Practice Problems 16: Integration, Riemann's Criterion for integrability (Part I)

- 1. Prove the inequality $nr^2 \sin(\pi/n) \cos(\pi/n) \le A \le r^2 \tan(\pi/n)$ given in the lecture notes where A is the area of the circle of radius r.
- 2. Let $f : [a, b] \to \mathbb{R}$ be a bounded function. Suppose that there is a partition P of [a, b] such that L(P, f) = U(P, f). Show that f is a constant function.
- 3. Let $f : [a,b] \to \mathbb{R}$ be a bounded function and $f(x) \ge 0$ for every $x \in [a,b]$. Show that $\int_{a}^{b} f(x) dx \ge 0$ and $\overline{\int}_{a}^{b} f(x) dx \ge 0$. In addition, if f is integrable, show that $\int_{a}^{b} f(x) dx \ge 0$.
- 4. In each of the following cases, evaluate the upper and lower integrals of f and show that f is integrable. Find the integral of f.
 - (a) For $\alpha \in \mathbb{R}$, define $f : [a, b] \to \mathbb{R}$ by $f(x) = \alpha$ for every $x \in [a, b]$.
 - (b) f(x) = 0 for $0 \le x < \frac{1}{2}$, $f(\frac{1}{2}) = 10$ and f(x) = 1 for $\frac{1}{2} < x \le 1$.
 - (c) f(x) = x for all $x \in [0, 1]$.
- 5. Let $f : [a,b] \to \mathbb{R}$ be integrable and (P_n) be a sequence of partitions of [a,b] such that $U(P_n,f) L(P_n,f) \to 0$.
 - (a) Show that $\lim_{n\to\infty} L(P_n, f) = \lim_{n\to\infty} U(P_n, f) = \int_a^b f(x) dx$.
 - (b) Find $\int_0^1 x dx$ using (a).
 - (c) Find $\int_0^1 x^2 dx$ using (a)
- 6. Let $f(x) = \frac{1}{x}$ for all $x \in [1, 2]$. Show that f is integrable using Theorem 17.1.
- 7. Let f, f_1 and f_2 be bounded functions on [0,1] such that $f_1(x) \leq f(x) \leq f_2(x)$ for all $x \in [0,1]$. Suppose that f_1 and f_2 are integrable and $\int_0^1 f_1(x) dx = \int_0^1 f_2(x) dx$, show that f is integrable and find $\int_0^1 f(x) dx$.
- 8. Let $f : [0,1] \to \mathbb{R}$ be such that f(x) = x for x rational and f(x) = 0 for x irrational. Evaluate the upper and lower integrals of f and show that f is not integrable.
- 9. (*) Let $f: [0,1] \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} \frac{1}{q} & \text{if } x = \frac{p}{q} \text{ where } p, q \in \mathbb{N} \text{ and } p, q \text{ have no common factors} \\ 0 & \text{if } x \text{ is irrational or } x = 0 \end{cases}$$

(a) For any $N \in \mathbb{N}$ consider the set

$$A_N = \left\{ x \in [0,1] : x = \frac{p}{q} \text{ where } p, q \in \mathbb{N}, q \le N \text{ and } p, q \text{ have no common factors} \right\}$$

Show that the set A_N is finite.

- (b) For given $N \in \mathbb{N}$ and $\epsilon > 0$, show that there are disjoint intervals $[x_1, x_2], [x_3, x_4], ..., [x_{m-1}, x_m]$ such that $A_N \subseteq (x_1, x_2) \cup (x_3, x_4) \cup ... \cup (x_{m-1}, x_m)$ and $|x_1 - x_2| + |x_3 - x_4| + ... + |x_{m-1} - x_m| \le \frac{\epsilon}{2}$.
- (c) Show that f is integrable.
- (d) Find two integrable functions g and h on [0, 1] such that $g \circ h$ (g composition of h) is not integrable.

Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.

- 1. The area of the inscribed triangle given in Figure 1 in the notes is $2 \times \frac{1}{2}r\sin(\pi/n)r\cos(\pi/n)$. The area of the superscribed triangle is $2 \times \frac{1}{2}(r\tan(\pi/n))r$.
- 2. Observe that $U(P, f) L(P, f) = \sum_{i=1}^{n} (M_i m_i) \Delta x_i$ and $M_i m_i \ge 0$ and $\Delta x_i > 0$.
- 3. Follows from the definitions.
- 4. (a) For any partition $P = \{x_0, x_1, ..., x_n\}$ of [a, b], $m_i = M_i = \alpha$ for i = 1, 2, ..., n. and hence $U(P, f) = L(P, f) = \alpha(b - a)$. Therefore $\int_a^b f(x)dx = \overline{\int}_a^b f(x)dx = \alpha(b - a)$. This implies that f is integrable and $\int_a^b f(x)dx = \overline{\int}_a^b f(x)dx = \alpha(b - a)$.
 - (b) Let $P = \{x_0, x_1, ..., x_n\}$ be any partition of [0, 1] such that $\frac{1}{2} \in (x_{i-1}, x_i)$ for some $1 \le i \le n$. Then $L(P, f) = 1 x_i$ and $U(P, f) = 10\Delta x_i + (1 x_i)$. Therefore $\int_a^b f(x)dx = \int_a^b f(x)dx = \frac{1}{2}$. This implies that f is integrable and $\int_a^b f(x)dx = \frac{1}{2}$.
 - (c) Let $P_n = \{0, \frac{1}{n}, \frac{2}{n}, ..., \frac{n-1}{n}, \frac{n}{n}\}$. By definition $L(P_n, f) = \frac{(n-1)n}{2n^2}$ and $U(P_n, f) = \frac{n(n+1)}{2n^2}$. Therefore $\frac{1}{2} = \sup\{L(P_n, f) : n \in \mathbb{N}\} \le \int_a^b f(x) dx \le \overline{\int}_a^b f(x) dx \le \inf\{U(P_n, f) : n \in \mathbb{N}\} = \frac{1}{2}$. Therefore $\int_a^b f(x) dx = \overline{\int}_a^b f(x) dx = \frac{1}{2}$ and $\int_a^b f(x) dx = \frac{1}{2}$.
- 5. (a) Follows from the fact that $L(P_n, f) \leq \int_a^b f(x) dx \leq U(P_n, f)$.
 - (b) It is shown in Example 17.2 that $U(P_n, f) L(P_n, f) \to 0$ if $P_n = \{0, \frac{1}{n}, \frac{2}{n}, ..., \frac{n}{n}\}$. Hence by (a), $\lim_{n\to\infty} U(P_n, f) = \int_a^b f(x) dx$. It follows from the solution of 4(c) that $U(P_n, f) = \frac{n(n+1)}{2n^2} \to \frac{1}{2}$.
 - (c) Follow the argument involved in the solution of Problem 5(b). If $f(x) = x^2$, then $U(P_n, f) = \frac{1}{n}(\frac{1}{n^2} + \frac{2^2}{n^2} + \dots + \frac{n^2}{n^2}) = \frac{1}{n}\frac{n(n+1)(2n+1)}{n^{2}6} \rightarrow \frac{1}{3}$.

6. Let $P_n = \{1, 1 + \frac{1}{n}, 1 + \frac{2}{n}, ..., 1 + \frac{n-1}{n}, 1 + \frac{n}{n}\}$. Then $U(P_n, f) - L(P_n, f) = \frac{1}{2n} \to 0$.

- 7. For any partition P of [0,1], $L(P,f_1) \le L(P,f)$ and $U(P,f) \le U(P_2,f)$ which implies that $\int_0^1 f_1(x) dx \le \int_0^1 f(x) dx \le \overline{\int}_0^1 f(x) dx \le \overline{\int}_0^1 f_2(x) dx = \int_0^1 f_2(x) dx = \int_0^1 f_1(x) dx.$
- 8. If $P_n = \{0, \frac{1}{n}, \frac{2}{n}, ..., \frac{n-1}{n}, \frac{n}{n}\}$ then $\overline{\int}_a^b f(x)dx \le \inf\{U(P_n, f) : n \in \mathbb{N}\} = \frac{1}{2}$ (see the solution of Problem 4(c)). If $P = \{x_0, x_1, x_2, ..., x_n\}$ be any partition of [0, 1], then $U(P, f) = \sum_{i=1}^n x_i(x_i x_{i-1}) \ge \sum_{i=1}^n x_i^2 \frac{1}{2}(\sum_{i=1}^n (x_i^2 + x_{i-1}^2)) = \frac{1}{2}(\sum_{i=1}^n (x_i^2 x_{i-1}^2)) = \frac{1}{2}$ which implies that $\overline{\int}_a^b f(x)dx \ge \frac{1}{2}$. Therefore $\overline{\int}_a^b f(x)dx = \frac{1}{2}$. It is clear that $\underline{\int}_a^b f(x)dx = 0$.
- 9. (a) It is clear that A_N is finite.
 - (b) Since the set A_N is finite, this is possible.
 - (c) See the argument involved in Example 17.1. Let $\epsilon > 0$. Choose N such that $\frac{1}{N} < \frac{\epsilon}{2}$. Corresponding to this N, choose the partition $P = \{0, x_1, x_2, x_3, ..., x_n, 1\}$ of [0, 1] where $x'_i s$ are as given in (b).

Observe that if $x \in [x_2, x_3]$ or $[x_4, x_5]$ and $f(x) = \frac{1}{q}$ then $q \ge N$ and hence on these intervals $M_i - m_i \le \frac{1}{N}$.

Note that

 $U(P, f) - L(P, f) = \sum (M_i - m_i) \Delta x_i = (|x_1 - x_2| + |x_3 - x_4| + \dots + |x_{m-1} - x_m|) + \frac{1}{N} < \epsilon.$ This shows that f is integrable.

(d) Define g(0) = 0 and g(x) = 1 if $x \in (0, 1]$. Take h = f where f is defined above.