Practice Problems 11: Fixed point iteration method and Newton's method

1. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable and $\alpha \in \mathbb{R}$ be such that $\left|g^{\prime}(x)\right| \leq \alpha<1$ for all $x \in \mathbb{R}$.
(a) Show that the Picard sequence for g converges to a fixed point of g for any starting value $x_{0} \in \mathbb{R}$.
(b) Show that g has a unique fixed point.
2. Let $x_{0} \in \mathbb{R}$. Using the fixed point iteration method generate a sequence of approximate solutions of the equation $x-\frac{1}{2} \sin x=1$ for the starting value x_{0}.
3. Let $g:[0,1] \rightarrow[0,1]$ be defined by $g(x)=\frac{1}{1+x^{2}}$. Let $\left(x_{n}\right)$ be the Picard sequence for g with the initial value $x_{0}=1$. Show that $\left(x_{n}\right)$ converges.
4. Let $f(x)=e^{-\frac{1}{x^{2}}}$ if $x \neq 0$ and $f(0)=0$. Suppose that $0<x_{0}<1$ and $\left(x_{n}\right)$ be the Newton sequence for f and x_{0}. Show that $\left(x_{n}\right)$ converges.
5. Let $f(x)=3 x^{\frac{1}{3}}$. Let $x_{0}>0$ and $\left(x_{n}\right)$ be the Newton sequence for f and x_{0}. Show that $\left(x_{n}\right)$ oscillates and is unbounded.
6. Let $f:[-10,10] \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}\sqrt{x-1} & \text { if } x \geq 1 \\ -\sqrt{1-x} & \text { if } x<1\end{cases}
$$

Let $x_{0} \neq 1$ and $\left(x_{n}\right)$ be the Newton sequence for f and x_{0}. Show that $x_{n}=x_{0}$ if n is even and $x_{n}=2-x_{0}$ if n is odd.
7. Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable and $f^{\prime}(x) \neq 0$ for all $x \in[a, b]$. Define F by $F(x)=$ $x-\frac{f(x)}{f^{\prime}(x)}$ for all $x \in[a, b]$. Let $F(x) \in[a, b]$ for all $x \in[a, b]$.
(a) Suppose that $f^{\prime \prime}$ exists and for all $x \in[a, b]$ and

$$
\left|\frac{f(x) f^{\prime \prime}(x)}{\left[f^{\prime}(x)\right]^{2}}\right| \leq \alpha<1
$$

for some $\alpha \in \mathbb{R}$. Show that the Newton sequence $\left(x_{n}\right)$ for f converges for any initial value $x_{0} \in[a, b]$.
(b) Let $f(x)=(x-1)^{2}$ and $x_{0} \in[0,2]$. Show that the Newton sequence for f and x_{0} converges to 1 .
(c) Let $f(x)=x^{2}-7$ and $x_{0} \in[2,7]$. Show that the Newton sequence for f and x_{0} converges to $\sqrt{7}$.
8. $\left(^{*}\right)$ Let $f:[a, b] \rightarrow[a, b]$ be continuous and ℓ be a fixed point of f. Suppose that f is differentiable on (a, b) and $\left|f^{\prime}(x)\right|<1$ for all $x \in(a, b)$. Let $x_{0} \in[a, b]$ and $x_{n+1}=f\left(x_{n}\right)$ for $n=0,1,2, \ldots$.
(a) Show that f has a unique fixed point.
(b) Show that $\left|x_{n+1}-\ell\right| \leq\left|x_{n}-\ell\right|$ for all $n \in \mathbb{N}$.
(c) If $\left(x_{n_{k}}\right)$ is a subsequence of $\left(x_{n}\right)$, show that $\left|x_{n_{k+1}}-\ell\right| \leq\left|x_{n_{k}+1}-\ell\right| \leq\left|x_{n_{k}}-\ell\right|$ for all $k \in \mathbb{N}$.
(d) If a subsequence $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ converges to some x_{0}, show that $x_{0}=\ell$.
(e) Show that $x_{n} \rightarrow \ell$.
(f) Show that for $f(x)=\frac{x^{2}}{2}, a=0$ and $b=1$ the sequence $\left(x_{n}\right)$ converges.

1. Take \mathbb{R} in place of $[a, b]$ and repeat the proof of Theorem 11.1.
2. Write $x=g(x)$ where $g(x)=1+\frac{1}{2} \sin x$ and note that $\left|g^{\prime}(x)\right| \leq \frac{1}{2}<1$ for all $x \in \mathbb{R}$. By Problem 1, the sequence $\left(x_{n}\right)$ defined by $x_{n+1}=g\left(x_{n}\right)$ converges to a fixed point of g. Since a fixed point of g is a solution to the equation $x-\frac{1}{2} \sin x=1$, the elements $x_{n}^{\prime} s$ are approximate solutions.
3. Observe that $g:[0,1] \rightarrow[0,1]$ and $\left|g^{\prime}(x)\right|=\frac{2 x}{\left(1+x^{2}\right)^{2}}$ achieves its maximum at $x=\frac{1}{\sqrt{3}}$ on $[0,1]$. Therefore $\left|g^{\prime}(x)\right| \leq \frac{9}{8 \sqrt{3}}<1$ for all $x \in[0,1]$. Hence by Theorem 11.1, the sequence $\left(x_{n}\right)$ converges.
4. For $f, x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{3}}{2}$. Then $\left(x_{n}\right)$ is decreasing and bounded below.
5. In this case, $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=-2 x_{n}$. Therefore $\left(x_{n}\right)$ is unbounded.
6. For given $f, x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=2-x_{n}$. This implies the answer.
7. (a) Observe that $F^{\prime}(x)=\left|\frac{f(x) f^{\prime \prime}(x)}{\left[f^{\prime}(x)\right]^{2}}\right|$. Apply Theorem 11.1.
(b) Note that $F(x)=x-\frac{f(x)}{f^{\prime}(x)}=\frac{1}{2}(x+1)$ and $F:[0,2] \rightarrow[0,2]$. Moreover $\left|F^{\prime}(x)\right|=$ $\left|\frac{f(x) f^{\prime \prime}(x)}{\left[f^{\prime}(x)\right]^{2}}\right|=\frac{1}{2}=\alpha<1$ for all $x \in[0,2]$. So, the problem follows from (a) and Remark 11.2.
(c) The function $F(x)=x-\frac{f(x)}{f^{\prime}(x)}=\frac{x}{2}+\frac{7}{2 x}$. It is shown in Problem 5 of PP3 that the sequence $\left(x_{n}\right)$ defined by $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{7}{x_{n}}\right)$, converges.

The problem can also be solved using (a) as follows. By finding the maximum and minimum values of the function $F(x)$ on $[2,7]$ or otherwise, verify that $F:[2,7] \rightarrow[2,7]$. Again, by finding the maximum and minimum values of the function $F^{\prime}(x)$ or otherwise, verify that $\left|F^{\prime}(x)\right|=\left|\frac{f(x) f^{\prime \prime}(x)}{\left[f^{\prime}(x)\right]^{2}}\right| \leq \frac{3}{7}$ for all $x \in[2,7]$. Therefore the problem follows from (a) and Remark 11.2.
8. (a) See the second part of the proof of Theorem 11.1.
(b) By the mean value theorem $\left|x_{n+1}-\ell\right|=\left|f\left(x_{n}\right)-f(\ell)\right|<\left|x_{n}-\ell\right|$.
(c) This follows from (b) and the definition of subsequence.
(d) Suppose $x_{n_{k}} \rightarrow x_{0}$ and $x_{0} \neq \ell$. Then $\left|x_{n_{k+1}}-\ell\right| \rightarrow\left|x_{0}-\ell\right|$ and $\left|x_{n_{k}}-\ell\right| \rightarrow\left|x_{0}-\ell\right|$. It follows from (c) that $\left|x_{n_{k}+1}-\ell\right| \rightarrow\left|x_{0}-\ell\right|$; i.e., $\left|f\left(x_{n_{k}}\right)-f(\ell)\right| \rightarrow\left|x_{0}-\ell\right|=\left|f\left(x_{0}\right)-f(\ell)\right|$. But by the mean value theorem $\left|f\left(x_{0}\right)-f(\ell)\right|<\left|x_{0}-\ell\right|$ which is a contradiction.
(e) Follows from (d), the Bolzano-Weierstrass Theorem and Problem 11 of PP3.
(f) It is easily seen that $f:[0,1] \rightarrow[0,1]$ and $\left|f^{\prime}(x)\right|<1$ for all $x \in(0,1)$. So by (e), $\left(x_{n}\right)$ converges.

