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ABSTRACT 

Formation of individual droplets at specified nucleation sites, with the area in-between these droplets essentially remaining 
dry/inactive, is one of the popularly acceptable mechanism of dropwise condensation on a hydrophobic surface. Accordingly, 
heat transfer is postulated to occur only through these individual droplets. While there are a series of thermal resistances in the 
path of condensing vapor releasing its latent heat to the cold substrate, the most dominant is the diffusional resistance of the 
liquid droplet; this necessitates accurate 3D modeling of this dominant resistance. The diffusional resistance is a strong function 
of the droplet size and its shape, the latter guided by degree of hydrophobicity of the liquid-substrate combination. Once this 
detailed information of the effect of hydrophobicity on heat transfer through individual droplets is discerned, an ensemble of 
various generations of these droplets can then be handled, to simulate the entire engineering process of quasi-steady state 
dropwise condensation. 

In the context of estimation of the diffusion resistance, 3-D Energy Equation on unstructured tetrahedral grid representing the 
individual droplets on a hydrophobic surface has been solved. Simulation parameters include the Bond Number, apparent 
contact angles (degree of hydrophobicity), liquid Prandtl numbers and degree of subcooling, has been considered to study the 
effect of these parameters on the heat transfer through individual drops. The database so generated is used to correlate the 
conduction resistance of droplets with the independent parameters by regression. These correlations are then incorporated into a 
previously developed model of complete dropwise condensation process of the authors (Sikarwar et al., 2011), to get the 
local/average heat transfer coefficient during quasi-steady state dropwise condensation process on large flat surfaces. Here, we 
also investigate the effect of nucleation site density, varied from 104/cm2 to 107/cm2. After achieving quasi-steady state dropwise 
condensation, the heat transfer rate through the drops as well as number of available nucleation sites underneath the substrate, 
for given initial site density and sub-cooling, increases as hydrophobicity increases. At any instance, more nucleation sites 
remain active on substrates having higher hydrophobicity; this too increases heat transfer. In addition, a higher site density 
decreases the minimum radius of drop required for coalescence with the neighboring droplets. This early coalescence allows 
early drop fall-off, hence exposing virgin areas for fresh nucleation for the next droplet generation. Heat transfer coefficient also 
increases in this process. Overall, we show that increasing hydrophobicity has a positive effect on heat transfer enhancement. 

INTRODUCTION 
The process of condensate condensing in form of discreet drops at isolated nucleation sites on/underneath a hydrophobic 

substrate is called as dropwise condensation. The resulting heat transfer coefficient can be up to one order of magnitude higher 
than other modes of condensation (Rose 2002). The formation of drops can be promoted by treating the surface in such as way 
that it becomes hydrophobic due to the creation of low surface energy layer. The bulk effect of this affects the equilibrium 
apparent contact angle of the liquid droplet on the substrate (Rykaczewski et al. 2011). The formation of drops on preferred 
nucleation sites, while the area between the droplets being largely inactive with respect to heat transfer is the more acceptable 
mechanism of heat transfer in dropwise mode of vapor condensation (Carey 1992). Accordingly, dropwise condensation is 
necessarily quasi-cyclic process, with a chain of intermediate processes such as initial nucleation, growth of drops by direct 
condensation, coalescence, drop instability and movement followed by fresh nucleation (Sikarwar et al. 2012a). The transient 
process of drop formation, coalescence, growth and drainage underneath a horizontal/inclined hydrophobic substrate, obtained 
from simulation as well as experiments is depicted in Figure 1 (Sikarwar et al. 2011). During dropwise condensation, initial 
growth of droplets is by direct condensation; the later stage of growth is governed by drop coalescence dynamics. There are a 
series of thermal resistances, Figure 2(a), in the path of condensing vapor releasing its latent heat to the cold substrate; the most 
dominant is the diffusional resistance of the liquid droplet (Carey 1992; Bansal et al. 2009). Therefore, eventually droplet growth 
is limited by their diffusional thermal resistance. Hence, accurate modeling of this dominant resistance is necessary to predict the 
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precise rate of condensation. The diffusional resistance is a strong function of the droplet size and its shape, the latter guided by 
degree of hydrophobicity of the liquid-substrate combination (Dietz et al. 2010). 

 

 
Figure 1 Cycle of individual processes at various time instants in condensation of vapor underneath a horizontal substrate 
(Sikarwar et al. 2011); inter-relationship shown among the distinct processes are: (i) nucleation and growth of drops at each 
nucleation site by direct vapor condensation; (ii) joint growth by direct condensation and coalescence; (iii) growth of large drops 
mainly by coalescence and smaller drops by direct condensation; and (iv) drop instability and condensate removal from the 
substrate. Fresh nucleation (step i) is initiated at the newly exposed sites. 
 

 
Figure 2 (a) Thermal resistances variation with respect to size of droplet observed in an experiment of dropwise condensation 
underneath a hydrophobic substrate (Bansal et al. 2009). (b) Schematic view of a drop of contact angle θ and radius r underneath 
a substrate with thermal resistances in the droplet growth equation, shown. Ts, is the vapor saturation temperature and Tw is the 
wall temperature (c) Computation domain of drop with tetrahedron mesh on its surface for numerical computation of heat flow 
through diffusion in drop. 
 

Many research groups (Graham and Griffith1967, Carey, 1992, Sikarwar et al. 2011, Kim and Kim 2011) have attempted the 
modeling of the diffusional droplet resistance, albeit with some approximation. Graham and Griffith (1973) modeled conduction 
resistance of liquid drops by applying an indirect approach by using the temperature drop through the droplet from the wall to 
the liquid-vapour interface. Sikarwar et al. (2011) reported that such an indirect approach leads to unacceptable estimation of the 
thermal resistance, especially for hydrophobic surfaces. Modifications were suggested to handle drops having contact angle 
more than 90o. Kim and Kim (2011) also reported that the diffusional resistance of condensate is strong function of contact 
angle. To estimate this resistance on super-hydrophobic surfaces, they introduced an approximate technique based on the 
spherical geometry of the drop and the ensuing neighbouring internal isotherms inside the drop. While it is now established that 
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the conduction resistance of the drop is the most critical heat transfer limiting entity of the series of resistances, a comprehensive 
analytical model for its estimation is not available. Most models present some approximation.  

In the present manuscript, the diffusional resistance of drop is determined by solving the 3-D Energy Equation on 
unstructured tetrahedral grid representing the individual droplets on a hydrophobic surface. A range of droplet characteristic 
dimensions (Bond Number), contact angles (degree of hydrophobicity), liquid Prandtl numbers and degree of subcooling, has 
been considered to study the effect of these parameters on the heat transfer through individual drops. The database so generated 
is used to correlate the diffusional resistance of droplets with the independent parameters by regression. These correlations are 
then incorporated into a previously developed drop population model of the authors (Sikarwar et al. 2011, 2012a), to get the 
local/average heat transfer during quasi-steady state pendant mode of drop in dropwise condensation process. Once this detailed 
information of the effect of hydrophobicity on heat transfer through individual droplets is discerned, an ensemble of various 
generations of these droplets can then be handled, to simulate the entire process on an engineering scale. Here, we have also 
investigated the effect of apparent contact angle (degree of hydrophobicity) and nucleation site density, varied from 104/cm2 to 
107/cm2, on heat transfer during dropwise condensation. 

 It is observed that after quasi-steady state dropwise condensation is achieved, the heat transfer rate through the drops as well 
as the density of small drops on the substrate, for given initial site density and degree of sub-cooling, increases as the 
hydrophobicity of the condensing substrate increases. At any instance, more nucleation sites remain active on substrates with 
higher hydrophobicity; this in turn, further increases the net heat transfer. In addition, a higher initial site density decreases the 
minimum radius of drop required for coalescence with the neighbouring droplets. This early coalescence allows early drop slide-
off, hence exposing virgin areas for fresh nucleation for the next droplet generation. Heat transfer coefficient also increases in 
this process. Overall, we show that increasing hydrophobicity has a positive effect on heat transfer.  

MODELLING OF DIFFUSIONAL RESISTANCE 
The schematic diagram of heat transfer through the single drop (for contact angle θ = 120o; volume 100µl) and its 

corresponding computational domain generated with triangular faced unstructured tetrahedron grid is shown in Figure 2 (b) (c). 
Similarly, the computational domains for other droplets in the contact angle range of 70o to 160o and size range of 1 to 140 µl are 
taken for various fluids (Pr = 0.001 to 10) in the simulations reported here. The governing equation and appropriate boundary 
condition are as: 
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The boundary conditions are as: 

1freeT T                 (2) 

2wT T                 (3) 

Hence, the effective temperature drop associated with diffusional resistance is ∆Tcond = (T1 - T2). The details of the finite volume 
parallel computing solver had been described by the authors elsewhere (Sikarwar et al. 2012b). The diffusion term is discretized 
using a 2nd order central-difference scheme. Geometry invariant features of the tetrahedral element are used so that the 
calculation of gradients at cell faces is simplified using nodal quantities of a particular variable. The discretized system of 
algebraic equations is solved by the Stabilized Bi-Conjugate Gradient method (biCGStab) with a diagonal pre-conditioner. 
Iterations within the code are run till a convergence in terms of the absolute residual of order ~10-7 is reached. In this way, the 
temperature field inside droplets and temperature gradient near the wall are determined. Then wall heat transfer through the 
condensing wall of droplet is calculated.  
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Therefore the conduction resistance per unit liquid vapour interface (K-m2/W) is as: 
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Comprehensive three-dimensional numerical simulations have been performed for various fluids, droplet shapes and contact 
angles. The heat transfer rate of individual drop is correlated in later section. This correlation is used in the present manuscript to 
determine the growth rate of drop at each nucleation site during the dropwise condensation.  In this way, an ensemble of drops of 
various sizes and generations growing on a large substrate can be handled.  

SINGLE DROP HEAT TRANSFER MODEL 
During dropwise condensation model assumed here, heat gets transferred through individual drops only. Therefore, 

determining the amount of heat transferred through a single drop is necessary in predicating the overall heat transfer by dropwise 
condensation. The first step towards developing a model of heat transfer through a single drop is to recognize all contributing 
thermal resistances between the saturated vapour and the cold condensing surface.  

For the present model, the thermal resistances are composed of the vapour-liquid interface resistance, the resistance due to 
the conduction through the drop itself, and the resistance due to the curvature of the drop.  The other resistance reported in 
literature (e.g. Rose 2002) are neglected in the present modelling. The primary novelty of the present modeling approach is the 
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way the conduction resistance has been estimated, as suggested by Eq. 5. All the other nuances of the comprehensive dropwise 
condensation model are described by the authors elsewhere (Sikarwar et al. 2011). 
Therefore, the heat transfer rate through a drop of radius r is expressed as: 
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Equation 6 demonstrates that the heat transfer rate qd varies with the drop size and the contact angle. 

 2 3( / 3) 2 3cos cos ( / )d lvq h r dr dt                (7) 

Hence, the growth rate of drop is as: 
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MODELLING OF COMPLETE DROPWISE CONDENSATION 
Atomistic modelling of drop formation in heterogeneous dropwise condensation has been carried out by Sikarwar et al. 

(2012a). The authors reported that the minimum drop radius does not provide controllability of macro-scale dropwise 
condensation at large timescales when dynamic steady-state is achieved. Therefore, drops formed at the initial nucleation site are 
assigned a minimum possible stable radius from thermodynamic considerations. The basic methodology includes random 
assignment of initial nucleation sites on which droplets of radius = rmin start growing following the derived growth rate model. 
Subsequently, a coalescence model is incorporated which continuously checks for conditions of droplet mergers with 
neighbouring drop. Criticality of size is checked with respect to slide-off or fall-off, as per the case. This re-exposes fresh 
nucleation sites where a new generation of droplets again start growing from their initial radius = rmin. Depending on the surface 
wettability condition and inclination of the substrate, the growth model, coalescence model and criticality model needs to be 
chosen and activated.  

A pendant drop underneath a flat horizontal substrate is shown in Figure 2b. The drop is considered as a portion of a sphere 
of radius r making a contact angle θ. From the geometry, the drop volume V, area of liquid-vapour interface Alv, and area of 
solid-liquid interface Asl, are given by: 
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 22 1 coslvA r                 (10) 

 2 22 1 cosslA r                 (11) 

For a specified wall sub-cooling, the smallest stable droplet size possible can be found from thermodynamic considerations as 
(Carey 1992): 
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Although the arguments leading to this equation do not include the substrate surface energy, Leach et al. (2006) and Walpot et 
al. (2006) have shown that such effects are of higher order and can be neglected for engineering calculations on the micro-scale. 
As droplets grow in size, the meso/macro scale droplet dynamics cannot neglect the bulk contact angle ensuing from the surface 
energy of the substrate. The maximum drop diameter is calculated from balancing the surface tension with the weight of the drop 
and is derived as: 
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DROPLET POPULATION AND GROWTH TRACKING ALGORITHM 
A quick outline of the numerical scheme is summarized as: (i) Initialize all variables and input the properties of condensates. 

Randomly distribute the nucleation sites on the substrate. (ii) Determine the thermodynamically possible minimum radius of 
droplets rmin and set droplets of rmin at all nucleation sites. (iii) Calculate the intermediate distance between nucleation sites and 
area of active and in-active of the substrate. (iv) Solve the growth equation by fourth order Runge-Kutta method and find out the 
new radius at each nucleation sites (v) Check for coalescences; if coalescence criterion is met, put a drop of equivalent volume 
on the mass averaged center of the respective coalescing droplets. (vi) Check the nucleation sites covered by drop and make 
them hidden sites and, in parallel, check the nucleation sites re-exposed due coalescences; put droplets of thermodynamic rmin on 
these re-exposed nucleation sites. (vii) Check the critical radius of drop fall-off (rmax) and identify all hidden sites underneath this 
droplet and make them active by supplying rmin again. (viii) Repeat (iii)-(vii) again till stopping criterion is met, i.e., the 
maximum time considered for condensation. 
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RESULTS AND DISCUSSION 
Local wall heat flux distribution at the base of the water droplets with various contact angles and various volume (1µl and 10 

µl), estimated by the single droplet transport model, are shown in Figure 3. Obtained results show that the wall heat flux is 
higher in the immediate vicinity of three-phase contact line and it decreases towards the centre of drop base. Similar qualitative 
distribution is also obtained for other drop sizes. Figure 3a shows wall heat flux transfer through two drops of different sizes 
(1µl) and (10µl) respectively, both with different contact angles. A large heat flux on the liquid-solid contact is estimated for the 
smaller drop, Figure 3(a). The wall heat flux, for a drop having a fixed volume, increase as its contact angle is increased. This is 
explained by the fact that for a fixed drop volume, a higher contact angle increases the net interfacial area. In addition, 
condensation surface covered by large number of small sized drops provides a better condensation performance than the same 
surface covered by a population of large drops. This is consistent with the results found in many previous studies (for example, a 
recent study by), which report that more condensation heat transfer occurs through small drops (Carey 1992, Leach 2006, 
Walpot 2006). The mathematical estimation of heat transfer due the diffusion in condensate drop, as given in literature (Kim and 
Kim 2012, Sikarwar et al. 2011, Graham and Griffith 1973), is compared with that calculated from Eq. 4, as depicted in Figure 
4. A more convenient and generic form to represent the entire collection of 3D-numerical data of heat transfer through a single 
drop (for drops of various sizes, shape and Prandtl numbers), the diffusion heat transfer can be casted as: 
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Figure 3 Variation of heat flux at various size and shape of water drop at temperature 303 K and temperature drop, 
(∆Tcond) = 1 K. (a) 1µl and (b) 10µl. 
 

 
Figure 4 Heat transfer (in mill-Watt) through of drop of volume of 1µl due to diffusion at various shapes (contact angle) at 
temperature 303 K and temperature drop, (∆T cond) = 1 K. 
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In the present range of simulation, the value of the constant comes out to be equal to 2.14. The length scale is taken to be the 
droplet height, ∆l. It is clear that as compared to an imaginary cuboid which fully encompasses the droplet, the nature of the 
truncated spheroidal geometry of the drop reduces the diffusional resistance of heat through it. While the overall trend of the 
present estimation of diffusional heat transfer is same as reported in the literature, it is an improved estimate as complete three-
dimensial geometry has been considered with no approximation. For small contact angle drops the present results are closer to 
those provided by Graham and Griffith (1973) while for large contact angles, the approximate estimate given by Kim and Kim 
(2011) are satisfactory.  

 
Table 1: Results of simulation of dropwise condensation of water vapor at 303 K and degree of sub-cooling 2K 

Contact 
angle 

Radius  
Initial nucleation 

sites 
Available 

nucleation sites 
First fall-

off
frequency 

Heat transfer 
coefficient

degree rmin (mm) rmax (mm) Per cm2 30mm×30mm (s) (per s) (KW/m2 –K) 

90 9.1 10-6 4.64 
106 ̴ 1100 580 155 210 
107 ̴ 1115 412 87 222

120 9.1 10-6 3.08 
106 ̴ 1955 240 98 315 
107  ̴ 1958 178 68 418 

140 9.1 10-6 2.14 
106 ̴ 3656 109 29 452 
107 ̴ 3674 88 20 502 

 

 
Figure 5 (a) Spatio-temporal drop distribution during dropwise condensation of water vapor at 303 K with sub-cooling of ∆T 
= 2 K from initial time step to first fall-off for (a) contact angle 90ᵒ, (b) contact angle 120ᵒ and (c) contact angle 140ᵒ. 

 
Figure 5 depicts the spatio-temporal drop distribution in dropwise condensation of water vapour at 300 K and degree of sub-

cooling = 2K, underneath various hydrophobic substrates, form initial nucleation (taken here = 106/cm2) to the instance of first 
drop fall-off. It is clear that the size of the drop at fall-off and the time required for fall-off, both decrease as the hydrophobicity 
of the substrate increases. Accordingly, the substrates having higher hydrophobicity result in the condensate having smaller drop 
size distributions, which results in lowering the overall diffusional resistance offered by the condensing drops; In addition 
increased hydrophobicity generates high number of available nucleation sites, at any given time, as shown in figure 4. The 
frequency of drop fall-off, size of the minimum drop, size of the maximum drop, for substrate having various degree of 
hydrophobicity, during water vapour condensation are given in Table 1. 

The area of coverage by drops at various hydrophobic substrates is shown in Figure 6a. The hydrophobicity of substrates 
decrease the area of coverage by drop, hence the higher hydrophobic substrates have higher available nucleation sites density at 
any given time of condensation, Figure 6b. Hence, the size and population of maximum drops have a significant impact on 
dropwise condensation, due to the limitations posed by the diffusional resistance. The effect of substrate hydrophobicity on heat 
transfer during the dropwise condensation is shown in Figure 6c. The apparent contact angles clearly affect the heat transfer rate. 
For a given initial nucleation site density, the heat transfer can be increased by having a contact angle higher than the 90ᵒ. As 
given in Table 1, the substrate hydrophobicity decreases the critical size (of fall-off), hence resulting in a higher population of 
small drops. Therefore, one concludes that a substrate having a high hydrophobicity with the condensate fluid is desirable in 
dropwise condensation. The available sites at any instance of time which are available for nucleation are shown in Figure 6b. 
Initially it decreases according to a power law but after reaching the dynamic steady state it varies randomly due to drops 
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coalescence and fall-off. At any given time the available nucleation sites are higher for high contact angle fluids. The effect of 
initial nucleation sites density on the heat transfer is shown in Figure 6d. A high density of nucleation sites creates large overall 
heat transfer in dropwise condensation. From the view point of the current model, a high density of nucleation sites leads to 
decreases in the size of drop before coalescence commences. This early coalescences allows virgin spaces for new initial drops, 
causing a high population of small drops. One can conclude that surface providing more initial nucleation sites is desirable for 
dropwise condensation.  
 

 
Figure 6 (a) Area of coverage versus time of condensation, (b) heat transfer fluctuation on a substrate with respect to the time 
(c) available nucleation site of substrate of 30 mm × 30 mm with respect to time for various contact angle of drop at 303 K and 
degree of sub-cooling 2 K. (d) Overall heat transfer coefficient as a function of the degree of sub-cooling with nucleation site 
density. Fluid considered is water at 303K and a contact angle 90o. 

CONCLUSIONS  
Dropwise condensation is a very efficient mode of heat transfer. The formation of drops at individual nucleation sites and 

heat transfer through these drops is the most acceptable mechanism of heat transfer during dropwise condensation. Although the 
concept of dropwise condensation was introducing more than four decades ago, comprehensive 3D model, wherein the explicit 
effect of contact angle on heat transfer and drop distribution has been incorporated. The small drops transfer higher heat as 
compared to the bigger drop per unit area. Our study reveals that the drop contact angle poses first-order effects on net heat 
transfer in dropwise condensation. Thus, the effect of contact angle on drop distribution, drop instabilities, available nucleation 
sites, and ensemble of drop needs thorough scrutiny. This manuscript fills the necessary gap in the literature by providing a 
comprehensive and easy-to-implement formulation. The main conclusions of the study are: 
(i) The contact angel affects the conduction heat transfer through the drop in a dominant way.  
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(ii)  Drop growth at each nucleation site in dropwise condensation model is modified according to the effect of contact angle 
during the drop condensation. It was shown that the smaller drop can transfer more heat per unit contact area, and heat flux 
can be increased even more with high contact angle fluids. New model of heat transfer through the conduction through the 
drop is reported.  

(iii) In addition, model results reveal that the drop size distribution is strongly dependent on the solid-fluid contact angle. Large 
number of smaller drops is observed in high contact angel substrates. This showed that the contact angle is a critical 
parameter for determining the effective maximum drop radius (the size of fall-off). Hence, contact angles reduce the size of 
departure drops, allowing more condensing surface for nucleating drops. Higher condensation rates are achieved by 
hydrophobic substrates.  

(iv) Early drop coalescence is observed in dropwise condensation on substrates which have high initial nucleation sites and 
make high contact angles with the condensing fluid. 

(v) Larger surface renewal frequencies of the superhydrophobic surface, their higher drop departure frequency and large 
available nucleation sites, lead to an increase in the heat transfer coefficient by factor of 5 ̴ 10 times than substrates with 
partial or higher wettability.  
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NOMENCLATURE 
A Surface area, m2 

Cp Specific heat at constant pressure ,W/kg K 

d Diameter of drop, m 

∆l Maximum drop height from liquid-vapour interface to condensing wall, (m) 

hlv Latent heat of vaporization, J/kg 

h Heat transfer coefficient , W/m2-K 

k Thermal conductivity of condensate, W/m-K 

q Surface heat transfer, W 

r Radius of drop, m 

T Temperature, K 

ΔT Temperature difference between the saturated vapor and condensing wall, K 

V Volume of the drop, m3 

Dimensionless quantities 

Pr Prandtl Number, µCp/k 

Bo Bond Number, ρgd2/σ 

Greek symbols 

  Inclination angle from horizontal, radian/degree 
  Dynamic viscosity, Pa-s 

  Specific volume, m3/kg 
  Density, kg/m3 

  Surface tension of liquid, N/m 

  Contact angle, radians/degree 
Subscripts 
b Base 

crit Critical 

int Interface 

free Drop free surface 

max Maximum 

min Minimum 

lv Liquid-vapor interface 

s, sat Saturation 

sl Solid-liquid interface 

v Vapor 

w Wall 
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