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Abstract

Sparse reconstruction methods have been used extensively f
source localization over uniform linear arrays and circala
rays. In this paper a sparse reconstruction method for bpeec
source localization using partial dictionaries over a sighé
microphone array is proposed. The source localization ageth
proposed in this work addresses two important researcksssu

It formulates the source localization problem in the sptegri
harmonics domain as a sparse reconstruction problem. Sub-
sequently, a low complexity method to estimate the directio
of arrival (DOA) of multiple sources is also proposed by gsin
partial elevation angle dictionaries. The use of such aiti-

ies reduces the complexity of the search involved in the two
dimensional DOA estimation. Source localization experitae
are conducted at different SNRs and compared with conven-
tional DOA estimation methods like MUSIC and MVDR. The
experimental results obtained from the proposed methad ind
cate a reasonable reduction in the localization error.

Index Terms: DOA estimation, Sparse reconstruction, Source
localization, Spherical microphone array
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Spherical microphone arrays have become a topic of focus
among researchers in the recent past [1, 2]. There are two mai
reasons for this. Firstly, array processing can be perfdrrak
atively easily in the spherical harmonics (SH) domain witho
any spatial ambiguity [3]. Secondly, various problems can b
formulated in the SH domain which have similar structure in
the spatial domain and hence existing results can be apilied
rectly in SH domain.

Direction of arrival (DOA) estimation has proved to be one
of the widely used applications of microphone array process
There exist different methods for estimating the DOA inahgd
optimum beamforming, maximum likelihood methods [4], and

I ntroduction

rhegde}@itk.ac.in

Sparse reconstruction (SR) based methods have proved to
be more robust than the subspace based methods, mainly due to
the dictionary based searching that they employ. SR methods
have been proposed for DOA estimation using uniform linear
arrays (ULA) [8, 9] and circular arrays [10]. However, the ap
plication of SR based methods to the spherical arrays has not
been exploited much. One of the reasons for this is the fatt th
the estimation of both the azimuth and the elevation in@gas
the dictionary size, consequently it also increases theptmm
ity. The work done in [11, 12, 13] is the only available litera
ture on the concerned topic. In this work, we propose a novel
method for source localization based on partial dicticzsand
sparse reconstruction. This method hence provides a new per
spective for DOA estimation using spherical microphonaysr

The rest of the paper is organized as follows. Section 2 in-
troduces the array processing in the SH domain and describes
the proposed method. In Section 3, the proposed methodlis eva
uated. Concluding remarks are given in Section 4.

2. Sparse Reconstruction Method for
Speech Source L ocalization

Sparse reconstruction methods have been used extensively f
source localization using linear and planar arrays. buptsi-
cation to spherical arrays has not been studied to a greattext
In this section, we first introduce the signal model in theesph
ical harmonics domain. Subsequently, the proposed metirod f
multi source localization using partial dictionaries iscebed.

2.1. Signal Modé in Spherical Harmonics Domain

Consider a spherical microphone array withicrophones, ra-
diusr, and orderN. An incident sound field with wave number
k and consisting of_ far field sources is assumed. The location
of the " source is denoted b¥; = (6;, ;). The azimuthal
angle¢ € [0°,360°) is measured counter clock wise from the

subspace based methods. One of the most popular subspacepositive axis and the elevation anglee [0°,180°) is mea-

based methods is the Multiple Signal Classification (MUSIC)
[5] which uses the orthogonality of the noise subspace to the
signal subspace to estimate the DOAs. SH-MUSIC has been
proposed in [6] where the processing has been performed in
the SH domain. In [7], the authors have proposed SH-MUSIC
Group Delay (SH-MGD) for estimation of DOAs which per-
forms better than the SH-MUSIC method and is able to resolve
closely spaced sources as well. But both these methodseequi
the information of the number of sources present in order to
estimate the DOAs.

This work was funded by the SERB, Dept. of Science and Tech-
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sured down from the positive axis.

The sound pressurgy(k) = [p1(k),p2(k),...,pr(k)]",
recorded at the microphone array is given by
p(k) = V(k)s(k) + n(k) (€))

whereV (k) is thel x L steering matrix at wave numbgrs(k)
is the vector of signal amplitudesy(k) is the zero mean un-
correlated Gaussian noise with covariance matfik and(.)”
represents the transpose. The steering matrix is definestail d
in [14].

Using the Spherical Fourier Transform (SFT) [15], Equa-



tion (1) can be written in spherical harmonics domain as [14]

Prm (k,7) = B(kr) Y™ ()s(k) + npm (k) )
N, (k) = Y (®)In(k) (3)
where pnm = [po,0,P1,-1,P1,0,P1.1,---,pN.N]" is the

Fourier coefficients vectol” is the diagonal matrix contain-
ing the sampling weights [16B(kr), Y(¥) andY (®) are
defined later in this section. Her® and ® denote the angu-
lar positions of the sources and microphones respectividig.
dependence ok andr has been omitted for notational sim-
plicity. Every p,., is the SFT of the pressure received at the
microphonesp(k, r, 0, ¢). The SFT is defined as [15]

Do (k) = /0 ’ /0 " (k. 0,8)[Y7(0, 6)]" sin 6d0de
()

The spherical harmonic of orderand degreen is given by

(Zn +1)(n—

! 5)

Y. (0,9) m)! P2 (cos )e’™?

where P are the associated Legendre function gnid the
unit imaginary number. Here varies from0 to N and m
varies from0 to n. Form —n,...,—1, Y,(0,¢) =

(=)™ ™*(0, ¢). The mat;xY(‘Il) is given by
Y (@) = [yi',ys, ..y (6)
yi = [YE)O(\I,lLYI_l(‘IJl%Ylo(\Ill)7"'7Y1<7V(\Ill)] (7)

The matrixY (®) is defined similarly but withP replaced by®
which corresponds to the angular positions of the micropon
on the spherical array.

The diagonal matriB(kr) is (N + 1)?
given by

x (N +1)%andis

B(kr) = diag(bo(kr),b1(kr),bi(kr),bi(kr),. .., bN(szg)

whereb,, (kr) is the mode strength and it is defined as
for rigid sphere

bn(kr) = {
9)

wherej,, andh,, denote the spherical Bessel and Hankel func-
tions respectlvely,]n and h are their derivatives. Figure 1
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Figure 1: Mode amplitudé,, plot for open sphere as a function
of kr andn

2.2. Development of the Co-Array Framework for Source
L ocalization

The model in Equation (12) can be used to estimate the source
locations efficiently by transforming the problem into the c
array domain [17]. As(k) andn(k) are uncorrelated, the array
covariance matrix can be described by

R(k) = E{x(k)x" (k)} = A(¥)Rs(k)A" (¥) + Ruw (k)

(13)
where E{.} is the expectation operator. For un-
correlated  sources, the source covariance matrix
Rs(k) = E{s(k)s(k)} = diag(os(k)) with
os(k) [02(k),05(k),...,02(k)]*. The noise covari-
ance matrixRw (k) = o’E(k)E (k:)H whereE(k) is defined
as

E(k) =B '(kr)Y" (@)D (14)

To make use of all the information, in case of wide band
signals, frequency smoothing can be applied to Equatiop (13
The smoothed array covariance matrix can be computed as

R=—= (15)

wherefi, ..., fx denote thell wave numbers over which the
smoothing is applied. As the matrix () is frequency inde-
pendent, the model now becomes,

shows the mode strength plot for an open sphere as a function WhereR. andR., are defined as

of kr andn. Equation (2) can be multiplied B~ (kr) on the
left to get the following model
anm (k) = Y (®)s(k) + znm (k) (10)
Znm (k) = B™ (k1) (k) (11)

It is to be noted that computation &' (kr) is not always

possible in the case of an open sphere [14] and hence the rigid

sphere is used in this work. This model can now be represented
in the following standard form to apply the sparse recomstru
tion method,

x(k) = A(T)s(k) + w(k) (12)

wherex (k) is the observation vectoA (¥) = Y7 () is the
steering matrix, anev (k) = z.. (k) is the noise vector.

R =A(%)RAY(¥) + R, (16)
1 fr
== Z diag(os(k)) (17)
k=f1
1 fx
R, = 02§ gj;l E(k)E(k)" (18)

Vectorization operator can now be applied to Equation (16)
in order to transform the problem to co-array domain

v =vec(R) = [A*(¥) © A(¥)]op + [E* © Elon
=Dop + [E* ©Elon

(19)

where® is the Khatri-Rao product [17}p, is L x 1 vector
with all entries asr?, andD is the new steering matrix. The



matrix E and vectoio, are

1 fK .
E=— > E(k)E(k)

(20)
k=f1
1 fK
op =7 D os(k) (21)
k=f1
The steering matrid is described by
D=[yi ®y1,...,yL ®yL] (22)

where® denotes the Kronecker product. An overcomplete dic-
tionary, D, of all possible elevation and azimuth steering vec-
tors is constructed as

f) = [yT(éh Qzl) ® yH(§17q~51)7 M 7yT(§17 $02)®
yH(él7<502)7 s 7yT(éC17(Z;1) ®yH(éC17¢362)]

wherec; andcz denote the possible values of the elevation and
azimuth respectively. The anglégnd¢ are look up elevations
and azimuths respectively. The model in Equation 19 can now
be represented as

v =Du+ [E* ® Elo, (23)

whereu is the L—sparse vector whose non zero elements repre-
sent the source powess. Hence by locating the non zero ele-
ments inu, the DOA of the sources can be estimated by solving
the following convex minimization problem

m&n||v —Du-— [E* @E]aan + AMulx

subjecttou > 0 (24)

where the parametex > 0 is determined empirically in this
work ando,, can be estimated from the eigenvalue decomposi-
tion of R.

The size of the dictionary used in Equation (24) 1€ +
1)*x (c1c2). Hence itis very time consuming to optimize Equa-
tion (24). This is probably the reason that SR based methods
have not been used for joint elevation-azimuth estimatitfe.
propose a method which optimizes Equation (24) over partial
dictionaries instead of one huge dictionary.

2.3. Development of Partial Dictionaries based Method for
Multi Source Localization

Considerc; number of dictionaries and each such dictionary
consists of the steering vectors corresponding to all ptesaiz-
imuthal angles at a fixed elevation. Mathematically,
D;=DxJ; (25)
whereD; is the partial dictionary corresponding to elevation
andJ; is the selection matrix used to extract the columns of the
dictionary D corresponding to the elevati@h. Hence instead
of using a big dictionary, we now usg dictionaries, each of
size(N 4 1)* x c2. The optimization problem is reduced to,

min ||v — Diw; — [E* © Elon|[3 + Allui|x
subjecttou; > 0 (26)

where the optimization is performed over al= 1,2,...,c¢;.
As all the optimizations are independent of each other, tagy
be performed in parallel thereby reducing the complexity.

Let uf”* be the solution to Equation (26) and define the

error corresponding to th&" partial dictionary as follows,
e(i) = [|v — Diuf" — [E” © Elon[3 + Allu{" [ (27)
To estimate the elevation angles of the sources, we plonthe i
verse errorl/e(i), achieved in Equation (27) for eaclversus
the elevation angles. The maxima in the plot are the estanate
of the elevation angle. The sparse vectof& corresponding to
the estimated elevations are then used to estimate the twzimu
angles. It is to be noted that the proposed method does not re-
quire the information about the number of sources presdm. T
complete algorithm for source localization is described\in
gorithm 1.

Algorithm 1 Algorithm for DOA estimation using sparse re-
construction and partial dictionaries

1: Process the data received at the microphones to get the
model of Equation (12)
2: Compute the array covariance matvixhe X wave num-
bers considered as
cfork=fi,..., fk do
: R(k) = AR (k)A" + R, (k)
end for _
: Compute the smoothed array covariance malRxas
R = % Ziih R(k)
: Apply vectorization operatorjR to get Equation (19)
. Create the partial dictionaridd; Vi = 1,...,¢c1
9: Compute the sparse vectocé’,ﬂt, V partial dictionaries us-
ing Equation (26)
Compute the errors corresponding to all partial dictiogsri
by using Equation (27)
Get the elevations of the sources by locating the maxima in
the plot of1/e(i)
Get the azimuth of the sources by locating the non-zero co-
efficients in the sparse vectorg® corresponding to the
elevations in stepl(l)
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2.4. Localization of Multiple Sources

Figure 2 shows the results of the localization performed for
the three source scenario. The sources are uncorrelated and
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Figure 2: Results of source localization experiment (ay&le
tion estimation plot (b) Azimuth estimation plots for theoab
estimated elevations.



of equal powers. The angular positions of the sources are
¥, = (20°,30°), ®2 = (20°,45°), and¥5 = (75°,75°)
respectively. The signal to noise ratio (SNR) is kepi@dB.
The order of the spherical array i = 4. Figure 2(a) illus-
trates the plot of inverse error versus elevation angle. thoe
maxima located &20° and75° correspond to the elevations of
the sources. The optimal sparse vectors for the dictionane
responding to the estimated elevations are then plotteijiuré
2(b). The first plot shows azimuths at an elevatior2@f and
second plot shows azimuth at an elevatiorir6f. As the re-
sults indicate, the proposed method is able to localizecssur
efficiently.

3. Performance Evaluation

From hereon the proposed method is called the SRPD (Sparse
Reconstruction using Partial Dictionaries) method. Ekper
ments were performed on various data sets to evaluate thB SRP
method of source localization. First experiment calcdbe
probability of resolution for a two source scenario to shbe t
statistical significance of the proposed method. Secondrexp
iment shows the robustness of the SRPD method compared to
the existing ones.

z
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Figure 3: Source and microphone setup for conducting the lo-
calization experiments

3.1. Experimental Conditions

A rigid Eigen mike microphone array [18] is used for the sim-
ulations which consists 082 microphones. The radius of
the sphere isl.2 cm. The order of the microphone array is
N = 4. The dictionaries used for the experiments are cre-
ated using a resolution af for both the elevation and azimuth.
Convex optimization package CVX [19] is used for solving

3.2. Experimentson Probability of Resolution for DOA Es-
timation

To evaluate the performance of the proposed method, réswmlut
probabilities are calculated and compared with the SH-MVDR
[14] and SH-MUSIC [6] methods. The confidence interval used
is 2° wide. The results are given as a bar plot in Figure 4 at three
different SNRs. The results were obtained o¥80 indepen-
dent iterations. The height of the bars correspond to thbgaro
bility of resolution. As the results indicate, the SRPD noetis
able to resolve the sources with higher probability as caoegba

to the other two methods. It is to be noted that both SRPD and
SH-MUSIC tend to a similar performance at high SNRs.

IlSH-MVDR
[JSH-MUSIC|
lSRPD

Probability of resolution
o
=

6
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Figure 4: Comparison of probability of resolution for var®
methods at different SNRs

3.3. Experimentson RM SE Comparison

The RMSE values are computed for the SRPD method and com-
pared with the SH-MUSIC and SH-MVDR methods. The val-
ues are computed ove00 independent iterations. Figure 5
shows the results for the three different methods. The pidis

cate that the SH-MUSIC and SRPD outperform the SH-MVDR
method at low SNRs while the methods tend to have a similar
performance at high SNRs.
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Figure 5: RMSE plot for the three methods against SNR

4. Conclusion

In this work, a new method is proposed for source localiratio
using sparse reconstruction over spherical arrays. Theadet
splits a huge dictionary into several small dictionariepén-

form the localization task. Hence this method reduces the co

the Equation (26). Two uncorrelated speech sources are used putational complexity. The experiments conducted on w&io

in the experiments. The angular positions of the sources are
¥, = (30°,30°) and¥, = (60°,60°) respectively. The sen-
sor noise is considered to be white and uncorrelated Gaussia
random variable. Figure 3 depicts the experimental seted us
to conduct the following experiments.

data sets also confirm the efficacy of the proposed method and
serve as a motivation to conduct further research into thie.to
Effect of correlation among the sources and reverberatiding
environment will also be taken into consideration in theifat
work.
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