = 1

x+1 − 1
x + 4

(2x+1)2
. Since f ′′(x) < 0

on (0,∞), f ′ is decreasing. Write f ′(x) = ln(1 + 1
x) −

2
2x+1 and observe that f ′(x) → 0

as x → ∞. Therefore f ′(x) > 0 for all x > 0. It is easy to see that ln an = f(n). Since
f(n+ 1) > f(n), ln(an+1) > ln(an). Therefore eln(an+1) > eln(an) and hence an+1 > an.




