Practice Problems 15: Power Series, Taylor's Series

1. For a given $\sum_{n=0}^{\infty} a_{n} x^{n}$, let

$$
K=\left\{|x|: x \in \mathbb{R} \text { and } \sum_{n=0}^{\infty} a_{n} x^{n} \text { is convergent }\right\}
$$

be bounded. If $r=\sup K$, then $\sum_{n=0}^{\infty} a_{n} x^{n}$
(a) converges absolutely for all $x \in \mathbb{R}$ with $|x|<r$,
(b) diverges for all $x \in \mathbb{R}$ with $|x|>r$.
2. In each of the following cases, determine the values of x for which the power series converges.
(a) $\sum_{n=0}^{\infty} \frac{2^{n} x^{n}}{n^{n}}$
(b) $\sum_{n=0}^{\infty} \frac{(n!)^{2} x^{n}}{(2 n)!}$
(c) $\sum_{n=0}^{\infty}(-1)^{n} n 2^{n} x^{n}$
(d) $\sum_{n=0}^{\infty} \frac{(x-2)^{n+1}}{n 3^{n}}$
(e) $\sum_{n=0}^{\infty}(-1)^{n} \frac{10^{n}}{n!}(x-10)^{n}$
(f) $\sum_{n=2}^{\infty} \frac{x^{n}}{n(\ln n)^{2}}$
3. (a) Let $\left(S_{n}\right)$ be the sequence of partial sums of the Maclaurin series of $\ln (1+x)$. Show that if $0 \leq x \leq 1$, then $S_{n} \rightarrow \ln (1+x)$, i.e, the Maclaurin series of $\ln (1+x)$ converges to $\ln (1+x)$ on $[0,1]$.
(b) For each $x \in[0,1], \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots$.
(c) Show that $\ln 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$.
4. Let $f:(a, b) \rightarrow \mathbb{R}$ be infinitely differentiable and $x_{0} \in(a, b)$. Suppose that there exists $M>0$ such that $\left|f^{n}(x)\right| \leq M^{n}$ for all $n \in \mathbb{N}$ and $x \in(a, b)$. Show that Taylor's series of f at x_{0} converges to $f(x)$ for all $x \in(a, b)$.
5. Let $f(x)=e^{-\frac{1}{x^{2}}}$ when $x \neq 0$ and $f(0)=0$. Show that
(a) $f^{\prime}(0)=0$;
(b) for $x \neq 0, n \geq 1, f^{(n)}(x)=P_{n}\left(\frac{1}{x}\right) e^{-\frac{1}{x^{2}}}$ where P_{n} is a polynomial of degree $3 n$;
(c) $f^{(n)}(0)=0$ for $n=1,2, \ldots$;
(d) the Maclaurin series of f converges to $f(x)$ only when $x=0$.
6. (*) Let $\left(S_{n}\right)$ be the sequence of partial sums of the Maclaurin series of $\ln (1+x)$. Show that if $-1<x \leq 0$, then $S_{n} \rightarrow \ln (1+x)$ i.e, the Maclaurin series of $\ln (1+x)$ converges to $\ln (1+x)$ on $(-1,0]$.
7. $\left.{ }^{*}\right)$ (Binomial series) Let $k \in \mathbb{R}$ and $f:(-1,1) \rightarrow \mathbb{R}$ be defined by $f(x)=(1+x)^{k}$. Denote $\frac{k(k-1) \cdots(k-n+1)}{n!}$ by $\binom{k}{n}$.
(a) Show that the Maclaurin series of f is $1+\sum_{n=1}^{\infty}\binom{k}{n} x^{n}$ which is known as the binomial series.
(b) If $k \in \mathbb{N} \cup\{0\}$, show that $f(x)=1+\sum_{n=0}^{k}\binom{k}{n} x^{n}$.
(c) If $k \notin \mathbb{N} \cup\{0\}$, show that $f(x)=1+\sum_{n=1}^{\infty}\binom{k}{n} x^{n}$ for all $x \in(-1,1)$.
(d) Obtain from (b) that $\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}$ and $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ for $x \in(-1,1)$.

[^0]8. (*) Let $a_{n} \geq 0$ for all $n \in \mathbb{N}$ and $\left(a_{n}^{\frac{1}{n}}\right)$ be a bounded sequence. For each n, define
$$
A_{n}=\sup \left\{a_{k}^{\frac{1}{k}}: k \geq n\right\}
$$
. Since $\left(A_{n}\right)$ is bounded and decreasing, let $A_{n} \rightarrow \ell$ for some $\ell>0$.
(a) If $\ell<1$, the series $\sum_{n=1}^{\infty} a_{n}$ converges and if $\ell>1$, the series diverges.
(b) The radius of convergence of the power series $\sum_{n=1}^{\infty} a_{n} x^{n}$ is $\frac{1}{\ell}$
(c) Find the radius of convergence of the power series
$$
\frac{1}{2} x+\frac{1}{3} x^{2}+\frac{1}{2^{2}} x^{3}+\frac{1}{3^{2}} x^{4}+\frac{1}{2^{3}} x^{5}+\frac{1}{3^{3}} x^{6}+\frac{1}{2^{4}} x^{7}+\frac{1}{3^{4}} x^{8}+\ldots
$$

Practice Problems 15: Hints/Solutions

1. (a) If $|x|<r$, then by the definition of supremum there exists $\left|x_{0}\right| \in K$ such that $|x|<\left|x_{0}\right|$. Since $\sum_{n=0}^{\infty} a_{n} x_{0}^{n}$ converges, by Theorem 15.1, $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges absolutely.
(b) Suppose $|x|>r$. By the definition of $K, \sum_{n=0}^{\infty} a_{n} x^{n}$ diverges.
2. (a) Since $\left|\frac{2^{n} x^{n}}{n^{n}}\right|^{\frac{1}{n}} \rightarrow 0$, by the root test the series converges for all $x \in \mathbb{R}$.
(b) In this case $\left|\frac{a_{n+1} x^{n+1}}{a_{n} x^{n}}\right| \rightarrow\left|\frac{x}{4}\right|$ and $\frac{a_{n+1} 4^{n+1}}{a_{n} 4^{n}}=\frac{(n+1)}{\left(n+\frac{1}{2}\right)}>1$. The series converges only for $|x|<4$ as $\left(a_{n} 4^{n}\right)$ increases and $a_{n} 4^{n} \nrightarrow 0$.
(c) Use Ratio test . The series converges only for $|x|<\frac{1}{2}$.
(d) Use Ratio test. The series converges for $|x-2|<3$, and hence for $-1<x<5$. At $x=5$ the series diverges and $x=-1$ the series converges.
(e) Since $\left|\frac{a_{n+1}}{a_{n}}(x-10)\right| \rightarrow 0$, the series converges for all $x \in \mathbb{R}$.
(f) Apply the Ratio test. The series converges only if $x \in[-1,1]$.
3. (a) Observe that if $f(x)=\ln (1+x), x \in[0,1]$, then $f^{(k)}(x)=(-1)^{k-1} \frac{(k-1)!}{(1+x)^{k}}$ for all $k \in \mathbb{N}$. By Taylor's theorem, $\ln (1+x)=S_{n}+\frac{(-1)^{n}}{n+1} \frac{x^{n+1}}{(1+c)^{n+1}}$ for some $c \in(0, x)$. This implies that $\left|\ln (1+x)-S_{n}\right|=\left|\frac{(-1)^{n}}{n+1} \frac{x^{n+1}}{(1+c)^{n+1}}\right| \leq\left|\frac{x^{n+1}}{n+1}\right| \rightarrow 0$.
(b) Follows from (a).
(c) Take $x=1$ in (b).
4. Note that for $x \in(a, b),\left|E_{n}(x)\right|=\left|\frac{f^{n+1}(c)}{(n+1)!}\right|\left|x-x_{0}\right|^{n+1}$ for some c between x and x_{0}. This implies that $\left|E_{n}(x)\right| \leq \frac{A^{n+1}}{(n+1)!}$ where $A=M\left|x-x_{0}\right|$. It follows from the ratio test for sequences that $\frac{A^{n+1}}{(n+1)!} \rightarrow 0$. This shows that Taylor's series of f converges to $f(x)$.
5. (a) Note that $\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x}=\lim _{x \rightarrow 0^{+}} \frac{e^{-\frac{1}{x^{2}}}}{x}=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{e^{\frac{1}{x^{2}}}}=\lim _{y \rightarrow \infty} \frac{y}{e^{y^{2}}}=0$, by L'Hospital Rule.
(b) If $f^{(n)}(x)=P_{n}\left(\frac{1}{x}\right) e^{-\frac{1}{x^{2}}}$, then

$$
f^{(n+1)}(x)=\left\{P_{n}^{\prime}\left(\frac{1}{x}\right)\left(-\frac{1}{x^{2}}\right)+P_{n}\left(\frac{1}{x}\right)\left(\frac{2}{x^{3}}\right)\right\} e^{-\frac{1}{x^{2}}}=P_{n+1}\left(\frac{1}{x}\right) e^{-\frac{1}{x^{2}}}
$$

where $P_{n+1}(t)=-t^{2} P_{n}^{\prime}(t)+2 t^{3} P_{n}(t)$ which is of degree $3 n+3$ if P_{n} is of degree $3 n$. Use the induction argument.
(c) If $f^{n-1}(0)=0$ then, as done in (a), $\lim _{x \rightarrow 0^{+}} \frac{f^{(n-1)}(x)-f^{(n-1)}(0)}{x}=\lim _{y \rightarrow \infty} \frac{y P_{n-1}(y)}{e^{y^{2}}}=0$, i.e., $f^{n}(0)=0$.
(d) Trivial.
6. We use Taylor's theorem with Cauchy remainder (see Problem 15 of PP9). If $f(x)=$ $\ln (1+x), x \in(-1,0]$, then by Taylor's theorem with Cauchy reminder, there exists $c \in(x, 0)$ such that

$$
\left|f(x)-S_{n}\right|=\left|\frac{(x-c)^{n} x}{n!} f^{(n+1)}(c)\right|=\left|\frac{(x-c)^{n} x}{(1+c)^{n+1}}\right|=\left|\frac{x-c}{1+c}\right|^{n} \frac{|x|}{1+c} \leq\left|\frac{x-c}{1+c}\right|^{n} \frac{|x|}{1+x}
$$

Let $c=\theta x$ for some $0<\theta<1$. Note that θ depends on n. Now

$$
\left|f(x)-S_{n}\right| \leq\left(\frac{1-\theta}{1+\theta x}\right)^{n}\left|\frac{x^{n+1}}{1+x}\right|
$$

Since $\frac{1-\theta}{1+\theta x} \in(0,1),\left|f(x)-S_{n}\right| \leq\left|\frac{x^{n+1}}{1+x}\right|$. Hence $\left|f(x)-S_{n}\right| \rightarrow 0$.
7. (a) Since $f^{(n)}(x)=k(k-1) \cdots(k-n+1)(1+x)^{k-n}$, the Maclaurin series of f is $1+k x+$ $\frac{k(k-1)}{2!} x^{2}+\frac{k(k-1)(k-2)}{3!} x^{3}+\cdots$.
(b) This follows from the fact that $f^{(n)}(0)=0$ for all $n>k+1$.
(c) The solution is similar to that of Problem 6. We use Taylor's theorem with Cauchy remainder (see Problem 15 of PP 9). Let $x \in(-1,1)$. Observe that

$$
\left|\frac{(x-c)^{n} x}{n!} f^{n+1}(c)\right|=\left|\frac{(x-c)^{n} x}{n!} k(k-1) \cdots(k-n)(1+c)^{k-n-1}\right| .
$$

Let $c=\theta x$ for some $0<\theta<1$. Note that θ depends on n. Now,

$$
\left|\frac{(x-c)^{n} x}{n!} f^{n+1}(c)\right|=\left|\left(\frac{1-\theta}{1+\theta x}\right)^{n} x^{n+1}(1+\theta x)^{k-1} \frac{k(k-1) \cdots(k-n)}{n!}\right| .
$$

Observe that $\frac{1-\theta}{1+\theta x} \in(0,1)$. Further, $(1+\theta x)^{k-1} \leq(1+|x|)^{k-1}$ if $k>1$ and $(1+\theta x)^{k-1} \leq$ $(1-|x|)^{k-1}$ if $k<1$. Therefore,

$$
\left|\frac{(x-c)^{n} x}{n!} f^{n+1}(c)\right| \leq(1 \pm|x|)^{k-1}\left|x^{n+1} \frac{k(k-1) \cdots(k-n)}{n!}\right|
$$

By the ratio test for sequences, $\left|x^{n+1} \frac{k(k-1) \ldots(k-n)}{n!}\right| \rightarrow 0$.
(d) Take $k=-1$ for the first part. Replace x by $-x$ for the second part.
8. (a) If $\ell<1$, then find $\epsilon>0$ such that $\ell<\ell+\epsilon<1$. Since $A_{n} \rightarrow \ell$, there exists $N \in \mathbb{N}$ such that $A_{n}<\ell+\epsilon$ for all $n \geq N$. That is $a_{n}^{\frac{1}{n}}<\ell+\epsilon<1$ for all $n \geq N$. Therefore by Theorem 14.3, the series $\sum_{n=1}^{\infty} a_{n}$ converges.

If $\ell>1$, choose $\epsilon>0$ such that $\ell-\epsilon>1$. Since $A_{n} \rightarrow \ell$, there exists a subsequence $\left(a_{n_{k}}^{\frac{1}{n_{k}}}\right)$ of $\left(a_{n}^{\frac{1}{n}}\right)$ such that $a_{n_{k}}^{\frac{1}{n_{k}}} \geq \ell-\epsilon>1$. Hence $a_{n}^{\frac{1}{n}} \nrightarrow 0$ and therefore $\sum_{n=1}^{\infty} a_{n}$ diverges.
(b) Follows from the proof of (a) (Repeat the proof of (a) by replacing a_{n} by $a_{n} x^{n}$).
(c) See Problem 8 of PP14. In this case $\ell=\frac{1}{\sqrt{2}}$ and hence $\frac{1}{\ell}=\sqrt{2}$ is the radius of convergence.

[^0]: Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.

