- 1. Determine the values of $\alpha \in \mathbb{R}$ for which $\sum_{n=1}^{\infty} \left(\frac{\alpha n}{n+1}\right)^n$ converges.
- 2. Consider $\sum_{n=1}^{\infty} a_n$ where $a_n > 0$ for all n. Prove or disprove the following statements.
 - (a) If $\frac{a_{n+1}}{a_n} < 1$ for all n then the series converges.
 - (b) If $\frac{a_{n+1}}{a_n} > 1$ for all *n* then the series diverges.
 - (c) If $|a_n|^{1/n} < 1$ for all *n* then the series converges.
 - (d) If $|a_n|^{1/n} > 1$ for all *n* then the series diverges.
- 3. Consider $\sum_{n=1}^{\infty} a_n$ where $a_1 = 1$ and $a_{n+1} = \frac{a_n(2+\sin n)}{\sqrt{n}}$ for $n \in \mathbb{N}$. Show that $\sum_{n=1}^{\infty} a_n$ converges.
- 4. Let (a_n) be a sequence such that $\left|\frac{a_{n+1}}{a_n}\right| \to \frac{1}{2}$. Show that $\sum_{n=1}^{\infty} n^2 a_n$ converges whereas $\sum_{n=1}^{\infty} 3^n a_n$ diverges.
- 5. Let $\sum_{n=1}^{\infty} a_n$ be a convergent series. Show that $\sum_{n=1}^{\infty} \frac{3^n + a_n}{4^n + a_n}$, converges.
- 6. Show that the series $\frac{1}{1^2} + \frac{1}{2^3} + \frac{1}{3^2} + \frac{1}{4^3} + \frac{1}{5^2} + \frac{1}{6^3} + \cdots$ converges and that the root test and ratio test are not applicable.
- 7. Consider the rearranged geometric series $\frac{1}{2} + 1 + \frac{1}{8} + \frac{1}{4} + \frac{1}{32} + \frac{1}{16} + \frac{1}{128} + \frac{1}{64} + \cdots$. Show that the series converges by the root test and that the ratio test is not applicable.
- 8. Consider $\sum_{n=1}^{\infty} a_n$ where $a_{2n} = \frac{1}{3^n}$ and $a_{2n-1} = \frac{1}{2^n}$ for all n. Show that the ratio test is not applicable. Further, show that $(a_n)^{\frac{1}{n}}$ does not converge and that Theorem 14.3 is applicable.
- 9. In each of the following cases, discuss the convergence/divergence of the series $\sum_{n=1}^{\infty} a_n$ where a_n equals:

(a)
$$\frac{n!}{e^{n^2}}$$
 (b) $\frac{n^2 2^n}{(2n+1)!}$ (c) $\left(1-\frac{1}{n}\right)^{n^2}$ (d) $\frac{n^2}{3^n} \left(1+\frac{1}{n}\right)^{n^2}$
(e) $\left(-1\right)^n \left(n^{\frac{1}{n}}-1\right)^n$ (f) $\frac{2^n+n^2-\ln n}{n!}$ (g) $\left(1+\frac{2}{n}\right)^{n^2-\sqrt{n}}$ (h) $\frac{n^2(2\pi+(-1)^n)^n}{10^n}$
(i) $\tan^{-1}e^{-n}$

10. (*) Let $a_n \in \mathbb{R}$ and $a_n > 0$ for all n.

- (a) If $\frac{a_{n+1}}{a_n} \leq \lambda$ eventually for some $\lambda > 0$ then show that $a_n^{\frac{1}{n}} \leq \lambda + \epsilon$ eventually for every $\epsilon > 0$.
- (b) Show that if Theorem 14.1 (respectively, the ratio test) gives the convergence of a series $\sum_{n=1}^{\infty} a_n$ then Theorem 4.3 (respectively, the root test if $\lim_{n\to\infty} a_n^{\frac{1}{n}}$ exists) also gives the convergence, but the converse is not true (why?).
- (c) If $\lim_{n\to\infty} a_n^{\frac{1}{n}} = \alpha$ and $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \beta$, show that $\alpha \leq \beta$

Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.

Practice Problems 14: Hints/Solutions

- 1. Since $|\frac{\alpha n}{n+1}| \to \alpha$, by the root test, the series converges for $|\alpha| < 1$ and diverges for $|\alpha| > 1$. For $|\alpha| = 1$, the series diverges because $(\frac{n}{n+1})^n \to \frac{1}{e} \neq 0$.
- 2. (a) For $a_n = \frac{1}{n}$, $\frac{a_{n+1}}{a_n} < 1$ for all n but $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. (b) If $\frac{a_{n+1}}{a_n} > 1$ then $a_n \not\rightarrow 0$. Hence $\sum_{n=1}^{\infty} a_n$ diverges.
 - (c) Let $a_n = (1 \frac{1}{n})^n$. Then $|a_n|^{1/n} < 1$ for all n. Since $a_n \to e^{-1}$, $\sum_{n=1}^{\infty} a_n$ diverges.
 - (d) If $|a_n|^{1/n} > 1$ for all *n* then $a_n \neq 0$. Hence $\sum_{n=1}^{\infty} a_n$ diverges.
- 3. Observe that $a_n \neq 0$ for all n and $\left|\frac{a_{n+1}}{a_n}\right| \to 0$. Apply the ratio test.
- 4. Apply the ratio test.
- 5. Let $c_n = \frac{3^n + a_n}{4^n + a_n}$. Observe first that since $\sum_{n=1}^{\infty} a_n$ converges, $a_n \to 0$ and hence $c_n > 0$ eventually. Verify that $\frac{c_{n+1}}{c_n} \to \frac{3}{4}$ and apply the ratio test. Convergence of $\sum_{n=1}^{\infty} c_n$ can also be shown using the LCT. Observe that $\frac{c_n}{b_n} \to 1$ where $b_n = (\frac{3}{4})^n$ for all n.
- 6. By the comparison test (with $\frac{1}{n^2}$), the series converges.
- 7. The *n*th term a_n is $\frac{1}{2^n}$ if *n* is odd and $\frac{1}{2^{n-2}}$ if *n* is even. Since the consecutive ratio alternate in value between $\frac{1}{8}$ and 2, the ratio test is not applicable. However $a_n^{\frac{1}{n}} \to \frac{1}{2}$.
- 8. Observe that $\frac{a_{2n+1}}{a_{2n}} = (\frac{3}{2})^n \frac{1}{2} \to \infty$ and $\frac{a_{2n}}{a_{2n-1}} = (\frac{2}{3})^n \to 0$. Therefore, the ratio test is not applicable. Since $a_{2n}^{1/2n} \to \frac{1}{\sqrt{3}}$ and $a_{2n-1}^{1/2n-1} \to \frac{1}{\sqrt{2}}$, we have $a_n^{\frac{1}{n}} < L$ eventually for some L satisfying $\frac{1}{\sqrt{2}} < L < 1$. Hence Theorem 14.3 is applicable and the series converges.
- 9. (a) Converges by the Ratio test.
 - (b) Converges by the Ratio test.
 - (c) Converges by the Root test: $(1-\frac{1}{n})^n \to \frac{1}{e}$
 - (d) Converges by the Root test: $a_n^{\frac{1}{n}} \to \frac{e}{3} < 1$.
 - (e) Converges absolutely by the Root test.
 - (f) Converges: By the LCT test with $\frac{2^n}{n!}$ and then the Ratio test for $\sum_{n=1}^{\infty} \frac{2^n}{n!}$
 - (g) Diverges because $(1+\frac{2}{n})^{n^2-\sqrt{n}} \neq 0$ as $(1+\frac{2}{n}) > 1$.
 - (h) Converges absolutely: Use $|a_n| \leq \frac{n^2(2\pi+1)^n}{10^n}$ and then the Ratio test.

(i) Note that
$$\lim_{x \to \infty} \frac{\tan^{-1} e^{-(x+1)}}{\tan^{-1} e^{-x}} = \lim_{x \to \infty} \frac{-e^{-(x+1)}/1 + e^{-2(x+1)}}{-e^{-x}/1 + e^{-2x}} = e^{-1}$$

10. (a) Suppose $\frac{a_{n+1}}{a_n} \leq \lambda$ for all $n \geq N$ for some N. Then for all $n \geq N$,

$$a_n = \frac{a_n}{a_{n-1}} \frac{a_{n-1}}{a_{n-2}} \dots \frac{a_{N+1}}{a_N} a_N \le \lambda^{n-N} a_N.$$

Therefore $a_n^{\frac{1}{n}} = (\lambda^{1-\frac{N}{n}})a_N^{\frac{1}{n}} \le \lambda + \epsilon$ eventually for any $\epsilon > 0$ as $a_N^{\frac{1}{n}} \to 1$.

- (b) Suppose Theorem 14.1 or the Ratio test implies the convergence of a series $\sum_{n=1}^{\infty} a_n$. Then there exists λ such that $0 < \lambda < 1$ and $\frac{a_{n+1}}{a_n} \leq \lambda$ eventually. Then, by (a), $a_n^{\frac{1}{n}} \leq \lambda + \frac{(1-\lambda)}{2} < 1$ eventually. Hence by Theorem 14.3, $\sum_{n=1}^{\infty} a_n$ converges. In case, $\lim_{n\to\infty} a_n^{\frac{1}{n}} = \alpha$, then $\alpha \leq \lambda + \frac{(1-\lambda)}{2}$. Hence by the root test, the series converges. For the converse part, see Problem 7.
- (c) Follows from (a).