Practice Problems 14: Ratio and Root tests

1. Determine the values of $\alpha \in \mathbb{R}$ for which $\sum_{n=1}^{\infty}\left(\frac{\alpha n}{n+1}\right)^{n}$ converges.
2. Consider $\sum_{n=1}^{\infty} a_{n}$ where $a_{n}>0$ for all n. Prove or disprove the following statements.
(a) If $\frac{a_{n+1}}{a_{n}}<1$ for all n then the series converges.
(b) If $\frac{a_{n+1}}{a_{n}}>1$ for all n then the series diverges.
(c) If $\left|a_{n}\right|^{1 / n}<1$ for all n then the series converges.
(d) If $\left|a_{n}\right|^{1 / n}>1$ for all n then the series diverges.
3. Consider $\sum_{n=1}^{\infty} a_{n}$ where $a_{1}=1$ and $a_{n+1}=\frac{a_{n}(2+\sin n)}{\sqrt{n}}$ for $n \in \mathbb{N}$. Show that $\sum_{n=1}^{\infty} a_{n}$ converges.
4. Let $\left(a_{n}\right)$ be a sequence such that $\left|\frac{a_{n+1}}{a_{n}}\right| \rightarrow \frac{1}{2}$. Show that $\sum_{n=1}^{\infty} n^{2} a_{n}$ converges whereas $\sum_{n=1}^{\infty} 3^{n} a_{n}$ diverges.
5. Let $\sum_{n=1}^{\infty} a_{n}$ be a convergent series. Show that $\sum_{n=1}^{\infty} \frac{3^{n}+a_{n}}{4^{n}+a_{n}}$, converges.
6. Show that the series $\frac{1}{1^{2}}+\frac{1}{2^{3}}+\frac{1}{3^{2}}+\frac{1}{4^{3}}+\frac{1}{5^{2}}+\frac{1}{6^{3}}+\cdots$ converges and that the root test and ratio test are not applicable.
7. Consider the rearranged geometric series $\frac{1}{2}+1+\frac{1}{8}+\frac{1}{4}+\frac{1}{32}+\frac{1}{16}+\frac{1}{128}+\frac{1}{64}+\cdots$. Show that the series converges by the root test and that the ratio test is not applicable.
8. Consider $\sum_{n=1}^{\infty} a_{n}$ where $a_{2 n}=\frac{1}{3^{n}}$ and $a_{2 n-1}=\frac{1}{2^{n}}$ for all n. Show that the ratio test is not applicable. Further, show that $\left(a_{n}\right)^{\frac{1}{n}}$ does not converge and that Theorem 14.3 is applicable.
9. In each of the following cases, discuss the convergence/divergence of the series $\sum_{n=1}^{\infty} a_{n}$ where a_{n} equals:
(a) $\frac{n!}{e^{n^{2}}}$
(b) $\frac{n^{2} 2^{n}}{(2 n+1)!}$
(c) $\left(1-\frac{1}{n}\right)^{n^{2}}$
(d) $\frac{n^{2}}{3^{n}}\left(1+\frac{1}{n}\right)^{n^{2}}$
(e) $(-1)^{n}\left(n^{\frac{1}{n}}-1\right)^{n}$
(f) $\frac{2^{n}+n^{2}-\ln n}{n!}$
(g) $\left(1+\frac{2}{n}\right)^{n^{2}-\sqrt{n}}$
(h) $\frac{n^{2}\left(2 \pi+(-1)^{n}\right)^{n}}{10^{n}}$
(i) $\tan ^{-1} e^{-n}$
10. (*) Let $a_{n} \in \mathbb{R}$ and $a_{n}>0$ for all n.
(a) If $\frac{a_{n+1}}{a_{n}} \leq \lambda$ eventually for some $\lambda>0$ then show that $a_{n}^{\frac{1}{n}} \leq \lambda+\epsilon$ eventually for every $\epsilon>0$.
(b) Show that if Theorem 14.1 (respectively, the ratio test) gives the convergence of a series $\sum_{n=1}^{\infty} a_{n}$ then Theorem 4.3 (respectively, the root test if $\lim _{n \rightarrow \infty} a_{n}^{\frac{1}{n}}$ exists) also gives the convergence, but the converse is not true (why?).
(c) If $\lim _{n \rightarrow \infty} a_{n}^{\frac{1}{n}}=\alpha$ and $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\beta$, show that $\alpha \leq \beta$

Practice Problems 14: Hints/Solutions

1. Since $\left|\frac{\alpha n}{n+1}\right| \rightarrow \alpha$, by the root test, the series converges for $|\alpha|<1$ and diverges for $|\alpha|>1$. For $|\alpha|=1$, the series diverges because $\left(\frac{n}{n+1}\right)^{n} \rightarrow \frac{1}{e} \neq 0$.
2. (a) For $a_{n}=\frac{1}{n}, \frac{a_{n+1}}{a_{n}}<1$ for all n but $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
(b) If $\frac{a_{n+1}}{a_{n}}>1$ then $a_{n} \nrightarrow 0$. Hence $\sum_{n=1}^{\infty} a_{n}$ diverges.
(c) Let $a_{n}=\left(1-\frac{1}{n}\right)^{n}$. Then $\left|a_{n}\right|^{1 / n}<1$ for all n. Since $a_{n} \rightarrow e^{-1}, \sum_{n=1}^{\infty} a_{n}$ diverges.
(d) If $\left|a_{n}\right|^{1 / n}>1$ for all n then $a_{n} \nrightarrow 0$. Hence $\sum_{n=1}^{\infty} a_{n}$ diverges.
3. Observe that $a_{n} \neq 0$ for all n and $\left|\frac{a_{n+1}}{a_{n}}\right| \rightarrow 0$. Apply the ratio test.
4. Apply the ratio test.
5. Let $c_{n}=\frac{3^{n}+a_{n}}{4^{n}+a_{n}}$. Observe first that since $\sum_{n=1}^{\infty} a_{n}$ converges, $a_{n} \rightarrow 0$ and hence $c_{n}>0$ eventually. Verify that $\frac{c_{n+1}}{c_{n}} \rightarrow \frac{3}{4}$ and apply the ratio test. Convergence of $\sum_{n=1}^{\infty} c_{n}$ can also be shown using the LCT. Observe that $\frac{c_{n}}{b_{n}} \rightarrow 1$ where $b_{n}=\left(\frac{3}{4}\right)^{n}$ for all n.
6. By the comparison test (with $\frac{1}{n^{2}}$), the series converges.
7. The nth term a_{n} is $\frac{1}{2^{n}}$ if n is odd and $\frac{1}{2^{n-2}}$ if n is even. Since the consecutive ratio alternate in value between $\frac{1}{8}$ and 2 , the ratio test is not applicable. However $a_{n}^{\frac{1}{n}} \rightarrow \frac{1}{2}$.
8. Observe that $\frac{a_{2 n+1}}{a_{2 n}}=\left(\frac{3}{2}\right)^{n} \frac{1}{2} \rightarrow \infty$ and $\frac{a_{2 n}}{a_{2 n-1}}=\left(\frac{2}{3}\right)^{n} \rightarrow 0$. Therefore, the ratio test is not applicable. Since $a_{2 n}^{1 / 2 n} \rightarrow \frac{1}{\sqrt{3}}$ and $a_{2 n-1}^{1 / 2 n-1} \rightarrow \frac{1}{\sqrt{2}}$, we have $a_{n}^{\frac{1}{n}}<L$ eventually for some L satisfying $\frac{1}{\sqrt{2}}<L<1$. Hence Theorem 14.3 is applicable and the series converges.
9. (a) Converges by the Ratio test.
(b) Converges by the Ratio test.
(c) Converges by the Root test: $\left(1-\frac{1}{n}\right)^{n} \rightarrow \frac{1}{e}$
(d) Converges by the Root test: $a_{n}^{\frac{1}{n}} \rightarrow \frac{e}{3}<1$.
(e) Converges absolutely by the Root test.
(f) Converges: By the LCT test with $\frac{2^{n}}{n!}$ and then the Ratio test for $\sum_{n-1}^{\infty} \frac{2^{n}}{n!}$.
(g) Diverges because $\left(1+\frac{2}{n}\right)^{n^{2}-\sqrt{n}} \nrightarrow 0$ as $\left(1+\frac{2}{n}\right)>1$.
(h) Converges absolutely: Use $\left|a_{n}\right| \leq \frac{n^{2}(2 \pi+1)^{n}}{10^{n}}$ and then the Ratio test.
(i) Note that $\lim _{x \rightarrow \infty} \frac{\tan ^{-1} e^{-(x+1)}}{\tan ^{-1} e^{-x}}=\lim _{x \rightarrow \infty} \frac{-e^{-(x+1)} / 1+e^{-2(x+1)}}{-e^{-x} / 1+e^{-2 x}}=e^{-1}$.
10. (a) Suppose $\frac{a_{n+1}}{a_{n}} \leq \lambda$ for all $n \geq N$ for some N. Then for all $n \geq N$,

$$
a_{n}=\frac{a_{n}}{a_{n-1}} \frac{a_{n-1}}{a_{n-2}} \ldots \frac{a_{N+1}}{a_{N}} a_{N} \leq \lambda^{n-N} a_{N} .
$$

Therefore $a_{n}^{\frac{1}{n}}=\left(\lambda^{1-\frac{N}{n}}\right) a_{N}^{\frac{1}{n}} \leq \lambda+\epsilon$ eventually for any $\epsilon>0$ as $a_{N}^{\frac{1}{n}} \rightarrow 1$.
(b) Suppose Theorem 14.1 or the Ratio test implies the convergence of a series $\sum_{n=1}^{\infty} a_{n}$. Then there exists λ such that $0<\lambda<1$ and $\frac{a_{n+1}}{a_{n}} \leq \lambda$ eventually. Then, by (a), $a_{n}^{\frac{1}{n}} \leq \lambda+\frac{(1-\lambda)}{2}<1$ eventually. Hence by Theorem $14.3, \sum_{n=1}^{\infty} a_{n}$ converges. In case, $\lim _{n \rightarrow \infty} a_{n}^{\frac{1}{n}}=\alpha$, then $\alpha \leq \lambda+\frac{(1-\lambda)}{2}$. Hence by the root test, the series converges. For the converse part, see Problem 7.
(c) Follows from (a).

