1. Prove the inequality $n r^{2} \sin (\pi / n) \cos (\pi / n) \leq A \leq r^{2} \tan (\pi / n)$ given in the lecture notes where A is the area of the circle of radius r.
2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. Suppose that there is a partition P of $[a, b]$ such that $L(P, f)=U(P, f)$. Show that f is a constant function.
3. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function and $f(x) \geq 0$ for every $x \in[a, b]$. Show that $\int_{a}^{b} f(x) d x \geq 0$ and $\bar{\int}_{a}^{b} f(x) d x \geq 0$. In addition, if f is integrable, show that $\int_{a}^{b} f(x) d x \geq 0$.
4. In each of the following cases, evaluate the upper and lower integrals of f and show that f is integrable. Find the integral of f.
(a) For $\alpha \in \mathbb{R}$, define $f:[a, b] \rightarrow \mathbb{R}$ by $f(x)=\alpha$ for every $x \in[a, b]$.
(b) $f(x)=0$ for $0 \leq x<\frac{1}{2}, f\left(\frac{1}{2}\right)=10$ and $f(x)=1$ for $\frac{1}{2}<x \leq 1$.
(c) $f(x)=x$ for all $x \in[0,1]$.
5. Let $f:[a, b] \rightarrow \mathbb{R}$ be integrable and $\left(P_{n}\right)$ be a sequence of partitions of $[a, b]$ such that $U\left(P_{n}, f\right)-L\left(P_{n}, f\right) \rightarrow 0$.
(a) Show that $\lim _{n \rightarrow \infty} L\left(P_{n}, f\right)=\lim _{n \rightarrow \infty} U\left(P_{n}, f\right)=\int_{a}^{b} f(x) d x$.
(b) Find $\int_{0}^{1} x d x$ using (a).
(c) Find $\int_{0}^{1} x^{2} d x$ using (a)
6. Let $f(x)=\frac{1}{x}$ for all $x \in[1,2]$. Show that f is integrable using Theorem 17.1.
7. Let f, f_{1} and f_{2} be bounded functions on $[0,1]$ such that $f_{1}(x) \leq f(x) \leq f_{2}(x)$ for all $x \in[0,1]$. Suppose that f_{1} and f_{2} are integrable and $\int_{0}^{1} f_{1}(x) d x=\int_{0}^{1} f_{2}(x) d x$, show that f is integrable and find $\int_{0}^{1} f(x) d x$.
8. Let $f:[0,1] \rightarrow \mathbb{R}$ be such that $f(x)=x$ for x rational and $f(x)=0$ for x irrational. Evaluate the upper and lower integrals of f and show that f is not integrable.
9. $\left(^{*}\right)$ Let $f:[0,1] \rightarrow \mathbb{R}$ be given by

$$
f(x)= \begin{cases}\frac{1}{q} & \text { if } x=\frac{p}{q} \text { where } p, q \in \mathbb{N} \text { and } p, q \text { have no common factors } \\ 0 & \text { if } x \text { is irrational or } x=0\end{cases}
$$

(a) For any $N \in \mathbb{N}$ consider the set

$$
A_{N}=\left\{x \in[0,1]: x=\frac{p}{q} \text { where } p, q \in \mathbb{N}, q \leq N \text { and } p, q \text { have no common factors }\right\} .
$$

Show that the set A_{N} is finite.
(b) For given $N \in \mathbb{N}$ and $\epsilon>0$, show that there are disjoint intervals $\left[x_{1}, x_{2}\right],\left[x_{3}, x_{4}\right], \ldots,\left[x_{m-1}, x_{m}\right]$ such that $A_{N} \subseteq\left(x_{1}, x_{2}\right) \cup\left(x_{3}, x_{4}\right) \cup \ldots \cup\left(x_{m-1}, x_{m}\right)$ and $\left|x_{1}-x_{2}\right|+\left|x_{3}-x_{4}\right|+\ldots+$ $\left|x_{m-1}-x_{m}\right| \leq \frac{\epsilon}{2}$.
(c) Show that f is integrable.
(d) Find two integrable functions g and h on $[0,1]$ such that $g \circ h(g$ composition of $h)$ is not integrable.

Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.

1. The area of the inscribed triangle given in Figure 1 in the notes is $2 \times \frac{1}{2} r \sin (\pi / n) r \cos (\pi / n)$. The area of the superscribed triangle is $2 \times \frac{1}{2}(r \tan (\pi / n)) r$.
2. Observe that $U(P, f)-L(P, f)=\sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \Delta x_{i}$ and $M_{i}-m_{i} \geq 0$ and $\Delta x_{i}>0$.
3. Follows from the definitions.
4. (a) For any partition $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ of $[a, b], m_{i}=M_{i}=\alpha$ for $i=1,2, \ldots, n$. and hence $U(P, f)=L(P, f)=\alpha(b-a)$. Therefore $\int_{a}^{b} f(x) d x=\bar{\int}_{a}^{b} f(x) d x=\alpha(b-a)$. This implies that f is integrable and $\int_{a}^{b} f(x) d x=\bar{\int}_{a}^{b} f(x) d x=\alpha(b-a)$.
(b) Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be any partition of $[0,1]$ such that $\frac{1}{2} \in\left(x_{i-1}, x_{i}\right)$ for some $1 \leq$ $i \leq n$. Then $L(P, f)=1-x_{i}$ and $U(P, f)=10 \Delta x_{i}+\left(1-x_{i}\right)$. Therefore $\int_{-}^{b} f(x) d x=$ $\int_{a}^{b} f(x) d x=\frac{1}{2}$. This implies that f is integrable and $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(x) d x=\frac{1}{2}$.
(c) Let $P_{n}=\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}, \frac{n}{n}\right\}$. By definition $L\left(P_{n}, f\right)=\frac{(n-1) n}{2 n^{2}}$ and $U\left(P_{n}, f\right)=\frac{n(n+1)}{2 n^{2}}$. Therefore $\frac{1}{2}=\sup \left\{L\left(P_{n}, f\right): n \in \mathbb{N}\right\} \leq \underline{\int}_{a}^{b} f(x) d x \leq \bar{\int}_{a}^{b} f(x) d x \leq \inf \left\{U\left(P_{n}, f\right): n \in \mathbb{N}\right\}=\frac{1}{2}$. Therefore $\int_{a}^{b} f(x) d x=\bar{\int}_{a}^{b} f(x) d x=\frac{1}{2}$ and $\int_{a}^{b} f(x) d x=\frac{1}{2}$.
5. (a) Follows from the fact that $L\left(P_{n}, f\right) \leq \int_{a}^{b} f(x) d x \leq U\left(P_{n}, f\right)$.
(b) It is shown in Example 17.2 that $U\left(P_{n}, f\right)-L\left(P_{n}, f\right) \rightarrow 0$ if $P_{n}=\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n}\right\}$. Hence by $(a), \lim _{n \rightarrow \infty} U\left(P_{n}, f\right)=\int_{a}^{b} f(x) d x$. It follows from the solution of $4(\mathrm{c})$ that $U\left(P_{n}, f\right)=\frac{n(n+1)}{2 n^{2}} \rightarrow \frac{1}{2}$.
(c) Follow the argument involved in the solution of Problem $5(\mathrm{~b})$. If $f(x)=x^{2}$, then $U\left(P_{n}, f\right)=\frac{1}{n}\left(\frac{1}{n^{2}}+\frac{2^{2}}{n^{2}}+\ldots+\frac{n^{2}}{n^{2}}\right)=\frac{1}{n} \frac{n(n+1)(2 n+1)}{n^{2} 6} \rightarrow \frac{1}{3}$.
6. Let $P_{n}=\left\{1,1+\frac{1}{n}, 1+\frac{2}{n}, \ldots, 1+\frac{n-1}{n}, 1+\frac{n}{n}\right\}$. Then $U\left(P_{n}, f\right)-L\left(P_{n}, f\right)=\frac{1}{2 n} \rightarrow 0$.
7. For any partition P of $[0,1], L\left(P, f_{1}\right) \leq L(P, f)$ and $U(P, f) \leq U\left(P_{2}, f\right)$ which implies that $\int_{0}^{1} f_{1}(x) d x \leq \int_{0}^{1} f(x) d x \leq \bar{\int}_{0}^{1} f(x) d x \leq \bar{\int}_{0}^{1} f_{2}(x) d x=\int_{0}^{1} f_{2}(x) d x=\int_{0}^{1} f_{1}(x) d x$.
8. If $P_{n}=\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}, \frac{n}{n}\right\}$ then $\int_{a}^{b} f(x) d x \leq \inf \left\{U\left(P_{n}, f\right): n \in \mathbb{N}\right\}=\frac{1}{2}$ (see the solution of Problem 4(c)). If $P=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\}$ be any partition of $[0,1]$, then $U(P, f)=\sum_{i=1}^{n} x_{i}\left(x_{i}-x_{i-1}\right) \geq \sum_{i=1}^{n} x_{i}^{2}-\frac{1}{2}\left(\sum_{i=1}^{n}\left(x_{i}^{2}+x_{i-1}^{2}\right)\right)=\frac{1}{2}\left(\sum_{i=1}^{n}\left(x_{i}^{2}-x_{i-1}^{2}\right)\right)=\frac{1}{2}$ which implies that $\int_{a}^{b} f(x) d x \geq \frac{1}{2}$. Therefore $\bar{\int}_{a}^{b} f(x) d x=\frac{1}{2}$. It is clear that $\int_{a}^{b} f(x) d x=0$.
9. (a) It is clear that A_{N} is finite.
(b) Since the set A_{N} is finite, this is possible.
(c) See the argument involved in Example 17.1. Let $\epsilon>0$. Choose N such that $\frac{1}{N}<\frac{\epsilon}{2}$. Corresponding to this N, choose the partition $P=\left\{0, x_{1}, x_{2}, x_{3}, \ldots, x_{n}, 1\right\}$ of $[0,1]$ where $x_{i}^{\prime} s$ are as given in (b).
Observe that if $x \in\left[x_{2}, x_{3}\right]$ or $\left[x_{4}, x_{5}\right]$ and $f(x)=\frac{1}{q}$ then $q \geq N$ and hence on these intervals $M_{i}-m_{i} \leq \frac{1}{N}$.
Note that
$U(P, f)-L(P, f)=\sum\left(M_{i}-m_{i}\right) \Delta x_{i}=\left(\left|x_{1}-x_{2}\right|+\left|x_{3}-x_{4}\right|+\ldots+\left|x_{m-1}-x_{m}\right|\right)+\frac{1}{N}<\epsilon$.
This shows that f is integrable.
(d) Define $g(0)=0$ and $g(x)=1$ if $x \in(0,1]$. Take $h=f$ where f is defined above.
