
Practice Problems 2: Convergence of sequences

1. Use Definition 2.1 and show that

(a) n+1
2n+1 → 1

2 ;

(b) 1 + 1
5n → 1.

2. Let xn ≤ yn for all n ∈ N. Suppose xn → x0 and yn → y0. Show that x0 ≤ y0.

3. Let xn = (−1)n for all n ∈ N. Show that the sequence (xn) does not converge.

4. Show that xn → 0 if and only if |xn| → 0.

5. If xn → x0 show that |xn| → |x0|.

6. Using the sandwich theorem show that (xn) converges where (xn) is defined as

(a) xn =
√
n2 + 1− n;

(b) xn = (1 + n)1/n;

(c) xn = 1
1+n2 + 2

2+n2 + ...+ n
n+n2 ;

(d) xn = (n!)1/n
2
;

(e) xn = (an + bn)1/n where 0 < a < b;

(f) xn = (
√
2− 2

1
3 )(

√
2− 2

1
5 )...(

√
2− 2

1
2n+1 );

(g) xn = nα − (n+ 1)α for some α ∈ (0, 1);

7. For any x ≥ 0, y ≥ 0 and k ∈ N, show that |x
1
k − y

1
k | ≤ |x− y|

1
k . Using this inequality, show

that x
1/k
n → x

1/k
0 whenever xn ≥ 0 for all n ∈ N and xn → x0.

8. Let x0 ∈ Q. Show that there exists a sequence (xn) of irrational numbers such that xn → x0.

9. Let A be a non-empty subset of R and β = sup A. Show that there exists a sequence (an)
such that an ∈ A for all n ∈ N and an → β.

10. Let A be a non-empty subset of R and x ∈ R. Define the distance d(x,A) between x and A
by d(x,A) = inf{|x− a| : a ∈ A}. If β = sup A, show that d(β,A) = 0.

11. Let (xn) and x0 ∈ R be given. State whether the following statement is true or false:
The sequence (xn) does not converge to x0 if and only if there exists some ε0 > 0 such that
for every N ∈ N, there exists n > N such that |xn − x0| > ε0.

12. (a) Let M > 0 be given. Show that Mn

n! → 0.

(b) Show that (n!)1/n → ∞.

13. Let xn > 0 for all n ∈ N. Show that xn → 0 if and only if 1
xn

→ ∞

14. Let (xn) be such that xn > 0 for all n ∈ N. Show that xn → 0 if and only if xn
1+xn

→ 0.

15. (*) Let xn → x0 and yn = x1+x2+···+xn
n for all n ∈ N. Show that yn → x0. Give an example

of (xn) such that (yn) converges but (xn) does not.

Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.



Practice Problems 2: Hints/Solutions

1. (a) Let ε > 0 be given. We have to find N ∈ N such that | n+1
2n+1 − 1

2 | =
1

4n+2 < ε for all

n ≥ N . Choose N ∈ N such that N > 1
4(

1
ε − 2).

(b) Let ε > 0 be given. Find N ∈ N such that 5N > 1
ε .

2. Suppose y0 < x0. Let ε =
x0−y0

4 . Then there exist N1, N2 ∈ N such that xn ∈ (x0− ε, x0+ ε)
for all n ≥ N1 and yn ∈ (y0 − ε, y0 + ε) for all n ≥ N2. Thus xn > yn for every n ≥ N =
max{N1, N2} which is a contradiction.

3. Suppose xn → x0 for some x0 ∈ R. Let ε = 1/4. Then there exists N ∈ N such that
xn ∈ (x0 − ε, x0 + ε) for all n ∈ N. Therefore |xn − xm| ≤ 2ε = 1

2 for all n,m ≥ N which is
not possible.

4. Let ε > 0 and n ∈ N. Then xn ∈ (−ε, ε) if and only if |xn| ∈ (−ε, ε).

5. Observe that 0 ≤ ||xn| − |x0|| ≤ |xn − x0|. Since |xn − x0| → 0, |xn| → |x0|.

6. (a) Since 0 < xn = 1√
n2+1+n

< 1
n for all n ∈ N, by sandwich theorem xn → 0.

(b) We have 1 ≤ xn ≤ (2n)1/n for all n ∈ N. Therefore, by the sandwich theorem xn → 1.

(c) For all n ∈ N, (1 + 2 + ...+ n) 1
n+n2 ≤ xn ≤ (1 + 2 + ...+ n) 1

1+n2 . Thus xn → 1
2 .

(d) Observe that 1 ≤ xn ≤ (nn)1/n
2
= n1/n for all n ∈ N. This implies that xn → 1.

(e) For all n ∈ N, b = (bn)1/n ≤ xn ≤ (2bn)1/n = 21/nb. By the sandwich theorem xn → b.

(f) We have 0 < xn < (
√
2− 1)n for all n ∈ N. Hence, by the sandwich theorem, xn → 0.

(g) For all n ∈ N, −xn = nα[(1 + 1
n)

α − 1] < nα[1 + 1
n − 1] = 1

n1−α . Hence xn → 0.

7. Suppose x ≥ y. Then x = (x1/k)k = [(x1/k − y1/k) + y1/k]k ≥ (x1/k − y1/k)k + y.

8. For each n ∈ N, find an irrational xn such that x0 < xn < x0 + 1
n . Use the sandwich

theorem.

9. Let n ∈ N. Since β − 1
n is not an upper bound, find an ∈ A such that β − 1

n < an ≤ β. By
the sandwich theorem an → β.

10. By Problem 9, there exists a sequence (an) in A such that an → β. Now 0 ≤ d(β,A) ≤
|β − an|. By the sandwich theorem d(β,A) = 0.

11. True.

12. (a) Use ratio test to show that Mn

n! → 0.

(b) Let M > 0. By (a), there exists N ∈ N such that Mn

n! < 1 for all n ∈ N. Hence

(n!)1/n > M for all n ≥ N . This shows that (n!)1/n → ∞.

13. Suppose xn > 0 for all n ∈ N and xn → 0. Let M > 0 be given. Choose ε = 1
M . Since

xn → 0, there exists N ∈ N such that xn = |xn − 0| < ε for all n ≥ N. This shows that
1
xn

> M for all n ≥ N which proves that 1
xn

→ ∞. The converse is proved similarly.

14. Observe that xn
1+xn

= 1
1
xn

+1
and apply Problem 13.



15. (*) Let ε be given. Since xn → x0, there exists N ∈ N such that |xn−x0| < ε
2 for all n ≥ N .

For n ≥ N , we have

|yn − x0| =
1

n

∣∣∣∣∣
n∑

i=1

(xi − x0)

∣∣∣∣∣ ≤ 1

n

N∑
i=1

|xi − x0|+
1

n

n∑
i=N+1

|xi − x0|.

Let M =
∑N

i=1 |xi − x0|. As N is fixed, M is a constant. Thus, for n ≥ N ,

|yn − x0| ≤
M

n
+

(
n−N

n

)
ε

2
<

M

n
+

ε

2
.

Choose N1 > N such that M
n < ε

2 for all n ≥ N1. Then |yn − x0| < ε for all n ≥ N1 which
proves that yn → x0.

If we take xn = (−1)n for all n ∈ N, then (yn) converges whereas (xn) does not.


