
Practice Problems 13: Comparison, Limit comparison and Cauchy condensation tests

1. Let an ≥ 0 for all n ∈ N. If
∑∞

n=1 an converges then show that

(a)
∑∞

n=1 a
2
n converges (Is the converse true?);

(b)
∑∞

n=1
√
anan+1 converges;

(c)
∑∞

n=1

√
an
n converges;

(d)
∑∞

n=1
an+4n

an+5n converges using comparison or limit comparison test.

2. Let (an) be a sequence such that an > 0 for all n and an → ∞. Show that
∑∞

n=1
1
ann

converges.

3. Let
∑∞

n=1 an be a convergent series. Show that
∑∞

n=1 |an| diverges if
∑∞

n=1 a
2
n diverges.

4. Let an > 0 for all n ∈ N. Show that the series
∑∞

n=1
a1+a2+ ... +an

n diverges.

5. (a) If
∑∞

n=1 an and
∑∞

n=1 bn converge absolutely, show that
∑∞

n=1 anbn converges abso-
lutely.

(b) If
∑∞

n=1 an converges absolutely and (bn) is a bounded sequence then
∑∞

n=1 anbn con-
verges absolutely.

(c) Give an example of a convergent series
∑∞

n=1 an and a bounded sequence (bn) such
that

∑∞
n=1 anbn diverges.

6. Let an, bn ≥ 0 for all n ∈ N. Suppose
∑∞

n=1 an and
∑∞

n=1 bn are convergent. Show that∑∞
n=1

√
a2n + b2n converges. Does the converse hold ?

7. Let an, bn ∈ R for all n and
∑∞

n=1 a
2
n and

∑∞
n=1 b

2
n converge. Show that

∑∞
n=1(an − bn)

p

converges for all p ≥ 2.

8. Let an ≥ 0. Show that both the series
∑∞

n=1 an and
∑∞

n=1
an

1+an
converge or diverge together.

9. Show that
∑∞

n=1 sin
(

nπ
n+1

)
diverges.

10. Let an ≥ 0 for all n and n3a2n → ` for some ` > 0. Show that
∑∞

n=1
an√
n
converges.

11. Suppose an > 0 for all n and
∑∞

n=1 an converges. Show that the series
∑∞

n=1

(
1− sin an

an

)
converges.

12. Let an ≥ 0 and an+1 ≤ an for all n. Suppose
∑∞

n=1 an converges. Using the Cauchy
condensation test, show that nan → 0 as n → ∞.

13. Consider the series
∑∞

n=1 an where an = 1
n for n = 1, 4, 9, 16, ... and an = 1

n2 otherwise (i.e.,
if n is not a perfect square). Show that

∑∞
n=1 an converges but nan 9 0.

14. Let (an) be a sequence of positive real numbers such that an+1 ≤ an for all n and
∑∞

n=1 an
converge. Show that

∑∞
n=1 n(an − an+1) converges.

15. Show that
∑∞

n=4
1

n(ln n)(ln(ln n)) diverges.

Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.



16. In each of the following cases, discuss the convergence/divergence of the series
∑∞

n=2 an
where an equals:

(a) 1
(ln n)p , (p > 0) (b)

sin
(
1
n

)
√
n

(c) 2+n
n7/4 ln n

(d) 1
n2−ln n

(e) e−n2

(f) 1

n1+ 1
n

(g) tan 1
n (h) 1− cos π

n (i) (lnn) sin 1
n2 (j) tan−1 n

n
√
n

(k) (n+ 2)(1− cos 1
n) (`) 3+cos n

en (m) 2+sin3(n+1)
2n+n2 (n)

√
n+1−

√
n

n

17. (*) Suppose that an > 0 for all n and
∑∞

n=1 an diverges. Let (Sn) be the sequence of partial
sums of

∑∞
n=1 an and (An) be the sequence of partial sums of

∑∞
n=1

an
Sn

(a) Show that (An) does not satisfy the Cauchy criterion.

(b) Show that there exists a sequence (bn) such that bn+1 ≤ bn for all n, bn → 0 and∑∞
n=1 bnan also diverges.

Practice Problems 13: Hints/Solutions

1. (a) Since an → 0, a2n ≤ an eventually. The converse is not true: Take an = n− 2
3 .

(b) Use the inequality
√
anan+1 ≤ 1

2(an + an+1).

(c) Use
√

an
1
n2 ≤ 1

2(an + 1
n2 ).

(d) Use an+4n

an+5n ≤ an+4n

5n ≤
(
1
5

)n
+
(
4
5

)n
or apply the LCT with

(
4
5

)n
, i.e., find the limn→∞

an+4n

an+5n

(
5
4

)n
.

2. Observe that 1
ann

< 1
2n eventually.

3. Since an → 0, a2n ≤ |an| eventually.

4. Note that a1+a2+ ... +an
n ≥ a1

n .

5. (a) Since bn → 0, |anbn| ≤ |an| eventually. Use the comparison test.

(b) Let |bn| ≤ M for some M . Then |anbn| ≤ M |an|. Use the comparison test.

(c) Consider an = (−1)n

n and bn = (−1)n.

6. Use the inequality a2n + b2n ≤ (an + bn)
2. The converse is true, because an ≤

√
a2n + b2n.

7. It is sufficient to show that
∑∞

n=1(an − bn)
2 converges because |an − bn|p ≤ (an − bn)

2

eventually for p > 2. For convergence of
∑∞

n=1(an − bn)
2, use the inequality (a − b)2 =

2a2 + 2b2 − (a+ b)2 ≤ 2a2 + 2b2.

8. Suppose
∑∞

n=1 an converges. Since 0 ≤ an
1+an

≤ an,
∑∞

n=1
an

1+an
converges. Suppose∑∞

n=1
an

1+an
converges. Since an

1+an
→ 0, an → 0. Therefore 1 + an ≤ 2 eventually. Hence

1
2an ≤ an

1+an
eventually. By the comparison test

∑∞
n=1 an converges.

9. Use the LCT with 1
n : n sin

(
nπ
n+1

)
→ π.

10. Use the LCT with 1
n2 :

an√
n
n2

1 = ann
3
2 →

√
` > 0.

11. Use the LCT with a2n:
1
a2n

(
1− sin an

an

)
= an−sin an

a3n
→ 1

6 .

12. By the Cauchy condensation test
∑∞

k=0 2
ka2k converges. Therefore 2ka2k → 0. For each

n ∈ N, choose k ∈ N such that 2k ≤ n ≤ 2k+1. Then nan ≤ na2k ≤ 2k+1a2k = 2 · 2ka2k → 0.



13. The series is 1
1 + 1

22
+ 1

32
+ 1

4 + 1
52

+ 1
62

+ 1
72

+ 1
82

+ 1
9 + ... The sequence of partial sums is

bounded above by ( 1
22

+ 1
32

+ 1
52

+ ...) + (1 + 1
4 + 1

9 + ...) ≤ 2
∑∞

n=1
1
n2 but nan = 1 when n

is a perfect square.

14. The partial sum Sn of
∑∞

n=1 n(an − an+1) is a1 + a2 + · · ·+ an − nan+1.

15. Use the Cauchy condensation test and the fact that ln 2 < 1.

16. (a) Diverges (Use the LCT with 1
n :

n
(ln n)p → ∞).

(b) Converges (Use the LCT with 1
n
√
n
).

(c) Diverges (Use the LCT with 1
n3/4 ln n

).

(d) Converges (Use the comparison test: 1
n2−ln n

≤ 1
n2−n

≤ 1
n(n−1)).

(e) Converges (Use the comparison test: 1

en2 ≤ 1
n2 as ex ≥ x).

(f) Diverges (Use the LCT with 1
n :

n

n1+ 1
n
→ 1).

(g) Diverges (Use the LCT with 1
n : limn→∞

tan 1
n

1
n

= limn→∞
sec2( 1

n
)(− 1

n2 )

− 1
n2

= 1).

(h) Converges (Use the LCT with 1
n2 :

1−cos π
n

1
n2

→ π2

2 ).

(i) Converges (Use the LCT with 1
n
√
n
:

(ln n) sin 1
n2

1
n
√
n

= ln n√
n

sin 1
n2

1
n2

).

(j) Converges (Use the comparison test: tan−1 n
n
√
n

≤
π
2

n
√
n
).

(k) Diverges because (n+ 2)(1− cos 1
n) ≥ n(1− cos 1

n) and
∑∞

n=1 n(1− cos 1
n) diverges:

n(1−cos 1
n
)

1
n

=
1−cos 1

n
1
n2

→ 1
2 .

(`) Converges (Use the comparison test: 0 ≤ 3+cos n
en ≤ 4

en = 4(1e )
n).

(m) Converges because both
∑∞

n=1
2

2n+n2 and
∑∞

n=1

∣∣∣ sin3(n+1)
2n+n2

∣∣∣ converge.
(n) Converges because

√
n+1−

√
n

n = 1
n

1√
n+1+

√
n
< 1

n
3
2
.

17. (a) Note that, for any p ∈ N, |An+p−An| ≥ an+1+an+2+ ... +an+p

Sn+p
= Sn+p−Sn

Sn+p
→ 1 as p → ∞.

(b) Take bn = 1
Sn

.


