
Practice Problems 14: Ratio and Root tests

1. Determine the values of α ∈ R for which
∑∞

n=1

(
αn
n+1

)n
converges.

2. Consider
∑∞

n=1 an where an > 0 for all n. Prove or disprove the following statements.

(a) If an+1

an
< 1 for all n then the series converges.

(b) If an+1

an
> 1 for all n then the series diverges.

(c) If |an|1/n < 1 for all n then the series converges.

(d) If |an|1/n > 1 for all n then the series diverges.

3. Consider
∑∞

n=1 an where a1 = 1 and an+1 = an(2+sin n)√
n

for n ∈ N. Show that
∑∞

n=1 an
converges.

4. Let (an) be a sequence such that |an+1

an
| → 1

2 . Show that
∑∞

n=1 n
2an converges whereas∑∞

n=1 3
nan diverges.

5. Let
∑∞

n=1 an be a convergent series. Show that
∑∞

n=1
3n+an
4n+an

, converges.

6. Show that the series 1
12

+ 1
23

+ 1
32

+ 1
43

+ 1
52

+ 1
63

+ · · · converges and that the root test and
ratio test are not applicable.

7. Consider the rearranged geometric series 1
2 + 1 + 1

8 + 1
4 + 1

32 + 1
16 + 1

128 + 1
64 + · · ·. Show

that the series converges by the root test and that the ratio test is not applicable.

8. Consider
∑∞

n=1 an where a2n = 1
3n and a2n−1 = 1

2n for all n. Show that the ratio test

is not applicable. Further, show that (an)
1
n does not converge and that Theorem 14.3 is

applicable.

9. In each of the following cases, discuss the convergence/divergence of the series
∑∞

n=1 an
where an equals:

(a) n!

en
2 (b) n22n

(2n+1)! (c)
(
1− 1

n

)n2

(d) n2

3n

(
1 + 1

n

)n2

(e) (−1)n
(
n

1
n − 1

)n
(f) 2n+n2−ln n

n! (g)
(
1 + 2

n

)n2−
√
n

(h) n2(2π+(−1)n)n

10n

(i) tan−1 e−n

10. (*) Let an ∈ R and an > 0 for all n.

(a) If an+1

an
≤ λ eventually for some λ > 0 then show that a

1
n
n ≤ λ+ ε eventually for every

ε > 0.

(b) Show that if Theorem 14.1 (respectively, the ratio test) gives the convergence of a series∑∞
n=1 an then Theorem 4.3 (respectively, the root test if limn→∞ a

1
n
n exists) also gives

the convergence, but the converse is not true (why?).

(c) If limn→∞ a
1
n
n = α and limn→∞

an+1

an
= β, show that α ≤ β

Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.



Practice Problems 14: Hints/Solutions

1. Since | αn
n+1 | → α, by the root test, the series converges for |α| < 1 and diverges for |α| > 1.

For |α| = 1, the series diverges because ( n
n+1)

n → 1
e 6= 0.

2. (a) For an = 1
n ,

an+1

an
< 1 for all n but

∑∞
n=1

1
n diverges.

(b) If an+1

an
> 1 then an 9 0. Hence

∑∞
n=1 an diverges.

(c) Let an = (1− 1
n)

n. Then |an|1/n < 1 for all n. Since an → e−1,
∑∞

n=1 an diverges.

(d) If |an|1/n > 1 for all n then an 9 0. Hence
∑∞

n=1 an diverges.

3. Observe that an 6= 0 for all n and |an+1

an
| → 0. Apply the ratio test.

4. Apply the ratio test.

5. Let cn = 3n+an
4n+an

. Observe first that since
∑∞

n=1 an converges, an → 0 and hence cn > 0

eventually. Verify that cn+1

cn
→ 3

4 and apply the ratio test. Convergence of
∑∞

n=1 cn can also

be shown using the LCT. Observe that cn
bn

→ 1 where bn = (34)
n for all n.

6. By the comparison test (with 1
n2 ), the series converges.

7. The nth term an is 1
2n if n is odd and 1

2n−2 if n is even. Since the consecutive ratio alternate

in value between 1
8 and 2, the ratio test is not applicable. However a

1
n
n → 1

2 .

8. Observe that a2n+1

a2n
= (32)

n 1
2 → ∞ and a2n

a2n−1
= (23)

n → 0. Therefore, the ratio test is not

applicable. Since a
1/2n
2n → 1√

3
and a

1/2n−1
2n−1 → 1√

2
, we have a

1
n
n < L eventually for some L

satisfying 1√
2
< L < 1. Hence Theorem 14.3 is applicable and the series converges.

9. (a) Converges by the Ratio test.

(b) Converges by the Ratio test.

(c) Converges by the Root test: (1− 1
n)

n → 1
e

(d) Converges by the Root test: a
1
n
n → e

3 < 1.

(e) Converges absolutely by the Root test.

(f) Converges: By the LCT test with 2n

n! and then the Ratio test for
∑∞

n−1
2n

n! .

(g) Diverges because
(
1 + 2

n

)n2−
√
n 9 0 as (1 + 2

n) > 1.

(h) Converges absolutely: Use |an| ≤ n2(2π+1)n

10n and then the Ratio test.

(i) Note that limx→∞
tan−1 e−(x+1)

tan−1 e−x = limx→∞
−e−(x+1)/1+e−2(x+1)

−e−x/1+e−2x = e−1.

10. (a) Suppose an+1

an
≤ λ for all n ≥ N for some N . Then for all n ≥ N,

an =
an
an−1

an−1

an−2
...
aN+1

aN
aN ≤ λn−NaN .

Therefore a
1
n
n = (λ1−N

n )a
1
n
N ≤ λ+ ε eventually for any ε > 0 as a

1
n
N → 1.



(b) Suppose Theorem 14.1 or the Ratio test implies the convergence of a series
∑∞

n=1 an.
Then there exists λ such that 0 < λ < 1 and an+1

an
≤ λ eventually. Then, by (a),

a
1
n
n ≤ λ + (1−λ)

2 < 1 eventually. Hence by Theorem 14.3,
∑∞

n=1 an converges. In case,

limn→∞ a
1
n
n = α, then α ≤ λ+ (1−λ)

2 . Hence by the root test, the series converges. For
the converse part, see Problem 7.

(c) Follows from (a).


