Practice Problems 6: Limit, Intermediate Value Theorem

- 1. Let $\alpha \in \mathbb{R}$ be such that $\lim_{x \to -1} \frac{2x^2 \alpha x 14}{x^2 2x 3}$ exists. Find α and the limit.
- 2. Let $\lim_{x \to 0} \frac{f(x)}{x^2} = 5$. Show that $\lim_{x \to 0} \frac{f(x)}{x} = 0$.
- 3. Let $f : \mathbb{R} \to \mathbb{R}$ and $x_0 \in \mathbb{R}$. Suppose $\lim_{x \to x_0} f(x)$ exists. Show that $\lim_{x \to 0} f(x+x_0) = \lim_{x \to x_0} f(x)$.
- 4. Let $x_0 \in I$ and $f: I \setminus \{x_0\} \to \mathbb{R}$. Suppose $\lim_{x \to x_0} f(x) = L$. If L > 0 show that there is $\delta > 0$ such that f(x) > 0 for all $x \in [(x_0 \delta, x_0 + \delta) \cap I] \setminus \{x_0\}$.
- 5. Let $x_0 \in I$ and $f, g: I \setminus \{x_0\} \to \mathbb{R}$. Suppose $\lim_{x \to x_0} f(x) = L$ and $\lim_{x \to x_0} g(x) = M$. Then (i) $\lim_{x \to x_0} (f + g)(x) = L + M$; (ii) $\lim_{x \to x_0} (fg)(x) = LM$; (iii) if $L \neq 0$, $\lim_{x \to x_0} (\frac{1}{f})(x) = \frac{1}{L}$.
- 6. Let $x_0 \in (a, b)$ and $f: (a, b) \setminus \{x_0\} \to \mathbb{R}$. Then $\lim_{x \to x_0} f(x)$ exists if and only if $\lim_{x \to x_0^+} f(x)$ and $\lim_{x \to x_0^-} f(x)$ exist and are equal.
- 7. Give an example of a function f on [0,1] which is not continuous but it satisfies the intermediate value property (in short, IVP) (We say that f has the property IVP on [0,1] if for every $x, y \in [0,1]$ and α satisfying $f(x) < \alpha < f(y)$ or $f(x) > \alpha > f(y)$ there exists $x_0 \in [x,y]$ such that $f(x_0) = \alpha$).
- 8. Show that the polynomial $x^4 + 6x^3 8$ has at least two real roots.
- 9. Let $f: [0,1] \to \mathbb{R}$ be continuous. Show that there exists $x_0 \in [0,1]$ such that $f(x_0) = \frac{1}{3}(f(\frac{1}{4}) + f(\frac{1}{2}) + f(\frac{3}{4})).$
- 10. Let $f: [0,1] \to R$. Suppose that f(x) is rational for irrational x and that f(x) is irrational for rational x. Show that f cannot be continuous.
- 11. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that $f(x + 2\pi) = f(x)$ for all $x \in \mathbb{R}$. Show that there exists $x_0 \in \mathbb{R}$ such that $f(x_0 + \pi) = f(x_0)$.
- 12. Let $f: [0,1] \to \mathbb{R}$ be continuous such that f(0) = f(1). Show that there exists $x_0 \in [0,\frac{1}{2}]$ such that $f(x_0) = f(x_0 + \frac{1}{2})$.
- 13. Let $f, g: [0,1] \to \mathbb{R}$ be continuous such that $\inf\{f(x) : x \in [0,1]\} = \inf\{g(x) : x \in [0,1]\}$. Show that there exists $x_0 \in [0,1]$ such that $f(x_0) = g(x_0)$.
- 14. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Show that f is a constant function if
 - (a) f(x) is rational for each $x \in \mathbb{R}$.
 - (b) f(x) is an integer for each $x \in \mathbb{Q}$.
- 15. Show that a polynomial of odd degree with real coefficients has at least one real root.
- 16. Show that there exists at least one positive real solution to the equation $|x^{31}+x^8+20| = x^{32}$.

Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.

- 17. Let $f(x) = x^{2n} + a_{2n-1}x^{2n-1} + \ldots + a_1x + a_0$ where $n \in \mathbb{N}$ and $a_i \in \mathbb{R}$ for $0 \le i \le 2n$. Show that f attains its infimum on \mathbb{R} .
- 18. Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ where $n \in \mathbb{N}$ and $a_i \in \mathbb{R}$ for $0 \le i \le n$. If n is even, $a_n = 1$ and $a_0 = -1$, show that f(x) has at least two real roots.
- 19. A runner runs continuously a eight kilometer race in 40 minutes without taking rest. Show that, somewhere along the race, the runner must have covered a distance of one kilometer in exactly 5 minutes.
- 20. (*) Let $f: I \to \mathbb{R}$ be a continuous one-one map. Show that f is either strictly increasing (i.e, f(x) > f(y) whenever x > y) or strictly decreasing.
- 21. (*) Let $f : \mathbb{R} \to [0, \infty)$ be a bijective map. Show that f is not continuous on \mathbb{R} .
- 22. (*) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function.
 - (a) Suppose f attains each of its values exactly two times. Let $f(x_1) = f(x_2) = \alpha$ for some $\alpha \in \mathbb{R}$ and $f(x) > \alpha$ for some $x \in [x_1, x_2]$. Show that f attains its maximum in $[x_1, x_2]$ exactly at one point.
 - (b) Using (a) show that f cannot attain each of its values exactly two times.

- 1. $\alpha = 12$ and the limit is 4.
- 2. Note that $\frac{f(x)}{x} = \frac{f(x)}{x^2}x$ for $x \neq 0$.
- 3. Let $\lim_{x\to x_0} f(x) = M$ for some $M \in \mathbb{R}$. Let $x_n \to 0, x_n \neq 0 \forall n$. Then $x_n + x_0 \to x_0$. Since $\lim_{x\to x_0} f(x) = M$, $f(x_n + x_0) \to M$. This implies that $\lim_{x\to 0} f(x + x_0) = M$.
- 4. Suppose for every *n*, there exists $x_n \in (x_0 \frac{1}{n}, x_0 + \frac{1}{n}) \cap I$ such that $f(x_n) \leq 0$. Then $x_n \to x_0$. Since $f(x_n) \to L, L \leq 0$ which is a contradiction.
- 5. Apply the definition of limit and Theorem 2.1 to get (i) and (ii). Theorem 2.1 and Problem 4 imply (iii).
- 6. It follows from the definitions that if $\lim_{x \to x_0} f(x)$ exists then $\lim_{x \to x_0^+} f(x)$ and $\lim_{x \to x_0^-} f(x)$ exist and are equal. To show the converse, let $\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = L$ for some $L \in \mathbb{R}$. Let $\epsilon > 0$. Then by Theorem 6.3, there exists $\delta_1 > 0$ and $\delta_2 > 0$ such that

$$|f(x) - L| < \epsilon$$
 whenever $x \in I$, $x > x_0$ and $0 < |x - x_0| < \delta$
 $|f(x) - L| < \epsilon$ whenever $x \in I$, $x > x_0$ and $0 < |x - x_0| < \delta$.

and

Choose $\delta = \min\{\delta_1, \delta_2\}$. Then $|f(x) - L| < \epsilon$ whenever $x \in I$, and $0 < |x - x_0| < \delta$. This shows that $\lim_{x \to x_0} f(x) = L$.

- 7. Consider f(0) = 0 and $f(x) = \sin \frac{1}{x}$ for $x \neq 0$.
- 8. Note that f(0) < 0, f(2) > 0 and f(-8) > 0. Use the IVT for f on [-8, 0] and f on [0, 2].
- 9. Let $x_1, x_2 \in [0, 1]$ be such that $f(x_1) = inf\{f(x) : x \in [0, 1]\}$ and $f(x_2) = sup\{f(x) : x \in [0, 1]\}$. Note that $f(x_1) \leq \frac{1}{3}(f(\frac{1}{4}) + f(\frac{1}{2}) + f(\frac{3}{4})) \leq f(x_2)$. Apply the IVT.
- 10. Let g be defined by $g(x) = f(x) x \forall x \in [0, 1]$. Then g(x) irrational for all $x \in [0, 1]$. Because of the IVT, g cannot be continuous and hence f cannot be continuous.
- 11. Consider the function $g(x) = f(x+\pi) f(x)$ and the values g(0) and $g(\pi)$. Apply the IVT.
- 12. Consider the function $g(x) = f(x) f(x + \frac{1}{2})$ and the values g(0) and $g(\frac{1}{2})$. Apply the IVT.
- 13. Let $x_1, x_2 \in [0, 1]$ be such that $f(x_1) = \inf\{f(x) : x \in [0, 1]\}$ and $g(x_2) = \inf\{g(x) : x \in [0, 1]\}$. Note that $f(x_1) \leq g(x_1)$ and $f(x_2) \geq g(x_2)$. Let $\varphi(x) = f(x) g(x)$. Apply the IVT for φ .
- 14. (a) Suppose f(x) ≠ f(y) for some x, y ∈ ℝ. Find an irrational number α between f(x) and f(y). By the IVT, there exists z ∈ (x, y) such that f(z) = α which is a contradiction.
 (b) Let α be irrational. Find r_n ∈ Q such that r_n → α. By the continuity of f, f(r_n) → f(α). Since each f(r_n) is an integer, (f(r_n)) has to be eventually a constant sequence and hence f(α) is an integer. So f takes only integer value for each x ∈ ℝ. By the IVT, f(x) has to be a constant function.
- 15. Let $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ where $a_i \in \mathbb{R}$ for $0 \le i \le n$, $a_n \ne 0$ and n is odd. Then $p(x) = x^n (a_n + \frac{a_{n-1}}{x} + \dots + \frac{a_1}{x^{n-1}} + \frac{a_0}{x^n})$. If $a_n > 0$, then $p(x) \to \infty$ as $x \to \infty$ and $p(x) \to -\infty$ as $x \to -\infty$. Hence there exists some M > 0 such that p(x) > 0 for all x > M and p(x) < 0 for all x < -M. Apply the IVT for p on [-M, M].

- 16. Let $f(x) = \frac{1}{x^{32}} |x^{31} + x^8 + 20| 1$. Then $f(x) \to \infty$ as $x \to 0$ and $f(x) \to -1$ as $x \to \infty$. By the IVT, there exists $x_0 \in (0, \infty)$ such that $f(x_0) = 0$.
- 17. Note that $f(x) \to \infty$ as $x \to \infty$ or $x \to -\infty$. Let $\alpha > 0$ be such that $\alpha > f(y)$ for some $y \in \mathbb{R}$. Then there exists M > 0 such that $f(x) > \alpha$ for all |x| > M. Since f is continuous there exists x_0 such that $f(x_0) = inf\{f(x) : x \in [-M, M]\} = inf\{f(x) : x \in \mathbb{R}\}$
- 18. Note that f(0) = -1 and $f(x) \to \infty$ as $x \to \infty$ or $x \to -\infty$. Apply the IVT.
- 19. Let x denote the distance, in kilometers, along the course. Let $f : [0,7] \to \mathbb{R}$, where f(x) = time taken in minutes to cover the distance from x to x + 1. Observe that $\sum_{i=0}^{7} f(i) = 40$. Hence f(i) < 5 or f(i) > 5 is not possible for all i = 0 to 7. Therefore, there exists $i, j \in [0,7]$ such that $f(i) \le 5 \le f(j)$. By the IVT there exists $c \in (i, j)$ such that f(c) = 5.
- 20. Case 1: Let I = [a, b]. Assume that f(a) < f(b). Let a < x < b. Since f is one-one, using the IVT, it is easy to show that f(a) < f(x) < f(b). Let a < x < y < b. Then f(x) < f(y). To see this, let f(y) < f(x). Then f(y) < f(x) < f(b). By the IVT, there exists $x_0 \in (y, b)$ such that $f(x_0) = f(x)$ which is a contradiction.

Case 2: Suppose that I is any interval and f is neither strictly increasing nor strictly decreasing. Then there exist $x_1, x_2, y_1, y_2 \in I$ such that $x_1 < x_2$ but $f(x_1) \leq f(x_2)$ and $y_1 < y_2$ but $f(y_1) \geq f(y_2)$. Find [a, b] such that $x_1, x_2, y_1, y_2 \in [a, b]$ and $[a, b] \subset I$. Case I will lead to a contradiction.

- 21. If f is continuous, by Problem 21, f is either strictly increasing or strictly decreasing. Suppose f is strictly increasing. Since f is on-to, there exists x_0 such that $f(x_0) = 0$. Then $f(x) < f(x_0)$ for all $x < x_0$ which is a contradiction.
- (a) Let β = max{f(x) : x ∈ [x₁, x₂]}. If f attains β on [x₁, x₂] at more than one point, then there exists γ ∈ (α, β) such that f attains γ more than twice which is a contradiction.
 (b) Suppose f attains each of its values exactly two times. Let x₁, x₂, α and β be as in (a). Since f attains β exactly once in [x₁, x₂], there exits x₀ lying outside [x₁, x₂] such that f(x₀) = β > α. Then, by the IVT, every number in (α, β) is attained by f more than twice

which is a contradiction.