Practice problems 5: Continuity, Existence of points of maximum and minimum

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that for every $x, y \in \mathbb{R},|f(x)-f(y)| \leq|x-y|$. Show that f is continuous at every point in \mathbb{R}.
2. Let $f(x)=|x|$ for every $x \in \mathbb{R}$. Show that f is continuous at every point in \mathbb{R}.
3. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$. Suppose g is continuous at x_{0} and f is contiuous at $g\left(x_{0}\right)$ then $(f \circ g)$ is continuous at x_{0}.
4. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at x_{0}, show that the function $|f|$, defined by $|f|(x)=|f(x)|$ for all $x \in \mathbb{R}$, is also continuous at x_{0}
5. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be defined by $f(x)=x^{\frac{1}{k}}$ for some $k \in \mathbb{N}$. Show that f is continuous at every point in $(0, \infty)$.
6. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=[x]$ where $[\cdot]$ is the function defined as in Problem 12 of PP1 and $g(x)=x-2$ for all $x \in \mathbb{R}$. Show that $(f g)$ is continuous at 2 whereas f is not continuous at 2 and g is continuous at 2 .
7. Let $f:[0, \pi] \rightarrow \mathbb{R}$ be defined by $f(0)=0$ and $f(x)=x \sin \frac{1}{x}-\frac{1}{x} \cos \frac{1}{x}$ for $x \neq 0$. Is f continuous at 0 ?
8. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous such that given any two points $x_{1}<x_{2}$, there exists a point x_{3} such that $x_{1}<x_{3}<x_{2}$ and $f\left(x_{3}\right)=g\left(x_{3}\right)$. Show that $f(x)=g(x)$ for all $x \in \mathbb{R}$.

9 . Let $f:(-1,1) \rightarrow \mathbb{R}$ be a continuous function such that in every neighborhood of 0 , there exists a point where f takes the value 0 . Show that $f(0)=0$.
10. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous at x_{0} and $f\left(x_{0}\right)>0$. Show that there is $\delta>0$ such that $f(x)>0$ for all $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$. Further, show that the function $\frac{1}{f}$ is defined on $\left(x_{0}-\delta, x_{0}+\delta\right)$ and continuous at x_{0}.
11. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfy $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. If f is continuous at 0 , show that f is continuous at every point $c \in \mathbb{R}$.
12. Let $f: \mathbb{R} \rightarrow(0, \infty)$ satisfy $f(x+y)=f(x) f(y)$ for all $x, y \in \mathbb{R}$. Suppose f is continuous at 0 . Show that f is continuous at all $x \in \mathbb{R}$.
13. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $f(x)=f\left(x^{2}\right)$ for all $x \in \mathbb{R}$. Show that f is constant.
14. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and $f(x)>0$ for all $x \in[a, b]$. Show that there exists $\alpha>0$ such that $f(x) \geq \alpha$ for all $x \in[a, b]$.
15. Let $f:[0,1] \rightarrow(0,1)$ be an on-to function. Show that f is not continuous on $[0,1]$.
16. (*) Let $f:[a, b] \rightarrow \mathbb{R}$ be one-one and continuous.
(a) Show that f is not on-to.
(b) Show that f^{-1} is continuous on $\{f(x): x \in[a, b]\}$, the range of f.
17. (*) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. Show that $f(x)=f(1) x$ for all $x \in \mathbb{R}$.
18. (*) Let $f:(0,1) \rightarrow \mathbb{R}$ be given by

$$
f(x)= \begin{cases}\frac{1}{q} & \text { if } x=\frac{p}{q} \text { where } p, q \in \mathbb{N} \text { and } p, q \text { have no common factors } \\ 0 & \text { if } x \text { is irrational }\end{cases}
$$

(a) Let $x_{n}=\frac{p_{n}}{q_{n}} \in(0,1)$ where $p_{n}, q_{n} \in \mathbb{N}$ and have no common factors. Suppose $x_{n} \rightarrow x$ for some x with $x_{n} \neq x$ for all $n \in \mathbb{N}$. Show that $q_{n} \rightarrow \infty$.
(b) Show that f is continuous at every irrational.
(c) Show that f is discontinuous at every rational.

1. Let $x_{0} \in \mathbb{R}$ and $x_{n} \rightarrow x_{0}$. Since $\left|f\left(x_{n}\right)-f\left(x_{0}\right)\right| \leq\left|x_{n}-x_{0}\right|, f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$. Hence f is continuous at x_{0}. Since x_{0} is arbitrary, f is continuous at every point in \mathbb{R}.
2. Use Problem 1.
3. Let $x_{n} \rightarrow x_{0}$. Since g is continuous at $x_{0}, g\left(x_{n}\right) \rightarrow g\left(x_{0}\right)$. Since f is continuous at $g\left(x_{0}\right)$, $f\left(g\left(x_{n}\right)\right) \rightarrow f\left(g\left(x_{0}\right)\right)$, i.e., $(f \circ g)\left(x_{n}\right) \rightarrow(f \circ g)\left(x_{0}\right)$. Hence $(f \circ g)$ is continuous at x_{0}.
4. Observe that $|f|(x)=|f(x)|=(|\cdot| \circ f)(x)$. Apply Problems 2 and 3.
5. Use Problem 7 of PP2.
6. Let $x_{n} \rightarrow 2$. Since $\left(x_{n}\right)$ is bounded, $\left(\left[x_{n}\right]\right)$ is also bounded. Therefore, there exists $M>0$ such that $\left|\left[x_{n}\right]\right| \leq M$ for all $n \in \mathbb{N}$. Since $\left|(f g)\left(x_{n}\right)\right|=\left|f\left(x_{n}\right) g\left(x_{n}\right)\right|$, we have $\left|(f g)\left(x_{n}\right)\right| \leq$ $M\left|x_{n}-2\right|$. This shows that $(f g)\left(x_{n}\right) \rightarrow 0=(f g)(2)$.
7. The function f is not continuous at 0 , because, $x_{n}=\frac{1}{2 n \pi} \rightarrow 0$ but $f\left(\frac{1}{2 n \pi}\right) \leftrightarrow f(0)$.
8. Fix some $x_{0} \in \mathbb{R}$. For every n, find x_{n} such that $x_{0}-\frac{1}{n}<x_{n}<x_{0}$ and $(f-g)\left(x_{n}\right)=0$. Since $x_{n} \rightarrow x_{0}$, by the continuity of $f-g,(f-g)\left(x_{n}\right) \rightarrow(f-g)\left(x_{0}\right)=0$.
9. For every n, find $x_{n} \in\left(-\frac{1}{n}, \frac{1}{n}\right)$ such that $f\left(x_{n}\right)=0$. Since f is continuous at 0 and $x_{n} \rightarrow 0$, we have $f\left(x_{n}\right) \rightarrow f(0)$. Therefore, $f(0)=0$.
10. Let $f\left(x_{0}\right)>0$. Choose $\epsilon=\frac{f\left(x_{0}\right)}{2}$. Then there exists $\delta>0$, such that $f(x) \in\left(f\left(x_{0}\right)-\right.$ $\left.\epsilon, f\left(x_{0}\right)+\epsilon\right)$ whenever, $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$. Hence $f(x)>\frac{f\left(x_{0}\right)}{2}$ for all $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$. The continuity of $\frac{1}{f}$ at x_{0} follows from Theorem 2.1 and the continuity of f at x_{0}.
11. First note that $f(0)=0, f(-x)=-f(x)$ and $f(x-y)=f(x)-f(y)$. Let $x_{0} \in \mathbb{R}$ and $x_{n} \rightarrow x_{0}$. Since f is continuous at 0 and $x_{n}-x_{0} \rightarrow 0$ we have $f\left(x_{n}\right)-f\left(x_{0}\right)=f\left(x_{n}-x_{0}\right) \rightarrow$ $f(0)=0$.
12. Since $f(0)=f(0)^{2}, f(0)=1$ and since $f(x-x)=f(0), f(-x)=\frac{1}{f(x)}$. Let $x_{0} \in \mathbb{R}$ and $x_{n} \rightarrow x_{0}$. By the continuity of f at $0, f\left(x_{n}-x_{0}\right) \rightarrow 1$ and hence $f\left(x_{n}\right) \rightarrow \frac{1}{f\left(-x_{0}\right)}=f\left(x_{0}\right)$.
13. Suppose $x>0$. By the assumption, $f(x)=f\left(x^{\frac{1}{2}}\right)=f\left(x^{\frac{1}{2^{2}}}\right)=f\left(x^{\frac{1}{2^{n}}}\right)$. Since $x^{\frac{1}{2^{n}}} \rightarrow$ $1, f\left(x^{\frac{1}{2^{n}}}\right) \rightarrow f(1)$, i.e. $f(x)=f(1)$. Now $f(-x)=f\left((-x)^{2}\right)=f\left(x^{2}\right)=f(x)$. At $x=0$, by the continuity of f at $0, f\left(\frac{1}{n}\right) \rightarrow f(0)$. Since $f\left(\frac{1}{n}\right)=f(1), f(0)=f(1)$. Therefore $f(x)=f(1)$ for all $x \in \mathbb{R}$.
14. By Theorem 5.2, f bounded. Hence, let $\alpha=\inf \{f(x): x \in[a, b]\}$. By Theorem 5.3, there exists $x_{0} \in[a, b]$ such that $f\left(x_{0}\right)=\alpha$. Since $f\left(x_{0}\right)>0, \alpha>0$.
15. Note that $\inf \{f(x): x \in[a, b]\}=0$. If f is continuous, then by Theorem 5.3, there exists $x_{0} \in[a, b]$ such that $f\left(x_{0}\right)=0$.
16. (a) By Theorem 5.2, f is bounded on $[a, b]$. Hence f is not on-to.
(b) Let $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$ for some $x_{n}, x_{0} \in[a, b]$. We show that $x_{n} \rightarrow x_{0}$ which proves that f^{-1} is continuous at $f\left(x_{0}\right)$. If $\left(x_{n_{k}}\right)$ is any subsequence of $\left(x_{n}\right)$, then by the Bolzano-Weierstrass theorem, there exists a subsequence $\left(x_{n_{k_{i}}}\right)$ such that $x_{n_{k_{i}}} \rightarrow \alpha$ for some $\alpha \in[a, b]$. By the continuity of $f, f\left(x_{n_{k_{i}}}\right) \rightarrow f(\alpha)$. By our assumption $f^{2}(\alpha)=f\left(x_{0}\right)$. Since f is one-one, $x_{0}=\alpha$. By Problem 11 of PP3, $x_{n} \rightarrow x_{0}$.
17. First observe that $f(0)=0$ and $f(n)=n f(1)$ for all $n \in \mathbb{N}$. Next note that $f(-1)=-f(1)$ and $f(m)=f(1) m$ for all $m \in \mathbb{Z}$. By observing $f\left(\frac{1}{n}\right)=f(1) \frac{1}{n}$ for all $n \in \mathbb{N}$, show that $f\left(\frac{m}{n}\right)=f(1) \frac{m}{n}$ for all $m \in \mathbb{Z}$ and $n \in \mathbb{N}$. Finally take any irrational number x and find $r_{n} \in \mathbb{Q}$ such that $r_{n} \rightarrow x$. Apply the continuity to conclude that $f(x)=f(1) x$.
18. (a) If for some $M \in \mathbb{N}, q_{n}<M$ for all $n \in \mathbb{N}$, then the set $\left\{x_{n}: n \in \mathbb{N}\right\}$ is finite which is not true. Similarly we can show that any subsequence of $\left(q_{n}\right)$ cannot be bounded.
(b) Suppose x_{0} is irrational in $(0,1)$ and $x_{n} \rightarrow x_{0}$ where x_{n} can be rational or irrational. Apply (a) to show that $f\left(x_{n}\right) \rightarrow 0=f\left(x_{0}\right)$.
(c) Suppose x_{0} is rational in $(0,1)$. To show that f is discontinuous at x_{0}, choose an irrational sequence (x_{n}) such that $x_{n} \rightarrow x_{0}$.
