- 1. Use Definition 2.1 and show that
 - (a) $\frac{n+1}{2n+1} \to \frac{1}{2};$ (b) $1 + \frac{1}{5n} \to 1.$
- 2. Let $x_n \leq y_n$ for all $n \in \mathbb{N}$. Suppose $x_n \to x_0$ and $y_n \to y_0$. Show that $x_0 \leq y_0$.
- 3. Let $x_n = (-1)^n$ for all $n \in \mathbb{N}$. Show that the sequence (x_n) does not converge.
- 4. Show that $x_n \to 0$ if and only if $|x_n| \to 0$.
- 5. If $x_n \to x_0$ show that $|x_n| \to |x_0|$.
- 6. Using the sandwich theorem show that (x_n) converges where (x_n) is defined as
 - (a) $x_n = \sqrt{n^2 + 1} n;$
 - (b) $x_n = (1+n)^{1/n};$
 - (c) $x_n = \frac{1}{1+n^2} + \frac{2}{2+n^2} + \dots + \frac{n}{n+n^2};$
 - (d) $x_n = (n!)^{1/n^2};$
 - (e) $x_n = (a^n + b^n)^{1/n}$ where 0 < a < b;
 - (f) $x_n = (\sqrt{2} 2^{\frac{1}{3}})(\sqrt{2} 2^{\frac{1}{5}})...(\sqrt{2} 2^{\frac{1}{2n+1}});$
 - (g) $x_n = n^{\alpha} (n+1)^{\alpha}$ for some $\alpha \in (0,1)$;
- 7. For any $x \ge 0, y \ge 0$ and $k \in \mathbb{N}$, show that $|x^{\frac{1}{k}} y^{\frac{1}{k}}| \le |x y|^{\frac{1}{k}}$. Using this inequality, show that $x_n^{1/k} \to x_0^{1/k}$ whenever $x_n \ge 0$ for all $n \in \mathbb{N}$ and $x_n \to x_0$.
- 8. Let $x_0 \in \mathbb{Q}$. Show that there exists a sequence (x_n) of irrational numbers such that $x_n \to x_0$.
- 9. Let A be a non-empty subset of \mathbb{R} and $\beta = \sup A$. Show that there exists a sequence (a_n) such that $a_n \in A$ for all $n \in \mathbb{N}$ and $a_n \to \beta$.
- 10. Let A be a non-empty subset of \mathbb{R} and $x \in \mathbb{R}$. Define the distance d(x, A) between x and A by $d(x, A) = \inf\{|x a| : a \in A\}$. If $\beta = \sup A$, show that $d(\beta, A) = 0$.
- 11. Let (x_n) and $x_0 \in \mathbb{R}$ be given. State whether the following statement is true or false: The sequence (x_n) does not converge to x_0 if and only if there exists some $\epsilon_0 > 0$ such that for every $N \in \mathbb{N}$, there exists n > N such that $|x_n - x_0| > \epsilon_0$.
- 12. (a) Let M > 0 be given. Show that $\frac{M^n}{n!} \to 0$. (b) Show that $(n!)^{1/n} \to \infty$.
- 13. Let $x_n > 0$ for all $n \in \mathbb{N}$. Show that $x_n \to 0$ if and only if $\frac{1}{x_n} \to \infty$
- 14. Let (x_n) be such that $x_n > 0$ for all $n \in \mathbb{N}$. Show that $x_n \to 0$ if and only if $\frac{x_n}{1+x_n} \to 0$.
- 15. (*) Let $x_n \to x_0$ and $y_n = \frac{x_1 + x_2 + \dots + x_n}{n}$ for all $n \in \mathbb{N}$. Show that $y_n \to x_0$. Give an example of (x_n) such that (y_n) converges but (x_n) does not.

Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.

- 1. (a) Let $\epsilon > 0$ be given. We have to find $N \in \mathbb{N}$ such that $\left|\frac{n+1}{2n+1} \frac{1}{2}\right| = \frac{1}{4n+2} < \epsilon$ for all $n \ge N$. Choose $N \in \mathbb{N}$ such that $N > \frac{1}{4}(\frac{1}{\epsilon} 2)$.
 - (b) Let $\epsilon > 0$ be given. Find $N \in \mathbb{N}$ such that $5^N > \frac{1}{\epsilon}$.
- 2. Suppose $y_0 < x_0$. Let $\epsilon = \frac{x_0 y_0}{4}$. Then there exist $N_1, N_2 \in \mathbb{N}$ such that $x_n \in (x_0 \epsilon, x_0 + \epsilon)$ for all $n \ge N_1$ and $y_n \in (y_0 \epsilon, y_0 + \epsilon)$ for all $n \ge N_2$. Thus $x_n > y_n$ for every $n \ge N = max\{N_1, N_2\}$ which is a contradiction.
- 3. Suppose $x_n \to x_0$ for some $x_0 \in \mathbb{R}$. Let $\epsilon = 1/4$. Then there exists $N \in \mathbb{N}$ such that $x_n \in (x_0 \epsilon, x_0 + \epsilon)$ for all $n \in \mathbb{N}$. Therefore $|x_n x_m| \le 2\epsilon = \frac{1}{2}$ for all $n, m \ge N$ which is not possible.
- 4. Let $\epsilon > 0$ and $n \in \mathbb{N}$. Then $x_n \in (-\epsilon, \epsilon)$ if and only if $|x_n| \in (-\epsilon, \epsilon)$.
- 5. Observe that $0 \le ||x_n| |x_0|| \le |x_n x_0|$. Since $|x_n x_0| \to 0$, $|x_n| \to |x_0|$.
- 6. (a) Since $0 < x_n = \frac{1}{\sqrt{n^2 + 1} + n} < \frac{1}{n}$ for all $n \in \mathbb{N}$, by sandwich theorem $x_n \to 0$.
 - (b) We have $1 \le x_n \le (2n)^{1/n}$ for all $n \in \mathbb{N}$. Therefore, by the sandwich theorem $x_n \to 1$.
 - (c) For all $n \in \mathbb{N}$, $(1+2+\ldots+n)\frac{1}{n+n^2} \le x_n \le (1+2+\ldots+n)\frac{1}{1+n^2}$. Thus $x_n \to \frac{1}{2}$.
 - (d) Observe that $1 \le x_n \le (n^n)^{1/n^2} = n^{1/n}$ for all $n \in \mathbb{N}$. This implies that $x_n \to 1$.
 - (e) For all $n \in \mathbb{N}$, $b = (b^n)^{1/n} \le x_n \le (2b^n)^{1/n} = 2^{1/n}b$. By the sandwich theorem $x_n \to b$.
 - (f) We have $0 < x_n < (\sqrt{2} 1)^n$ for all $n \in \mathbb{N}$. Hence, by the sandwich theorem, $x_n \to 0$.
 - (g) For all $n \in \mathbb{N}$, $-x_n = n^{\alpha} [(1 + \frac{1}{n})^{\alpha} 1] < n^{\alpha} [1 + \frac{1}{n} 1] = \frac{1}{n^{1-\alpha}}$. Hence $x_n \to 0$.
- 7. Suppose $x \ge y$. Then $x = (x^{1/k})^k = [(x^{1/k} y^{1/k}) + y^{1/k}]^k \ge (x^{1/k} y^{1/k})^k + y$.
- 8. For each $n \in \mathbb{N}$, find an irrational x_n such that $x_0 < x_n < x_0 + \frac{1}{n}$. Use the sandwich theorem.
- 9. Let $n \in \mathbb{N}$. Since $\beta \frac{1}{n}$ is not an upper bound, find $a_n \in A$ such that $\beta \frac{1}{n} < a_n \leq \beta$. By the sandwich theorem $a_n \to \beta$.
- 10. By Problem 9, there exists a sequence (a_n) in A such that $a_n \to \beta$. Now $0 \le d(\beta, A) \le |\beta a_n|$. By the sandwich theorem $d(\beta, A) = 0$.
- 11. True.
- 12. (a) Use ratio test to show that $\frac{M^n}{n!} \to 0$.
 - (b) Let M > 0. By (a), there exists $N \in \mathbb{N}$ such that $\frac{M^n}{n!} < 1$ for all $n \in \mathbb{N}$. Hence $(n!)^{1/n} > M$ for all $n \ge N$. This shows that $(n!)^{1/n} \to \infty$.
- 13. Suppose $x_n > 0$ for all $n \in \mathbb{N}$ and $x_n \to 0$. Let M > 0 be given. Choose $\epsilon = \frac{1}{M}$. Since $x_n \to 0$, there exists $N \in \mathbb{N}$ such that $x_n = |x_n 0| < \epsilon$ for all $n \ge \mathbb{N}$. This shows that $\frac{1}{x_n} > M$ for all $n \ge N$ which proves that $\frac{1}{x_n} \to \infty$. The converse is proved similarly.
- 14. Observe that $\frac{x_n}{1+x_n} = \frac{1}{\frac{1}{x_n}+1}$ and apply Problem 13.

15. (*) Let ϵ be given. Since $x_n \to x_0$, there exists $N \in \mathbb{N}$ such that $|x_n - x_0| < \frac{\epsilon}{2}$ for all $n \ge N$. For $n \ge N$, we have

$$|y_n - x_0| = \frac{1}{n} \left| \sum_{i=1}^n (x_i - x_0) \right| \le \frac{1}{n} \sum_{i=1}^N |x_i - x_0| + \frac{1}{n} \sum_{i=N+1}^n |x_i - x_0|.$$

Let $M = \sum_{i=1}^{N} |x_i - x_0|$. As N is fixed, M is a constant. Thus, for $n \ge N$,

$$|y_n - x_0| \le \frac{M}{n} + \left(\frac{n-N}{n}\right)\frac{\epsilon}{2} < \frac{M}{n} + \frac{\epsilon}{2}.$$

Choose $N_1 > N$ such that $\frac{M}{n} < \frac{\epsilon}{2}$ for all $n \ge N_1$. Then $|y_n - x_0| < \epsilon$ for all $n \ge N_1$ which proves that $y_n \to x_0$.

If we take $x_n = (-1)^n$ for all $n \in \mathbb{N}$, then (y_n) converges whereas (x_n) does not.