1. Let $\alpha \in \mathbb{R}$ be such that $\lim _{x \rightarrow-1} \frac{2 x^{2}-\alpha x-14}{x^{2}-2 x-3}$ exists. Find α and the limit.
2. Let $\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=5$. Show that $\lim _{x \rightarrow 0} \frac{f(x)}{x}=0$.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $x_{0} \in \mathbb{R}$. Suppose $\lim _{x \rightarrow x_{0}} f(x)$ exists. Show that $\lim _{x \rightarrow 0} f\left(x+x_{0}\right)=\lim _{x \rightarrow x_{0}} f(x)$.
4. Let $x_{0} \in I$ and $f: I \backslash\left\{x_{0}\right\} \rightarrow \mathbb{R}$. Suppose $\lim _{x \rightarrow x_{0}} f(x)=L$. If $L>0$ show that there is $\delta>0$ such that $f(x)>0$ for all $x \in\left[\left(x_{0}-\delta, x_{0}+\delta\right) \cap I\right] \backslash\left\{x_{0}\right\}$.
5. Let $x_{0} \in I$ and $f, g: I \backslash\left\{x_{0}\right\} \rightarrow \mathbb{R}$. Suppose $\lim _{x \rightarrow x_{0}} f(x)=L$ and $\lim _{x \rightarrow x_{0}} g(x)=M$. Then
(i) $\lim _{x \rightarrow x_{0}}(f+g)(x)=L+M$;
(ii) $\lim _{x \rightarrow x_{0}}(f g)(x)=L M$;
(iii) if $L \neq 0, \lim _{x \rightarrow x_{0}}\left(\frac{1}{f}\right)(x)=\frac{1}{L}$.
6. Let $x_{0} \in(a, b)$ and $f:(a, b) \backslash\left\{x_{0}\right\} \rightarrow \mathbb{R}$. Then $\lim _{x \rightarrow x_{0}} f(x)$ exists if and only if $\lim _{x \rightarrow x_{0}^{+}} f(x)$ and $\lim _{x \rightarrow x_{0}^{-}} f(x)$ exist and are equal.
7. Give an example of a function f on $[0,1]$ which is not continuous but it satisfies the intermediate value property (in short, IVP) (We say that f has the property IVP on $[0,1]$ if for every $x, y \in[0,1]$ and α satisfying $f(x)<\alpha<f(y)$ or $f(x)>\alpha>f(y)$ there exists $x_{0} \in[x, y]$ such that $\left.f\left(x_{0}\right)=\alpha\right)$.
8. Show that the polynomial $x^{4}+6 x^{3}-8$ has at least two real roots.
9. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous. Show that there exists $x_{0} \in[0,1]$ such that $f\left(x_{0}\right)=$ $\frac{1}{3}\left(f\left(\frac{1}{4}\right)+f\left(\frac{1}{2}\right)+f\left(\frac{3}{4}\right)\right)$.
10. Let $f:[0,1] \rightarrow R$. Suppose that $f(x)$ is rational for irrational x and that $f(x)$ is irrational for rational x. Show that f cannot be continuous.
11. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $f(x+2 \pi)=f(x)$ for all $x \in \mathbb{R}$. Show that there exists $x_{0} \in \mathbb{R}$ such that $f\left(x_{0}+\pi\right)=f\left(x_{0}\right)$.
12. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous such that $f(0)=f(1)$. Show that there exists $x_{0} \in\left[0, \frac{1}{2}\right]$ such that $f\left(x_{0}\right)=f\left(x_{0}+\frac{1}{2}\right)$.
13. Let $f, g:[0,1] \rightarrow \mathbb{R}$ be continuous such that $\inf \{f(x): x \in[0,1]\}=\inf \{g(x): x \in[0,1]\}$. Show that there exists $x_{0} \in[0,1]$ such that $f\left(x_{0}\right)=g\left(x_{0}\right)$.
14. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Show that f is a constant function if
(a) $f(x)$ is rational for each $x \in \mathbb{R}$.
(b) $f(x)$ is an integer for each $x \in \mathbb{Q}$.
15. Show that a polynomial of odd degree with real coefficients has at least one real root.
16. Show that there exists at least one positive real solution to the equation $\left|x^{31}+x^{8}+20\right|=x^{32}$.

Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.
17. Let $f(x)=x^{2 n}+a_{2 n-1} x^{2 n-1}+\ldots+a_{1} x+a_{0}$ where $n \in \mathbb{N}$ and $a_{i} \in \mathbb{R}$ for $0 \leq i \leq 2 n$. Show that f attains its infimum on \mathbb{R}.
18. Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ where $n \in \mathbb{N}$ and $a_{i} \in \mathbb{R}$ for $0 \leq i \leq n$. If n is even, $a_{n}=1$ and $a_{0}=-1$, show that $f(x)$ has at least two real roots.
19. A runner runs continuously a eight kilometer race in 40 minutes without taking rest. Show that, somewhere along the race, the runner must have covered a distance of one kilometer in exactly 5 minutes.
20. (*) Let $f: I \rightarrow \mathbb{R}$ be a continuous one-one map. Show that f is either strictly increasing (i.e, $f(x)>f(y)$ whenever $x>y$) or strictly decreasing.
21. (*) Let $f: \mathbb{R} \rightarrow[0, \infty)$ be a bijective map. Show that f is not continuous on \mathbb{R}.
22. (*) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function.
(a) Suppose f attains each of its values exactly two times. Let $f\left(x_{1}\right)=f\left(x_{2}\right)=\alpha$ for some $\alpha \in \mathbb{R}$ and $f(x)>\alpha$ for some $x \in\left[x_{1}, x_{2}\right]$. Show that f attains its maximum in $\left[x_{1}, x_{2}\right]$ exactly at one point.
(b) Using (a) show that f cannot attain each of its values exactly two times.

1. $\alpha=12$ and the limit is 4 .
2. Note that $\frac{f(x)}{x}=\frac{f(x)}{x^{2}} x$ for $x \neq 0$.
3. Let $\lim _{x \rightarrow x_{0}} f(x)=M$ for some $M \in \mathbb{R}$. Let $x_{n} \rightarrow 0, x_{n} \neq 0 \forall n$. Then $x_{n}+x_{0} \rightarrow x_{0}$. Since $\lim _{x \rightarrow x_{0}} f(x)=M, f\left(x_{n}+x_{0}\right) \rightarrow M$. This implies that $\lim _{x \rightarrow 0} f\left(x+x_{0}\right)=M$.
4. Suppose for every n, there exists $x_{n} \in\left(x_{0}-\frac{1}{n}, x_{0}+\frac{1}{n}\right) \cap I$ such that $f\left(x_{n}\right) \leq 0$. Then $x_{n} \rightarrow x_{0}$. Since $f\left(x_{n}\right) \rightarrow L, L \leq 0$ which is a contradiction.
5. Apply the definition of limit and Theorem 2.1 to get (i) and (ii). Theorem 2.1 and Problem 4 imply (iii).
6. It follows from the definitions that if $\lim _{x \rightarrow x_{0}} f(x)$ exists then $\lim _{x \rightarrow x_{0}^{+}} f(x)$ and $\lim _{x \rightarrow x_{0}^{-}} f(x)$ exist and are equal. To show the converse, let $\lim _{x \rightarrow x_{0}^{+}} f(x)=\lim _{x \rightarrow x_{0}^{-}} f(x)=L$ for some $L \in \mathbb{R}$. Let $\epsilon>0$. Then by Theorem 6.3, there exists $\delta_{1}>0$ and $\delta_{2}>0$ such that

$$
|f(x)-L|<\epsilon \text { whenever } x \in I, x>x_{0} \text { and } 0<\left|x-x_{0}\right|<\delta
$$

and $\quad|f(x)-L|<\epsilon$ whenever $x \in I, x>x_{0}$ and $0<\left|x-x_{0}\right|<\delta$.

Choose $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then $|f(x)-L|<\epsilon$ whenever $x \in I$, and $0<\left|x-x_{0}\right|<\delta$. This shows that $\lim _{x \rightarrow x_{0}} f(x)=L$.
7. Consider $f(0)=0$ and $f(x)=\sin \frac{1}{x}$ for $x \neq 0$.
8. Note that $f(0)<0, f(2)>0$ and $f(-8)>0$. Use the IVT for f on $[-8,0]$ and f on $[0,2]$.
9. Let $x_{1}, x_{2} \in[0,1]$ be such that $f\left(x_{1}\right)=\inf \{f(x): x \in[0,1]\}$ and $f\left(x_{2}\right)=\sup \{f(x): x \in$ $[0,1]\}$. Note that $f\left(x_{1}\right) \leq \frac{1}{3}\left(f\left(\frac{1}{4}\right)+f\left(\frac{1}{2}\right)+f\left(\frac{3}{4}\right)\right) \leq f\left(x_{2}\right)$. Apply the IVT.
10. Let g be defined by $g(x)=f(x)-x \forall x \in[0,1]$. Then $g(x)$ irrational for all $x \in[0,1]$. Because of the IVT, g cannot be continuous and hence f cannot be continuous.
11. Consider the function $g(x)=f(x+\pi)-f(x)$ and the values $g(0)$ and $g(\pi)$. Apply the IVT.
12. Consider the function $g(x)=f(x)-f\left(x+\frac{1}{2}\right)$ and the values $g(0)$ and $g\left(\frac{1}{2}\right)$. Apply the IVT.
13. Let $x_{1}, x_{2} \in[0,1]$ be such that $f\left(x_{1}\right)=\inf \{f(x): x \in[0,1]\}$ and $g\left(x_{2}\right)=\inf \{g(x): x \in$ $[0,1]\}$. Note that $f\left(x_{1}\right) \leq g\left(x_{1}\right)$ and $f\left(x_{2}\right) \geq g\left(x_{2}\right)$. Let $\varphi(x)=f(x)-g(x)$. Apply the IVT for φ.
14. (a) Suppose $f(x) \neq f(y)$ for some $x, y \in \mathbb{R}$. Find an irrational number α between $f(x)$ and $f(y)$. By the IVT, there exists $z \in(x, y)$ such that $f(z)=\alpha$ which is a contradiction.
(b) Let α be irrational. Find $r_{n} \in \mathbb{Q}$ such that $r_{n} \rightarrow \alpha$. By the continuity of $f, f\left(r_{n}\right) \rightarrow f(\alpha)$. Since each $f\left(r_{n}\right)$ is an integer, $\left(f\left(r_{n}\right)\right)$ has to be eventually a constant sequence and hence $f(\alpha)$ is an integer. So f takes only integer value for each $x \in \mathbb{R}$. By the IVT, $f(x)$ has to be a constant function.
15. Let $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ where $a_{i} \in \mathbb{R}$ for $0 \leq i \leq n, a_{n} \neq 0$ and n is odd. Then $p(x)=x^{n}\left(a_{n}+\frac{a_{n-1}}{x}+\cdots+\frac{a_{1}}{x^{n-1}}+\frac{a_{0}}{x^{n}}\right)$. If $a_{n}>0$, then $p(x) \rightarrow \infty$ as $x \rightarrow \infty$ and $p(x) \rightarrow-\infty$ as $x \rightarrow-\infty$. Hence there exists some $M>0$ such that $p(x)>0$ for all $x>M$ and $p(x)<0$ for all $x<-M$. Apply the IVT for p on $[-M, M]$.
16. Let $f(x)=\frac{1}{x^{32}}\left|x^{31}+x^{8}+20\right|-1$. Then $f(x) \rightarrow \infty$ as $x \rightarrow 0$ and $f(x) \rightarrow-1$ as $x \rightarrow \infty$. By the IVT, there exists $x_{0} \in(0, \infty)$ such that $f\left(x_{0}\right)=0$.
17. Note that $f(x) \rightarrow \infty$ as $x \rightarrow \infty$ or $x \rightarrow-\infty$. Let $\alpha>0$ be such that $\alpha>f(y)$ for some $y \in \mathbb{R}$. Then there exists $M>0$ such that $f(x)>\alpha$ for all $|x|>M$. Since f is continuous there exists x_{0} such that $f\left(x_{0}\right)=\inf \{f(x): x \in[-M, M]\}=\inf \{f(x): x \in \mathbb{R}\}$
18. Note that $f(0)=-1$ and $f(x) \rightarrow \infty$ as $x \rightarrow \infty$ or $x \rightarrow-\infty$. Apply the IVT.
19. Let x denote the distance, in kilometers, along the course. Let $f:[0,7] \rightarrow \mathbb{R}$, where $f(x)=$ time taken in minutes to cover the distance from x to $x+1$. Observe that $\sum_{i=0}^{7} f(i)=40$. Hence $f(i)<5$ or $f(i)>5$ is not possible for all $i=0$ to 7 . Therefore, there exists $i, j \in[0,7]$ such that $f(i) \leq 5 \leq f(j)$. By the IVT there exists $c \in(i, j)$ such that $f(c)=5$.
20. Case 1: Let $I=[a, b]$. Assume that $f(a)<f(b)$. Let $a<x<b$. Since f is one-one, using the IVT, it is easy to show that $f(a)<f(x)<f(b)$. Let $a<x<y<b$. Then $f(x)<f(y)$. To see this, let $f(y)<f(x)$. Then $f(y)<f(x)<f(b)$. By the IVT, there exists $x_{0} \in(y, b)$ such that $f\left(x_{0}\right)=f(x)$ which is a contradiction.
Case 2: Suppose that I is any interval and f is neither strictly increasing nor strictly decreasing. Then there exist $x_{1}, x_{2}, y_{1}, y_{2} \in I$ such that $x_{1}<x_{2}$ but $f\left(x_{1}\right) \leq f\left(x_{2}\right)$ and $y_{1}<y_{2}$ but $f\left(y_{1}\right) \geq f\left(y_{2}\right)$. Find $[a, b]$ such that $x_{1}, x_{2}, y_{1}, y_{2} \in[a, b]$ and $[a, b] \subset I$. Case I will lead to a contradiction.
21. If f is continuous, by Problem 21, f is either strictly increasing or strictly decreasing. Suppose f is strictly increasing. Since f is on-to, there exists x_{0} such that $f\left(x_{0}\right)=0$. Then $f(x)<f\left(x_{0}\right)$ for all $x<x_{0}$ which is a contradiction.
22. (a) Let $\beta=\max \left\{f(x): x \in\left[x_{1}, x_{2}\right]\right\}$. If f attains β on $\left[x_{1}, x_{2}\right]$ at more than one point, then there exists $\gamma \in(\alpha, \beta)$ such that f attains γ more than twice which is a contradiction.
(b) Suppose f attains each of its values exactly two times. Let x_{1}, x_{2}, α and β be as in (a). Since f attains β exactly once in $\left[x_{1}, x_{2}\right]$, there exits x_{0} lying outside $\left[x_{1}, x_{2}\right]$ such that $f\left(x_{0}\right)=\beta>\alpha$. Then, by the IVT, every number in (α, β) is attained by f more than twice which is a contradiction.

