1. Let $a_{n} \geq 0$ for all $n \in \mathbb{N}$. If $\sum_{n=1}^{\infty} a_{n}$ converges then show that
(a) $\sum_{n=1}^{\infty} a_{n}^{2}$ converges (Is the converse true?);
(b) $\sum_{n=1}^{\infty} \sqrt{a_{n} a_{n+1}}$ converges;
(c) $\sum_{n=1}^{\infty} \frac{\sqrt{a_{n}}}{n}$ converges;
(d) $\sum_{n=1}^{\infty} \frac{a_{n}+4^{n}}{a_{n}+5^{n}}$ converges using comparison or limit comparison test.
2. Let $\left(a_{n}\right)$ be a sequence such that $a_{n}>0$ for all n and $a_{n} \rightarrow \infty$. Show that $\sum_{n=1}^{\infty} \frac{1}{a_{n}^{n}}$ converges.
3. Let $\sum_{n=1}^{\infty} a_{n}$ be a convergent series. Show that $\sum_{n=1}^{\infty}\left|a_{n}\right|$ diverges if $\sum_{n=1}^{\infty} a_{n}^{2}$ diverges.
4. Let $a_{n}>0$ for all $n \in \mathbb{N}$. Show that the series $\sum_{n=1}^{\infty} \frac{a_{1}+a_{2}+\ldots+a_{n}}{n}$ diverges.
5. (a) If $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ converge absolutely, show that $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges absolutely.
(b) If $\sum_{n=1}^{\infty} a_{n}$ converges absolutely and $\left(b_{n}\right)$ is a bounded sequence then $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges absolutely.
(c) Give an example of a convergent series $\sum_{n=1}^{\infty} a_{n}$ and a bounded sequence $\left(b_{n}\right)$ such that $\sum_{n=1}^{\infty} a_{n} b_{n}$ diverges.
6. Let $a_{n}, b_{n} \geq 0$ for all $n \in \mathbb{N}$. Suppose $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are convergent. Show that $\sum_{n=1}^{\infty} \sqrt{a_{n}^{2}+b_{n}^{2}}$ converges. Does the converse hold ?
7. Let $a_{n}, b_{n} \in \mathbb{R}$ for all n and $\sum_{n=1}^{\infty} a_{n}^{2}$ and $\sum_{n=1}^{\infty} b_{n}^{2}$ converge. Show that $\sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)^{p}$ converges for all $p \geq 2$.
8. Let $a_{n} \geq 0$. Show that both the series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} \frac{a_{n}}{1+a_{n}}$ converge or diverge together.
9. Show that $\sum_{n=1}^{\infty} \sin \left(\frac{n \pi}{n+1}\right)$ diverges.
10. Let $a_{n} \geq 0$ for all n and $n^{3} a_{n}^{2} \rightarrow \ell$ for some $\ell>0$. Show that $\sum_{n=1}^{\infty} \frac{a_{n}}{\sqrt{n}}$ converges.
11. Suppose $a_{n}>0$ for all n and $\sum_{n=1}^{\infty} a_{n}$ converges. Show that the series $\sum_{n=1}^{\infty}\left(1-\frac{\sin a_{n}}{a_{n}}\right)$ converges.
12. Let $a_{n} \geq 0$ and $a_{n+1} \leq a_{n}$ for all n. Suppose $\sum_{n=1}^{\infty} a_{n}$ converges. Using the Cauchy condensation test, show that $n a_{n} \rightarrow 0$ as $n \rightarrow \infty$.
13. Consider the series $\sum_{n=1}^{\infty} a_{n}$ where $a_{n}=\frac{1}{n}$ for $n=1,4,9,16, \ldots$ and $a_{n}=\frac{1}{n^{2}}$ otherwise (i.e., if n is not a perfect square). Show that $\sum_{n=1}^{\infty} a_{n}$ converges but $n a_{n} \nrightarrow 0$.
14. Let $\left(a_{n}\right)$ be a sequence of positive real numbers such that $a_{n+1} \leq a_{n}$ for all n and $\sum_{n=1}^{\infty} a_{n}$ converge. Show that $\sum_{n=1}^{\infty} n\left(a_{n}-a_{n+1}\right)$ converges.
15. Show that $\sum_{n=4}^{\infty} \frac{1}{n(\ln n)(\ln (\ln n))}$ diverges.
16. In each of the following cases, discuss the convergence/divergence of the series $\sum_{n=2}^{\infty} a_{n}$ where a_{n} equals:
(a) $\frac{1}{(\ln n)^{p}},(p>0)$
(b) $\frac{\sin \left(\frac{1}{n}\right)}{\sqrt{n}}$
(c) $\frac{2+n}{n^{7 / 4} \ln n}$
(d) $\frac{1}{n^{2}-\ln n}$
(e) $e^{-n^{2}}$
(f) $\frac{1}{n^{1+\frac{1}{n}}}$
(g) $\tan \frac{1}{n}$
(h) $1-\cos \frac{\pi}{n}$
(i) $(\ln n) \sin \frac{1}{n^{2}}$
(j) $\frac{\tan ^{-1} n}{n \sqrt{n}}$
(k) $(n+2)\left(1-\cos \frac{1}{n}\right)$
(ℓ) $\frac{3+\cos n}{e^{n}}$
(m) $\frac{2+\sin ^{3}(n+1)}{2^{n}+n^{2}}$
(n) $\frac{\sqrt{n+1}-\sqrt{n}}{n}$
17. (*) Suppose that $a_{n}>0$ for all n and $\sum_{n=1}^{\infty} a_{n}$ diverges. Let $\left(S_{n}\right)$ be the sequence of partial sums of $\sum_{n=1}^{\infty} a_{n}$ and $\left(A_{n}\right)$ be the sequence of partial sums of $\sum_{n=1}^{\infty} \frac{a_{n}}{S_{n}}$
(a) Show that $\left(A_{n}\right)$ does not satisfy the Cauchy criterion.
(b) Show that there exists a sequence $\left(b_{n}\right)$ such that $b_{n+1} \leq b_{n}$ for all $n, b_{n} \rightarrow 0$ and $\sum_{n=1}^{\infty} b_{n} a_{n}$ also diverges.

Practice Problems 13: Hints/Solutions

1. (a) Since $a_{n} \rightarrow 0, a_{n}^{2} \leq a_{n}$ eventually. The converse is not true: Take $a_{n}=n^{-\frac{2}{3}}$.
(b) Use the inequality $\sqrt{a_{n} a_{n+1}} \leq \frac{1}{2}\left(a_{n}+a_{n+1}\right)$.
(c) Use $\sqrt{a_{n} \frac{1}{n^{2}}} \leq \frac{1}{2}\left(a_{n}+\frac{1}{n^{2}}\right)$.
(d) Use $\frac{a_{n}+4^{n}}{a_{n}+5^{n}} \leq \frac{a_{n}+4^{n}}{5^{n}} \leq\left(\frac{1}{5}\right)^{n}+\left(\frac{4}{5}\right)^{n}$ or apply the LCT with $\left(\frac{4}{5}\right)^{n}$, i.e., find the $\lim _{n \rightarrow \infty} \frac{a_{n}+4^{n}}{a_{n}+5^{n}}\left(\frac{5}{4}\right)^{n}$.
2. Observe that $\frac{1}{a_{n}^{n}}<\frac{1}{2^{n}}$ eventually.
3. Since $a_{n} \rightarrow 0, a_{n}^{2} \leq\left|a_{n}\right|$ eventually.
4. Note that $\frac{a_{1}+a_{2}+\ldots+a_{n}}{n} \geq \frac{a_{1}}{n}$.
5. (a) Since $b_{n} \rightarrow 0,\left|a_{n} b_{n}\right| \leq\left|a_{n}\right|$ eventually. Use the comparison test.
(b) Let $\left|b_{n}\right| \leq M$ for some M. Then $\left|a_{n} b_{n}\right| \leq M\left|a_{n}\right|$. Use the comparison test.
(c) Consider $a_{n}=\frac{(-1)^{n}}{n}$ and $b_{n}=(-1)^{n}$.
6. Use the inequality $a_{n}^{2}+b_{n}^{2} \leq\left(a_{n}+b_{n}\right)^{2}$. The converse is true, because $a_{n} \leq \sqrt{a_{n}^{2}+b_{n}^{2}}$.
7. It is sufficient to show that $\sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)^{2}$ converges because $\left|a_{n}-b_{n}\right|^{p} \leq\left(a_{n}-b_{n}\right)^{2}$ eventually for $p>2$. For convergence of $\sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)^{2}$, use the inequality $(a-b)^{2}=$ $2 a^{2}+2 b^{2}-(a+b)^{2} \leq 2 a^{2}+2 b^{2}$.
8. Suppose $\sum_{n=1}^{\infty} a_{n}$ converges. Since $0 \leq \frac{a_{n}}{1+a_{n}} \leq a_{n}, \sum_{n=1}^{\infty} \frac{a_{n}}{1+a_{n}}$ converges. Suppose $\sum_{n=1}^{\infty} \frac{a_{n}}{1+a_{n}}$ converges. Since $\frac{a_{n}}{1+a_{n}} \rightarrow 0, a_{n} \rightarrow 0$. Therefore $1+a_{n} \leq 2$ eventually. Hence $\frac{1}{2} a_{n} \leq \frac{a_{n}}{1+a_{n}}$ eventually. By the comparison test $\sum_{n=1}^{\infty} a_{n}$ converges.
9. Use the LCT with $\frac{1}{n}: n \sin \left(\frac{n \pi}{n+1}\right) \rightarrow \pi$.
10. Use the LCT with $\frac{1}{n^{2}}: \frac{a_{n}}{\sqrt{n}} \frac{n^{2}}{1}=a_{n} n^{\frac{3}{2}} \rightarrow \sqrt{\ell}>0$.
11. Use the LCT with $a_{n}^{2}: \frac{1}{a_{n}^{2}}\left(1-\frac{\sin a_{n}}{a_{n}}\right)=\frac{a_{n}-\sin a_{n}}{a_{n}^{3}} \rightarrow \frac{1}{6}$.
12. By the Cauchy condensation test $\sum_{k=0}^{\infty} 2^{k} a_{2^{k}}$ converges. Therefore $2^{k} a_{2^{k}} \rightarrow 0$. For each $n \in \mathbb{N}$, choose $k \in \mathbb{N}$ such that $2^{k} \leq n \leq 2^{k+1}$. Then $n a_{n} \leq n a_{2^{k}} \leq 2^{k+1} a_{2^{k}}=2 \cdot 2^{k} a_{2^{k}} \rightarrow 0$.
13. The series is $\frac{1}{1}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9}+\ldots$ The sequence of partial sums is bounded above by $\left(\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots\right)+\left(1+\frac{1}{4}+\frac{1}{9}+\ldots\right) \leq 2 \sum_{n=1}^{\infty} \frac{1}{n^{2}}$ but $n a_{n}=1$ when n is a perfect square.
14. The partial sum S_{n} of $\sum_{n=1}^{\infty} n\left(a_{n}-a_{n+1}\right)$ is $a_{1}+a_{2}+\cdots+a_{n}-n a_{n+1}$.
15. Use the Cauchy condensation test and the fact that $\ln 2<1$.
16. (a) Diverges (Use the LCT with $\frac{1}{n}: \frac{n}{(\ln n)^{p}} \rightarrow \infty$).
(b) Converges (Use the LCT with $\frac{1}{n \sqrt{n}}$).
(c) Diverges (Use the LCT with $\frac{1}{n^{3 / 4} \ln n}$).
(d) Converges (Use the comparison test: $\frac{1}{n^{2}-\ln n} \leq \frac{1}{n^{2}-n} \leq \frac{1}{n(n-1)}$).
(e) Converges (Use the comparison test: $\frac{1}{e^{n^{2}}} \leq \frac{1}{n^{2}}$ as $e^{x} \geq x$).
(f) Diverges (Use the LCT with $\frac{1}{n}: \frac{n}{n^{1+\frac{1}{n}}} \rightarrow 1$).
(g) Diverges (Use the LCT with $\frac{1}{n}: \lim _{n \rightarrow \infty} \frac{\tan \frac{1}{n}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{\sec ^{2}\left(\frac{1}{n}\right)\left(-\frac{1}{n^{2}}\right)}{-\frac{1}{n^{2}}}=1$).
(h) Converges (Use the LCT with $\frac{1}{n^{2}}: \frac{1-\cos \frac{\pi}{n}}{\frac{1}{n^{2}}} \rightarrow \frac{\pi^{2}}{2}$).
(i) Converges (Use the LCT with $\frac{1}{n \sqrt{n}}: \frac{(\ln n) \sin \frac{1}{n^{2}}}{\frac{1}{n \sqrt{n}}}=\frac{\ln n}{\sqrt{n}} \frac{\sin \frac{1}{n^{2}}}{\frac{1}{n^{2}}}$).
(j) Converges (Use the comparison test: $\frac{\tan ^{-1} n}{n \sqrt{n}} \leq \frac{\frac{\pi}{2}}{n \sqrt{n}}$).
(k) Diverges because $(n+2)\left(1-\cos \frac{1}{n}\right) \geq n\left(1-\cos \frac{1}{n}\right)$ and $\sum_{n=1}^{\infty} n\left(1-\cos \frac{1}{n}\right)$ diverges:

$$
\frac{n\left(1-\cos \frac{1}{n}\right)}{\frac{1}{n}}=\frac{1-\cos \frac{1}{n}}{\frac{1}{n^{2}}} \rightarrow \frac{1}{2}
$$

(ℓ) Converges (Use the comparison test: $\left.0 \leq \frac{3+\cos n}{e^{n}} \leq \frac{4}{e^{n}}=4\left(\frac{1}{e}\right)^{n}\right)$.
(m) Converges because both $\sum_{n=1}^{\infty} \frac{2}{2^{n}+n^{2}}$ and $\sum_{n=1}^{\infty}\left|\frac{\sin ^{3}(n+1)}{2^{n}+n^{2}}\right|$ converge.
(n) Converges because $\frac{\sqrt{n+1}-\sqrt{n}}{n}=\frac{1}{n} \frac{1}{\sqrt{n+1}+\sqrt{n}}<\frac{1}{n^{\frac{3}{2}}}$.
17. (a) Note that, for any $p \in \mathbb{N},\left|A_{n+p}-A_{n}\right| \geq \frac{a_{n+1}+a_{n+2}+\ldots+a_{n+p}}{S_{n+p}}=\frac{S_{n}+p-S_{n}}{S_{n+p}} \rightarrow 1$ as $p \rightarrow \infty$.
(b) Take $b_{n}=\frac{1}{S_{n}}$.

