Practice Problems 2: Convergence of sequences

1. Use Definition 2.1 and show that
(a) $\frac{n+1}{2 n+1} \rightarrow \frac{1}{2}$;
(b) $1+\frac{1}{5^{n}} \rightarrow 1$.
2. Let $x_{n} \leq y_{n}$ for all $n \in \mathbb{N}$. Suppose $x_{n} \rightarrow x_{0}$ and $y_{n} \rightarrow y_{0}$. Show that $x_{0} \leq y_{0}$.
3. Let $x_{n}=(-1)^{n}$ for all $n \in \mathbb{N}$. Show that the sequence $\left(x_{n}\right)$ does not converge.
4. Show that $x_{n} \rightarrow 0$ if and only if $\left|x_{n}\right| \rightarrow 0$.
5. If $x_{n} \rightarrow x_{0}$ show that $\left|x_{n}\right| \rightarrow\left|x_{0}\right|$.
6. Using the sandwich theorem show that $\left(x_{n}\right)$ converges where $\left(x_{n}\right)$ is defined as
(a) $x_{n}=\sqrt{n^{2}+1}-n$;
(b) $x_{n}=(1+n)^{1 / n}$;
(c) $x_{n}=\frac{1}{1+n^{2}}+\frac{2}{2+n^{2}}+\ldots+\frac{n}{n+n^{2}}$;
(d) $x_{n}=(n!)^{1 / n^{2}}$;
(e) $x_{n}=\left(a^{n}+b^{n}\right)^{1 / n}$ where $0<a<b$;
(f) $x_{n}=\left(\sqrt{2}-2^{\frac{1}{3}}\right)\left(\sqrt{2}-2^{\frac{1}{5}}\right) \ldots\left(\sqrt{2}-2^{\frac{1}{2 n+1}}\right)$;
(g) $x_{n}=n^{\alpha}-(n+1)^{\alpha}$ for some $\alpha \in(0,1)$;
7. For any $x \geq 0, y \geq 0$ and $k \in \mathbb{N}$, show that $\left|x^{\frac{1}{k}}-y^{\frac{1}{k}}\right| \leq|x-y|^{\frac{1}{k}}$. Using this inequality, show that $x_{n}^{1 / k} \rightarrow x_{0}^{1 / k}$ whenever $x_{n} \geq 0$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow x_{0}$.
8. Let $x_{0} \in \mathbb{Q}$. Show that there exists a sequence $\left(x_{n}\right)$ of irrational numbers such that $x_{n} \rightarrow x_{0}$.
9. Let A be a non-empty subset of \mathbb{R} and $\beta=\sup A$. Show that there exists a sequence $\left(a_{n}\right)$ such that $a_{n} \in A$ for all $n \in \mathbb{N}$ and $a_{n} \rightarrow \beta$.
10. Let A be a non-empty subset of \mathbb{R} and $x \in \mathbb{R}$. Define the distance $d(x, A)$ between x and A by $d(x, A)=\inf \{|x-a|: a \in A\}$. If $\beta=\sup A$, show that $d(\beta, A)=0$.
11. Let $\left(x_{n}\right)$ and $x_{0} \in \mathbb{R}$ be given. State whether the following statement is true or false: The sequence $\left(x_{n}\right)$ does not converge to x_{0} if and only if there exists some $\epsilon_{0}>0$ such that for every $N \in \mathbb{N}$, there exists $n>N$ such that $\left|x_{n}-x_{0}\right|>\epsilon_{0}$.
12. (a) Let $M>0$ be given. Show that $\frac{M^{n}}{n!} \rightarrow 0$.
(b) Show that $(n!)^{1 / n} \rightarrow \infty$.
13. Let $x_{n}>0$ for all $n \in \mathbb{N}$. Show that $x_{n} \rightarrow 0$ if and only if $\frac{1}{x_{n}} \rightarrow \infty$
14. Let $\left(x_{n}\right)$ be such that $x_{n}>0$ for all $n \in \mathbb{N}$. Show that $x_{n} \rightarrow 0$ if and only if $\frac{x_{n}}{1+x_{n}} \rightarrow 0$.
15. (*) Let $x_{n} \rightarrow x_{0}$ and $y_{n}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}$ for all $n \in \mathbb{N}$. Show that $y_{n} \rightarrow x_{0}$. Give an example of $\left(x_{n}\right)$ such that $\left(y_{n}\right)$ converges but $\left(x_{n}\right)$ does not.
16. (a) Let $\epsilon>0$ be given. We have to find $N \in \mathbb{N}$ such that $\left|\frac{n+1}{2 n+1}-\frac{1}{2}\right|=\frac{1}{4 n+2}<\epsilon$ for all $n \geq N$. Choose $N \in \mathbb{N}$ such that $N>\frac{1}{4}\left(\frac{1}{\epsilon}-2\right)$.
(b) Let $\epsilon>0$ be given. Find $N \in \mathbb{N}$ such that $5^{N}>\frac{1}{\epsilon}$.
17. Suppose $y_{0}<x_{0}$. Let $\epsilon=\frac{x_{0}-y_{0}}{4}$. Then there exist $N_{1}, N_{2} \in \mathbb{N}$ such that $x_{n} \in\left(x_{0}-\epsilon, x_{0}+\epsilon\right)$ for all $n \geq N_{1}$ and $y_{n} \in\left(y_{0}-\epsilon, y_{0}+\epsilon\right)$ for all $n \geq N_{2}$. Thus $x_{n}>y_{n}$ for every $n \geq N=$ $\max \left\{N_{1}, N_{2}\right\}$ which is a contradiction.
18. Suppose $x_{n} \rightarrow x_{0}$ for some $x_{0} \in \mathbb{R}$. Let $\epsilon=1 / 4$. Then there exists $N \in \mathbb{N}$ such that $x_{n} \in\left(x_{0}-\epsilon, x_{0}+\epsilon\right)$ for all $n \in \mathbb{N}$. Therefore $\left|x_{n}-x_{m}\right| \leq 2 \epsilon=\frac{1}{2}$ for all $n, m \geq N$ which is not possible.
19. Let $\epsilon>0$ and $n \in \mathbb{N}$. Then $x_{n} \in(-\epsilon, \epsilon)$ if and only if $\left|x_{n}\right| \in(-\epsilon, \epsilon)$.
20. Observe that $0 \leq\left|\left|x_{n}\right|-\left|x_{0}\right|\right| \leq\left|x_{n}-x_{0}\right|$. Since $\left|x_{n}-x_{0}\right| \rightarrow 0,\left|x_{n}\right| \rightarrow\left|x_{0}\right|$.
21. (a) Since $0<x_{n}=\frac{1}{\sqrt{n^{2}+1}+n}<\frac{1}{n}$ for all $n \in \mathbb{N}$, by sandwich theorem $x_{n} \rightarrow 0$.
(b) We have $1 \leq x_{n} \leq(2 n)^{1 / n}$ for all $n \in \mathbb{N}$. Therefore, by the sandwich theorem $x_{n} \rightarrow 1$.
(c) For all $n \in \mathbb{N},(1+2+\ldots+n) \frac{1}{n+n^{2}} \leq x_{n} \leq(1+2+\ldots+n) \frac{1}{1+n^{2}}$. Thus $x_{n} \rightarrow \frac{1}{2}$.
(d) Observe that $1 \leq x_{n} \leq\left(n^{n}\right)^{1 / n^{2}}=n^{1 / n}$ for all $n \in \mathbb{N}$. This implies that $x_{n} \rightarrow 1$.
(e) For all $n \in \mathbb{N}, b=\left(b^{n}\right)^{1 / n} \leq x_{n} \leq\left(2 b^{n}\right)^{1 / n}=2^{1 / n} b$. By the sandwich theorem $x_{n} \rightarrow b$.
(f) We have $0<x_{n}<(\sqrt{2}-1)^{n}$ for all $n \in \mathbb{N}$. Hence, by the sandwich theorem, $x_{n} \rightarrow 0$.
(g) For all $n \in \mathbb{N},-x_{n}=n^{\alpha}\left[\left(1+\frac{1}{n}\right)^{\alpha}-1\right]<n^{\alpha}\left[1+\frac{1}{n}-1\right]=\frac{1}{n^{1-\alpha}}$. Hence $x_{n} \rightarrow 0$.
22. Suppose $x \geq y$. Then $x=\left(x^{1 / k}\right)^{k}=\left[\left(x^{1 / k}-y^{1 / k}\right)+y^{1 / k}\right]^{k} \geq\left(x^{1 / k}-y^{1 / k}\right)^{k}+y$.
23. For each $n \in \mathbb{N}$, find an irrational x_{n} such that $x_{0}<x_{n}<x_{0}+\frac{1}{n}$. Use the sandwich theorem.
24. Let $n \in \mathbb{N}$. Since $\beta-\frac{1}{n}$ is not an upper bound, find $a_{n} \in A$ such that $\beta-\frac{1}{n}<a_{n} \leq \beta$. By the sandwich theorem $a_{n} \rightarrow \beta$.
25. By Problem 9, there exists a sequence $\left(a_{n}\right)$ in A such that $a_{n} \rightarrow \beta$. Now $0 \leq d(\beta, A) \leq$ $\left|\beta-a_{n}\right|$. By the sandwich theorem $d(\beta, A)=0$.
26. True.
27. (a) Use ratio test to show that $\frac{M^{n}}{n!} \rightarrow 0$.
(b) Let $M>0$. By (a), there exists $N \in \mathbb{N}$ such that $\frac{M^{n}}{n!}<1$ for all $n \in \mathbb{N}$. Hence $(n!)^{1 / n}>M$ for all $n \geq N$. This shows that $(n!)^{1 / n} \rightarrow \infty$.
28. Suppose $x_{n}>0$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow 0$. Let $M>0$ be given. Choose $\epsilon=\frac{1}{M}$. Since $x_{n} \rightarrow 0$, there exists $N \in \mathbb{N}$ such that $x_{n}=\left|x_{n}-0\right|<\epsilon$ for all $n \geq \mathbb{N}$. This shows that $\frac{1}{x_{n}}>M$ for all $n \geq N$ which proves that $\frac{1}{x_{n}} \rightarrow \infty$. The converse is proved similarly.
29. Observe that $\frac{x_{n}}{1+x_{n}}=\frac{1}{\frac{1}{x_{n}}+1}$ and apply Problem 13.
30. (*) Let ϵ be given. Since $x_{n} \rightarrow x_{0}$, there exists $N \in \mathbb{N}$ such that $\left|x_{n}-x_{0}\right|<\frac{\epsilon}{2}$ for all $n \geq N$. For $n \geq N$, we have

$$
\left|y_{n}-x_{0}\right|=\frac{1}{n}\left|\sum_{i=1}^{n}\left(x_{i}-x_{0}\right)\right| \leq \frac{1}{n} \sum_{i=1}^{N}\left|x_{i}-x_{0}\right|+\frac{1}{n} \sum_{i=N+1}^{n}\left|x_{i}-x_{0}\right|
$$

Let $M=\sum_{i=1}^{N}\left|x_{i}-x_{0}\right|$. As N is fixed, M is a constant. Thus, for $n \geq N$,

$$
\left|y_{n}-x_{0}\right| \leq \frac{M}{n}+\left(\frac{n-N}{n}\right) \frac{\epsilon}{2}<\frac{M}{n}+\frac{\epsilon}{2}
$$

Choose $N_{1}>N$ such that $\frac{M}{n}<\frac{\epsilon}{2}$ for all $n \geq N_{1}$. Then $\left|y_{n}-x_{0}\right|<\epsilon$ for all $n \geq N_{1}$ which proves that $y_{n} \rightarrow x_{0}$.
If we take $x_{n}=(-1)^{n}$ for all $n \in \mathbb{N}$, then $\left(y_{n}\right)$ converges whereas $\left(x_{n}\right)$ does not.

