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Abstract

Sparse reconstruction methods have been used extensively for
source localization over uniform linear arrays and circular ar-
rays. In this paper a sparse reconstruction method for speech
source localization using partial dictionaries over a spherical
microphone array is proposed. The source localization method
proposed in this work addresses two important research issues.
It formulates the source localization problem in the spherical
harmonics domain as a sparse reconstruction problem. Sub-
sequently, a low complexity method to estimate the direction
of arrival (DOA) of multiple sources is also proposed by using
partial elevation angle dictionaries. The use of such dictionar-
ies reduces the complexity of the search involved in the two
dimensional DOA estimation. Source localization experiments
are conducted at different SNRs and compared with conven-
tional DOA estimation methods like MUSIC and MVDR. The
experimental results obtained from the proposed method indi-
cate a reasonable reduction in the localization error.
Index Terms: DOA estimation, Sparse reconstruction, Source
localization, Spherical microphone array

1. Introduction
Spherical microphone arrays have become a topic of focus
among researchers in the recent past [1, 2]. There are two main
reasons for this. Firstly, array processing can be performed rel-
atively easily in the spherical harmonics (SH) domain without
any spatial ambiguity [3]. Secondly, various problems can be
formulated in the SH domain which have similar structure in
the spatial domain and hence existing results can be applieddi-
rectly in SH domain.

Direction of arrival (DOA) estimation has proved to be one
of the widely used applications of microphone array processing.
There exist different methods for estimating the DOA including
optimum beamforming, maximum likelihood methods [4], and
subspace based methods. One of the most popular subspace
based methods is the Multiple Signal Classification (MUSIC)
[5] which uses the orthogonality of the noise subspace to the
signal subspace to estimate the DOAs. SH-MUSIC has been
proposed in [6] where the processing has been performed in
the SH domain. In [7], the authors have proposed SH-MUSIC
Group Delay (SH-MGD) for estimation of DOAs which per-
forms better than the SH-MUSIC method and is able to resolve
closely spaced sources as well. But both these methods require
the information of the number of sources present in order to
estimate the DOAs.
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Sparse reconstruction (SR) based methods have proved to
be more robust than the subspace based methods, mainly due to
the dictionary based searching that they employ. SR methods
have been proposed for DOA estimation using uniform linear
arrays (ULA) [8, 9] and circular arrays [10]. However, the ap-
plication of SR based methods to the spherical arrays has not
been exploited much. One of the reasons for this is the fact that
the estimation of both the azimuth and the elevation increases
the dictionary size, consequently it also increases the complex-
ity. The work done in [11, 12, 13] is the only available litera-
ture on the concerned topic. In this work, we propose a novel
method for source localization based on partial dictionaries and
sparse reconstruction. This method hence provides a new per-
spective for DOA estimation using spherical microphone arrays.

The rest of the paper is organized as follows. Section 2 in-
troduces the array processing in the SH domain and describes
the proposed method. In Section 3, the proposed method is eval-
uated. Concluding remarks are given in Section 4.

2. Sparse Reconstruction Method for
Speech Source Localization

Sparse reconstruction methods have been used extensively for
source localization using linear and planar arrays. but itsappli-
cation to spherical arrays has not been studied to a great extent.
In this section, we first introduce the signal model in the spher-
ical harmonics domain. Subsequently, the proposed method for
multi source localization using partial dictionaries is described.

2.1. Signal Model in Spherical Harmonics Domain

Consider a spherical microphone array withI microphones, ra-
diusr, and orderN . An incident sound field with wave number
k and consisting ofL far field sources is assumed. The location
of the lth source is denoted byΨl = (θl, φl). The azimuthal
angleφ ∈ [0◦, 360◦) is measured counter clock wise from the
positivex axis and the elevation angleθ ∈ [0◦, 180◦) is mea-
sured down from the positivez axis.

The sound pressure,p(k) = [p1(k), p2(k), . . . , pI(k)]
T ,

recorded at the microphone array is given by

p(k) = V(k)s(k) + n(k) (1)

whereV(k) is theI×L steering matrix at wave numberk, s(k)
is the vector of signal amplitudes,n(k) is the zero mean un-
correlated Gaussian noise with covariance matrixσ2I and(.)T

represents the transpose. The steering matrix is defined in detail
in [14].

Using the Spherical Fourier Transform (SFT) [15], Equa-



tion (1) can be written in spherical harmonics domain as [14]

pnm(k, r) = B(kr)YH(Ψ)s(k) + nnm(k) (2)

nnm(k) = Y
H(Φ)Γn(k) (3)

where pnm = [p0,0, p1,−1, p1,0, p1,1, . . . , pN,N ]T is the
Fourier coefficients vector,Γ is the diagonal matrix contain-
ing the sampling weights [16],B(kr), Y(Ψ) andY(Φ) are
defined later in this section. Here,Ψ andΦ denote the angu-
lar positions of the sources and microphones respectively.The
dependence onk and r has been omitted for notational sim-
plicity. Every pnm is the SFT of the pressure received at the
microphones,p(k, r, θ, φ). The SFT is defined as [15]

pnm(k, r) =

∫ 2π

0

∫ π

0

p(k, r, θ, φ)[Y m
n (θ, φ)]∗ sin θdθdφ

(4)
The spherical harmonic of ordern and degreem is given by

Y m
n (θ, φ) =

√

(2n+ 1)(n−m)!

4π(n+m)!
Pm
n (cos θ)ejmφ (5)

wherePm
n are the associated Legendre function andj is the

unit imaginary number. Heren varies from0 to N and m
varies from0 to n. For m = −n, . . . ,−1, Y m

n (θ, φ) =

(−1)|m|Y
|m|∗
n (θ, φ). The matrixY(Ψ) is given by

Y
H(Ψ) = [yH

1 ,yH
2 , . . . ,yH

L ] (6)

yl = [Y 0
0 (Ψl), Y

−1
1 (Ψl), Y

0
1 (Ψl), . . . , Y

N
N (Ψl)] (7)

The matrixY(Φ) is defined similarly but withΨ replaced byΦ
which corresponds to the angular positions of the microphones
on the spherical array.

The diagonal matrixB(kr) is (N +1)2 × (N +1)2 and is
given by

B(kr) = diag(b0(kr), b1(kr), b1(kr), b1(kr), . . . , bN (kr))
(8)

wherebn(kr) is the mode strength and it is defined as

bn(kr) =

{

4πjnjn(kr) for open sphere

4πjn[jn(kr)−
j
′

n
(kr)

h
′

n
(kr)

hn(kr)] for rigid sphere

(9)
wherejn andhn denote the spherical Bessel and Hankel func-
tions respectively,j

′

n and h
′

n are their derivatives. Figure 1
shows the mode strength plot for an open sphere as a function
of kr andn. Equation (2) can be multiplied byB−1(kr) on the
left to get the following model

anm(k) = Y
H(Ψ)s(k) + znm(k) (10)

znm(k) = B
−1(kr)nnm(k) (11)

It is to be noted that computation ofB−1(kr) is not always
possible in the case of an open sphere [14] and hence the rigid
sphere is used in this work. This model can now be represented
in the following standard form to apply the sparse reconstruc-
tion method,

x(k) = A(Ψ)s(k) +w(k) (12)

wherex(k) is the observation vector,A(Ψ) = YH(Ψ) is the
steering matrix, andw(k) = znm(k) is the noise vector.
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Figure 1: Mode amplitudebn plot for open sphere as a function
of kr andn

2.2. Development of the Co-Array Framework for Source
Localization

The model in Equation (12) can be used to estimate the source
locations efficiently by transforming the problem into the co-
array domain [17]. Ass(k) andn(k) are uncorrelated, the array
covariance matrix can be described by

R(k) = E{x(k)xH(k)} = A(Ψ)Rs(k)A
H(Ψ) +Rw(k)

(13)
where E{.} is the expectation operator. For un-
correlated sources, the source covariance matrix
Rs(k) = E{s(k)sH(k)} = diag(σs(k)) with
σs(k) = [σ2

1(k), σ
2
2(k), . . . , σ

2
L(k)]

T . The noise covari-
ance matrixRw(k) = σ2E(k)E(k)H , whereE(k) is defined
as

E(k) = B
−1(kr)YH(Φ)Γ (14)

To make use of all the information, in case of wide band
signals, frequency smoothing can be applied to Equation (13).
The smoothed array covariance matrix can be computed as

R̃ =
1

K

fK
∑

k=f1

R(k) (15)

wheref1, . . . , fK denote theK wave numbers over which the
smoothing is applied. As the matrixA(Ψ) is frequency inde-
pendent, the model now becomes,

R̃ = A(Ψ)R̃sA
H(Ψ) + R̃w (16)

whereR̃s andR̃w are defined as

R̃s =
1

K

fK
∑

k=f1

diag(σs(k)) (17)

R̃w = σ2 1

K

fK
∑

k=f1

E(k)E(k)H (18)

Vectorization operator can now be applied to Equation (16)
in order to transform the problem to co-array domain

v = vec(R̃) = [A∗(Ψ)⊙A(Ψ)]σp + [E∗ ⊙E]σn

= Dσp + [E∗ ⊙E]σn (19)

where⊙ is the Khatri-Rao product [17],σn is L × 1 vector
with all entries asσ2, andD is the new steering matrix. The



matrixE and vectorσp are

E =
1

K

fK
∑

k=f1

E(k)E(k)H (20)

σp =
1

K

fK
∑

k=f1

σs(k) (21)

The steering matrixD is described by

D = [yT
1 ⊗ y

H
1 , . . . ,yT

L ⊗ y
H
L ] (22)

where⊗ denotes the Kronecker product. An overcomplete dic-
tionary, D̃, of all possible elevation and azimuth steering vec-
tors is constructed as

D̃ = [yT (θ̃1, φ̃1)⊗ y
H(θ̃1, φ̃1), . . . ,y

T (θ̃1, φ̃c2)⊗

y
H(θ̃1, φ̃c2), . . . ,y

T (θ̃c1 , φ̃1)⊗ y
H(θ̃c1 , φ̃c2)]

wherec1 andc2 denote the possible values of the elevation and
azimuth respectively. The anglesθ̃ andφ̃ are look up elevations
and azimuths respectively. The model in Equation 19 can now
be represented as

v = D̃u+ [E∗ ⊙E]σn (23)

whereu is theL−sparse vector whose non zero elements repre-
sent the source powersσ2

l . Hence by locating the non zero ele-
ments inu, the DOA of the sources can be estimated by solving
the following convex minimization problem

min
u

||v − D̃u− [E∗ ⊙E]σn||
2
2 + λ||u||1

subject tou ≥ 0 (24)

where the parameterλ ≥ 0 is determined empirically in this
work andσn can be estimated from the eigenvalue decomposi-
tion of R̃.

The size of the dictionary used in Equation (24) is(N +
1)4×(c1c2). Hence it is very time consuming to optimize Equa-
tion (24). This is probably the reason that SR based methods
have not been used for joint elevation-azimuth estimation.We
propose a method which optimizes Equation (24) over partial
dictionaries instead of one huge dictionary.

2.3. Development of Partial Dictionaries based Method for
Multi Source Localization

Considerc1 number of dictionaries and each such dictionary
consists of the steering vectors corresponding to all possible az-
imuthal angles at a fixed elevation. Mathematically,

D̃i = D̃× Ji (25)

whereD̃i is the partial dictionary corresponding to elevationθ̃i,
andJi is the selection matrix used to extract the columns of the
dictionaryD̃ corresponding to the elevatioñθi. Hence instead
of using a big dictionary, we now usec1 dictionaries, each of
size(N + 1)4 × c2. The optimization problem is reduced to,

min
ui

||v − D̃iui − [E∗ ⊙E]σn||
2
2 + λ||ui||1

subject toui ≥ 0 (26)

where the optimization is performed over alli = 1, 2, . . . , c1.
As all the optimizations are independent of each other, theycan
be performed in parallel thereby reducing the complexity.

Let uopt
i be the solution to Equation (26) and define the

error corresponding to theith partial dictionary as follows,

e(i) = ||v − D̃iu
opt
i − [E∗ ⊙E]σn||

2
2 + λ||uopt

i ||1 (27)

To estimate the elevation angles of the sources, we plot the in-
verse error,1/e(i), achieved in Equation (27) for eachi versus
the elevation angles. The maxima in the plot are the estimates
of the elevation angle. The sparse vectorsu

opt
i corresponding to

the estimated elevations are then used to estimate the azimuthal
angles. It is to be noted that the proposed method does not re-
quire the information about the number of sources present. The
complete algorithm for source localization is described inAl-
gorithm 1.

Algorithm 1 Algorithm for DOA estimation using sparse re-
construction and partial dictionaries

1: Process the data received at the microphones to get the
model of Equation (12)

2: Compute the array covariance matrix∀ theK wave num-
bers considered as

3: for k = f1, . . . , fK do
4: R(k) = ARs(k)A

H +Rw(k)
5: end for
6: Compute the smoothed array covariance matrixR̃ as

R̃ = 1
K

∑fK
k=f1

R(k)

7: Apply vectorization operator tõR to get Equation (19)
8: Create the partial dictionaries̃Di ∀i = 1, . . . , c1
9: Compute the sparse vectors,u

opt
i , ∀ partial dictionaries us-

ing Equation (26)
10: Compute the errors corresponding to all partial dictionaries

by using Equation (27)
11: Get the elevations of the sources by locating the maxima in

the plot of1/e(i)
12: Get the azimuth of the sources by locating the non-zero co-

efficients in the sparse vectorsuopt
i corresponding to the

elevations in step (11)

2.4. Localization of Multiple Sources
Figure 2 shows the results of the localization performed for
the three source scenario. The sources are uncorrelated and
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Figure 2: Results of source localization experiment (a) Eleva-
tion estimation plot (b) Azimuth estimation plots for the above
estimated elevations.



of equal powers. The angular positions of the sources are
Ψ1 = (20◦, 30◦), Ψ2 = (20◦, 45◦), andΨ3 = (75◦, 75◦)
respectively. The signal to noise ratio (SNR) is kept at10dB.
The order of the spherical array isN = 4. Figure 2(a) illus-
trates the plot of inverse error versus elevation angle. Thetwo
maxima located at20◦ and75◦ correspond to the elevations of
the sources. The optimal sparse vectors for the dictionaries cor-
responding to the estimated elevations are then plotted in Figure
2(b). The first plot shows azimuths at an elevation of20◦ and
second plot shows azimuth at an elevation of75◦. As the re-
sults indicate, the proposed method is able to localize sources
efficiently.

3. Performance Evaluation

From hereon the proposed method is called the SRPD (Sparse
Reconstruction using Partial Dictionaries) method. Experi-
ments were performed on various data sets to evaluate the SRPD
method of source localization. First experiment calculates the
probability of resolution for a two source scenario to show the
statistical significance of the proposed method. Second exper-
iment shows the robustness of the SRPD method compared to
the existing ones.

Figure 3: Source and microphone setup for conducting the lo-
calization experiments

3.1. Experimental Conditions

A rigid Eigen mike microphone array [18] is used for the sim-
ulations which consists of32 microphones. The radius of
the sphere is4.2 cm. The order of the microphone array is
N = 4. The dictionaries used for the experiments are cre-
ated using a resolution of1◦ for both the elevation and azimuth.
Convex optimization package CVX [19] is used for solving
the Equation (26). Two uncorrelated speech sources are used
in the experiments. The angular positions of the sources are
Ψ1 = (30◦, 30◦) andΨ2 = (60◦, 60◦) respectively. The sen-
sor noise is considered to be white and uncorrelated Gaussian
random variable. Figure 3 depicts the experimental setup used
to conduct the following experiments.

3.2. Experiments on Probability of Resolution for DOA Es-
timation

To evaluate the performance of the proposed method, resolution
probabilities are calculated and compared with the SH-MVDR
[14] and SH-MUSIC [6] methods. The confidence interval used
is2◦ wide. The results are given as a bar plot in Figure 4 at three
different SNRs. The results were obtained over400 indepen-
dent iterations. The height of the bars correspond to the proba-
bility of resolution. As the results indicate, the SRPD method is
able to resolve the sources with higher probability as compared
to the other two methods. It is to be noted that both SRPD and
SH-MUSIC tend to a similar performance at high SNRs.
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Figure 4: Comparison of probability of resolution for various
methods at different SNRs

3.3. Experiments on RMSE Comparison

The RMSE values are computed for the SRPD method and com-
pared with the SH-MUSIC and SH-MVDR methods. The val-
ues are computed over400 independent iterations. Figure 5
shows the results for the three different methods. The plotsindi-
cate that the SH-MUSIC and SRPD outperform the SH-MVDR
method at low SNRs while the methods tend to have a similar
performance at high SNRs.
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Figure 5: RMSE plot for the three methods against SNR

4. Conclusion
In this work, a new method is proposed for source localization
using sparse reconstruction over spherical arrays. The method
splits a huge dictionary into several small dictionaries toper-
form the localization task. Hence this method reduces the com-
putational complexity. The experiments conducted on various
data sets also confirm the efficacy of the proposed method and
serve as a motivation to conduct further research into the topic.
Effect of correlation among the sources and reverberation in the
environment will also be taken into consideration in the future
work.
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