

Science and Technology of Heat Pipes

Historical Perspective to Contemporary Developments

Proceedings

of the

17th international heat pipe conference kanpur, india October 13 - 17, 2013

October 13 - 17, 2013 Indian Institute of Technology Kanpur

Editor

Sameer Khandekar Professor Department of Mechanical Engineering Indian Institute of Technology Kanpur Kanpur (UP) 208016 India

Celebrating

of IHPC Series

PROCEEDINGS OF THE 17^{\text{TH}} International Heat Pipe Conference Editor: Sameer Khandekar

Copyright (c) 2015 by Begell House, Inc. All rights reserved. This book, or any parts thereof, may not be reproduced in any form or by any means, or stored in a data base retrieval system, without written consent from the publisher.

This book represents information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Every reasonable effort has been made to give reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials for the consequences of their use.

ISBN: 978-1-56700-???-? Print ISBN: 978-1-56700-???-? Online

Printed in the United States of America 1 2 3 4 5 6 7 8 9 0

Organizing Committee

Patron

Prof. Dr. Indranil Manna, Director, IIT Kanpur

Local Organization Committee (IIT Kanpur)

Prof. Dr. A. K. Chaturvedi, Dean, Research and Development
Prof. Dr. P. M. Dixit, Head, Department of Mechanical Engineering
Prof. Dr. K. Balani, Department of Materials Science and Engineering
Prof. Dr. P. S. Ghoshdastidar, Department of Mechanical Engineering
Prof. Dr. Y. Joshi, Department of Chemical Engineering
Prof. Dr. P. Munshi, Department of Mechanical Engineering
Prof. Dr. K. Muralidhar, Department of Mechanical Engineering
Prof. Dr. P. K. Panigrahi, Department of Mechanical Engineering
Prof. Dr. A. K. Saha, Department of Mechanical Engineering

Conference Convener

Prof. Dr. Sameer Khandekar, Department of Mechanical Engineering

Indian National Advisory Committee

Dr. A. Ambirajan, ISRO, Bangalore Dr. J. K. Bajpai, IRDE, Dehradoon Prof. Dr. P. K. Das, IIT Kharagpur, Kharagpur Prof. Dr. J. P. Guta, RGIPT, Rae Bareli Prof. Dr. M. Pandey, IIT Guwahati, Guwahati Prof. Dr. B. C. Pillai, Karunya University, Coimbatore Mr. S. G. Markandeya, BARC, Mumbai

Committee on International Heat Pipe Conferences

Honorary Chairman Prof. Dr. M. Groll, Stuttgart, Germany Chairman Prof. Dr. Yu. Maydanik, Ekaterinburg, Russia Members Prof. Dr. J. Bonjour, Lyon, France Prof. Dr. J. H. Boo, Seoul, Korea Prof. Dr. C. A. Busse, Leggiuno, Italy Prof. Dr. P. D. Dunn, London, UK Prof. Dr. M. Katsuta, Tokyo, Japan Prof. Dr. S. Khandekar, Kanpur, India Prof. Dr. M. Mantelli, Florianopolis, Brazil Prof. Dr. J. M. Ochterbeck, Clemson, USA Prof. Dr. W. Qu, Beijing, China Prof. Dr. P. Stephan, Darmstadt, Germany Mr. W. Supper, Noordwijk, The Netherlands Prof. Dr. L. L. Vasiliev, Minsk, Belarus

CONFERENCE SPONSORS

MHRD	Ministry of Human Resource Development, Government of India
ETER COMPAREMENTS	Bhabha Atomic Research Center (BARC) Department of Atomic Energy, Government of India
	Board of Research for Nuclear Sciences (BRNS) Department of Atomic Energy, Government of India
Department of Science & Technology Ministry of Science & Technology	Department of Science and Technology Ministry of Science and Technology, Government of India
Atherm	Atherm Company
क्सरो जिसक	Indian Space Research Organization (ISRO) Department of Space, Government of India
	Indian Institute of Technology, Kanpur

F	PROCEEDINGS OF THE 17TH INTERNATIONAL HEAT PIPE CONFERENCE		
	TABLE OF CONTENTS		
KEY	NOTE LECTURES	Page	
KN1	Heat Pipe Science and Technology: A Historical Review Manfred Groll	1	
KN2	India Indian Space Mission and Advanced Heat Pipe Technologies <i>N. Prahalad Rao</i> (on request from the author, not included in the proceedings)	-	
KN3	Oscillating Menisci and Liquid Films at Evaporation/Condensation	59	
KN4	Heat Pipes: Evolution of Endless Application Opportunities Masataka Mochizuki and T. Nguyen	69	
SEC	TION 1: Heat Pipe Fundamentals and Transport Phenomena		
1	Motion of an Isolated Liquid Plug Inside a Dry Circular Capillary Vyas Srinivasan and Sameer Khandekar	79	
2	Thermally Induced Two-Phase Oscillating Flow in a Capillary Tube: Experimental Investigations Manoj Rao, Frédéric Lefèvre, Jocelyn Bonjour and Sameer Khandekar	87	
3	Investigation of Entrainment Through Folded Porous Metallic Mesh Screens Karthik Remella Siva Rama, Frank Gerner and Ahmed Shuja	95	
4	Infrared Thermography of Pulsating Taylor Bubble Train Flow in a Mini-Channel Balkrishna Mehta and Sameer Khandekar	103	
5	Enhancement of Two-Phase Boiling by Carbon Nanotube Forests Jean Antoine Gruss, Rémi Bertossi, Nadia Caney, Jean Dijon, Adeline Fournier and Philippe Marty	111	
SEC	TION 2: Conventional Heat Pipes, Thermosyphons and Special Passive-Structure	s	
6	Contribution of Fourier Series Expansion to Conventional Heat Pipe Modeling: Towards a Universal Analytical Model Stéphane Lips and Frederic Lefevre	121	
7	Development of Aluminum-Water Heat Pipes Masahiro Kuroda, Je-Young Chang, Paul Gwin, Rajiv Mongia, Choong-Un Kim, Gerald Cabusao, Kazuhiko Goto and Masataka Mochizuki	129	
8	Experimental Study of a Two-Phase Closed Thermosyphon Charged with an Immiscible Mixture Julia Fransozi Carneiro, Kênia W. Milanez, Fernando Henrique Milanese and Márcia B. H. Mantelli	137	
9	Polymer Flat Loop Thermosyphons L. P.Grakovich, M. L. Rabetsky, L. L. Vasiliev, L. L. Vasiliev Jr., S. P. Bogdanovich and S. S. Pesetskii	145	
10	Design of High Temperature Heat Pipes and Thermosyphons for Compact High Temperature Reactor (CHTR) Abhishek Basak, I.V. Dulera and P. K. Vijayan	153	
11	Visual Study of Fluid Dynamics in Wickless Transparent Heat Pipes Kate Smith, Samuel Siedel, Anthony Robinson and Roger Kempers	161	
12	Experimental Analysis of the Instabilities Effect on the Thermal Performance of a Closed Loop Two- Phase Thermosyphon Sauro Filippeschi and Alessandro Franco	169	
13	Development and Test of a "Two-Phase" Structure <i>C. Figus, M. Pauilhiac, S. Arnaud, C. Flemin, T. Bertheleon and A. Larue de Tournemine</i>	177	
14	Experimental and Theoretical Analysis of Flow and Heat Transfer Within Grooved Flat Miniature Heat Pipes Jed Mansouri, Samah Maalej and Mohamed Chaker Zaghdoudi	185	

15	Conditions of Working Ability of Pulsating Pump of Heat Action Natalia Savchenkova and Vladimir Sasin	193
16	Experimental and Theoretical Investigation of a Loop Heat Pipe/Thermosyphon Behavior in a Heat Recovery System Application Yaser Mollaei Barzi and Mohsen Assadi	199
17	Experimental Analysis of Thermophysical and Mechanical Characteristics of AlSiCp Metal Matrix Composite Purna Chandra Mishra, Manoj Ukamanal, Manasee Mishra and Susant Sahu	207
18	Thermal Network Model for Device in Flat Heat Pipe Assisted Heat Sink S. Kesav Kumar and S. N. Sridhara	213
19	Investigation of Thermogravity/Thermocapillary Effects in Rotating Heat Pipes: Prediction of Instabilities at the Liquid Film Adel Benselama, Cyril Romestant, Yves Bertin and Vincent Ayel	221
	Investigation of Thermosyphon Performance with Changing Adiabatic Section Geometry Kate Smith, Samuel Siedel, Anthony Robinson and Roger Kempers	231
21	Thermal Performance of Re-Entrant Groove Heat Pipe: Dependence on Orientation and Temperature Yasuko Shibano and Hiroyuki Ogawa	237
22	Electrical Force Effect on a Capillary Loop Two-Phase Thermosyphon P. Di Marco and S. Filippeschi	245
23	Precise Differential Mechanism, Sodium Charging Equipment and Heat Pipe Performance Wei Qu, Ai Bangcheng and Yu Jijun	253
SEC	TION 3: Loop Heat Pipes and Capillary Pumped Loops	
24	Transient Modeling of CPL for Terrestrial Application, Part A: Network Concept and Influence of Gravity on the CPL Behavior Nicolas Blet, Vincent Ayel, Yves Bertin, Cyril Romestant and Vincent Platel	263
25	Transient Modeling of CPL for Terrestrial Application, Part B: Reservoir Modeling Improvement Nicolas Blet, Vincent Ayel, Yves Bertin, Cyril Romestant and Vincent Platel	271
26	Steady-State Analytical Model of a Loop Heat Pipe Benjamin Siedel, Valérie Sartre and Frédéric Lefèvre	279
27	Experimental Comparison of Loop Heat Pipe Performance with Various Evaporator Designs S. Ouenzerfi, T. Barreteau, C. Petit, V. Sartre, J. Bonjour, R. Hodot and C. Sarno	287
28	Evaporator Heat-Transfer Analysis of a Loop Heat Pipe with Low Thermal Conductivity Wicks Masahito Nishikawara, Hosei Nagano and M. Prat	295
29	Experimental Investigations of a CPL Pressurized with NCG Inside a Centrifuge up to 10 G Vincent Dupont, Jean-Claude Legros, Stéphane Van Oost and Laurent Barremaecker	303
30	Railways Qualification Tests of a Capillary Pumped Loop on a Train Vincent Dupont, Stéphane Van Oost, Laurent Barremaecker and Sébastien Nicolau	311
31	Development and Investigation of an Improved LHP-PHP Heat-Transfer System V. G. Pastukhov and Yu. F. Maydanik	319
32	Research on Operating Parameters of Copper-Water Loop Heat Pipes with Flat Evaporator <i>M. A. Chernysheva, S. I. Yushakova and Yu. F. Maydanik</i>	327
33	3D Modeling and Optimization of a Loop Heat Pipe Evaporator Romain Hodot, Valérie Sartre, Frédéric Lefevre and Claude Sarno	335
34	Dynamic Model of Phase Change in the CPL Evaporator Riadh Boubaker, Vincent Platel and Sebastien Nicolau	343
35	Measurement of Thermal Conductivity, Pore-Size, Permeability and Coefficient of Thermal Expansion of Porous Nickel Wick for LHPS Arpana Prasad, A. R. Anand, Raghavendra Kumar, V. Ramakrishnan, Amrit Ambirajan, Dinesh Kumar and Pradip Dutta	351

SEC	TION 4: Pulsating/Oscillating Heat Pipes	
36	Infrared Thermography of a Closed Loop Pulsating Heat Pipe V. K. Karthikeyan, Sameer Khandekar and B. C. Pillai	361
37	Evaluation of the Vapor Thermodynamic State in PHP Philippe Gully, Fabien Bonnet, Vadim Nikolayev, Nicolas Luchier and Trung Quan Tran	369
38	Visualization of Flow Patterns in Flat Plate Pulsating Heat Pipe: Influence of Hydraulic Behaviour on Thermal Performances	377
39	Vincent Ayel, Cyril Romestant, Yves Bertin, Vincenzo Manno and Sauro Filippeschi On the Relevance of Local IR Visualization on Tube Walls of Pulsating Heat Pipes: A Modeling	385
	Investigation Nicolas Chauris, Jean-François Bonnenfant, Vincent Ayel, Yves Bertin and Cyril Romestant	
40	Experimental Investigation of Closed Loop Pulsating Heat Pipe Using Ammonia Fluid: Effect of Inclination	393
41	Zhihu Xue, Minghui Xie, Wei Qu, Jijun Yu and Wei Li An Experimental Investigation on the Performance of Closed Loop Pulsating Heat Pipe	401
	Nandan Saha, P. K. Sharma and P. K. Das	_
	Multi-Parametric Investigation on the Thermal Instability of a Closed Loop Pulsating Heat Pipe Mauro Mameli, Marco Marengo, Sauro Filippeschi and Vincenzo Manno	409
43	Heat Transfer Performance of Oscillating Heat Pipe by Difference of Surface Characteristics Hiroki Nagai, Takamu Kanayama and Takurou Daimaru	417
44	Visualization of Oscillating Heat Pipe under Microgravity Naoko Iwata, Hiroyuki Ogawa, Yoshiro Miyazaki and Seisuke Fukuda	425
45	Numerical Analysis of Performance of Closed-Loop Pulsating Heat Pipe Ashutosh Singh, Ashok Satapathy and Pooja Jhunjhunwala	433
46	Thermal Performance of Closed Loop Pulsating Heat Pipe: An Experimental Study with Visualization Pramod Pachghare and Ashish Mahalle	441
47	Heat Transfer Studies in a Closed Loop Pulsating Heat Pipe Bhawna Verma, V. L. Yadav and K. K.Srivastava	449
48	New Approach to Two-Phase Loop Cooling Applications for High Density Power Computing Hardware Jeehoon Choi, Byungho Sung, Yunkeun Lee, Minwhan Seo, Xuan Hung Nguyen and Chulju Kim	457
49	Ethane Two-Phase Thermal Control Hardware (HP, LHP) for Cryogenics Applications E. Turrión, J. Meléndez, D. Mishkinis and A.Torres	465
50	Performance Characteristics of Flat Plate Pulsating Heat Pipes with Mini- and Micro-channels Dong Soo Jang, Eun-Ji Lee and Yongchan Kim	473
SEC	TION 5: Space and Aerospace Applications (MHP/LHP/CPL)	
51	Experimental Study on Start-Up Behavior of Miniature Loop Heat Pipe Considering Effect of Gravity	483
52	Hiroki Nagai, Hiromichi Tamamura, Hosei Nagano and Hiroyuki Ogawa Effect of Working Fluid on 3-Port CPL Performance: An Experimental Investigation Abhijit A. Adoni, Amrit Ambirajan, Jasvanth V. S., Dinesh Kumar and Pradip Dutta	491
53	Performance Analysis and Bubble Visualization within the Evaporator of a Loop Heat Pipe Saleem M Basha, Lalit K Bansal, Saptarshi Basu and Amrit Ambirajan	499
54	Grooved and Self-Venting Arterial Heat Pipes for Space Fission Power Systems Kara Walker, Calin Tarau and William Anderson	507
55	The Application of High Temperature Heat Pipe Technique on Hypersonic Vehicle Thermal Protection Siyuan Chen, Bangcheng Ai, Jijun Yu and Wei Qu	515
56	Mini Heat Pipes Experiments Under Microgravity Conditions. What Have We Learned? Kleber Paiva, Marcia Mantelli, Juan Pablo Florez and Gustavo Nuernberg	521
57	Application of Flat Plate Heat Pipe for Cooling Spacecraft Electronics D. R. Veeresha, Ch. Simhachal Rao, M. K. Shailandran, S. G. Barve, Dinesh Kumar and Anand	531
	Kumar Sharma	

58	10 Years Experience of Operation of Loop Heat Pipes Mounted on Board "YAMAL-200" Satellite	539	
	K. Goncharov, A. Golikov, A. Basov, A. Elchin, Yu. Prochorov and B. Ovchinnikov		
59	Initial Evaluation of On-Orbit Experiment of Flat-Plate Heat Pipe 5		
	Atsushi Okamoto, Makiko Ando and Hiroyuki Sugita		
60	Application of Heat Pipes in Satellites	555	
61	Kamlesh Kumar Baraya	562	
61	Optimization of Heat Pipe Panel for Communication Spacecraft D. R. Veeresha, M. K. Shailandran, Ch. Rama Kishore, S. G. Barve, Dinesh Kumar and Anand	563	
	Kumar Sharma		
62	Experience of Space Application of Axial Groove Heat Pipes with Ω -Shape Grooves	571	
02	K. Goncharov, V. Antonov and Y. Vinokurov	071	
00			
SEC	CTION 6: Terrestrial Applications of Heat Pipes		
63	Transient Heat Transfer Characteristics of Inclined Loop- Thermosyphon-Type Heat Pipe for Solar	581	
	Collector with Changing Input Solar Heat Flux		
	Shigeki Hirasawa, Shota Sato, Tsuyoshi Kawanami and Katsuaki Shirai		
64	Air-to-Air Thermosyphon Heat Exchanger for Cabinet Cooling	589	
05	Mathieu Habert and Bruno Agostini	507	
65	Ultra-Thin High Performance Heat Pipe for Thin and Light Portable Computing Devices	597	
	Masataka Mochizuki, Thang Nguyen, Koichi Mashiko, Yuji Saito, Shahed Ahamed, Randeep Singh and Thanh Long Phan		
66	Experimental Study of a Loop Heat Pipe System for Automotive Exhaust Gas Heat Recovery	603	
00	Benjamin Reul, Tobias Düpmeier and Peter Stephan	000	
67	Loop Heat Pipe Applications in Automotive Thermal Control	611	
	Randeep Singh, Masataka Mochizuki, Yuji Saito, Tadao Yamada, Thang Nguyen, Tien Nguyen and		
	Aliakbar Akbarzadeh		
68	U-Shaped Heat Pipe Heat Exchanger for Air-Conditioning Application	619	
	Amit Sharma, Sanjeev Jain and Subhash C. Kaushik		
69	Evaporator Using Heat Pipe Heat Exchanger for a Heat Recovery System	627	
70	Luis Alonso Betancur Arboleda and Farid Chejne Janna	000	
70	Cooling of a Concentrated Photovoltaic Cell Using Heat Pipes Joon Hong Boo, Jae Hyuk Shin, Seung Shin Yi and Sang Min Kim	639	
71	Feasibility Study on the Thermal Management of Inductive Distance Sensors by a Heat Pipe	647	
	Cooling System	047	
	Rudi Kulenovic, Rainer Mertz and Steven Hartmann		
72	Development of a Heat Flux Sensor Based on Heat Pipe as Thermal Sink	655	
	A. Brusly Solomon, H. Gavisiddayya, K. Ramachandran, Pavan K. Sharma and B. C. Pillai		
73	Performance Enhancement of Two Phase Thermosyphon Solar Water Heater Using Surfactant	663	
	Sandesh Chougule, Santosh Kumar Sahu and Ashok Pise		
74	Development of Conveyor Belt Baking Ovens Assisted by Two-Phase Thermosyphon Technology	673	
75	Kênia Warmling Milanez, Fernando H. Milanez and Marcia B. H. Mantelli	004	
75	An Experimental Investigation of Phase Change Material (PCM) for Heat Management of Instruments	681	
76	Pankaj Srivastava, J. K. Bajpai, A. K. Sahani and Sameer Khandekar Thermal Defermence of a High Temperature Solar Absorber Embedded with Liquid Metal Heat	600	
76	Thermal Performance of a High-Temperature Solar Absorber Embedded with Liquid Metal Heat Pipes	689	
	Seung Shin Yi, Sang Min Kim, Yong Heak Kang and Joon Hong Boo		
	Appendix A1 – A7	697	
	Author Index	709	
	Subject Index	719	
	Sponsor Poster: Industrial Manufacturing of Porous Media and Loop Heat Pipe (Sponsor Poster)	722	
	Thomas Albertin, Jerome Coulloux and Maxime Louchart		

Foreword

International Heat Pipe Conferences (IHPC) series started in the year 1973, at Stuttgart, Germany, with specific focus on topics related to science, technology and applications of heat pipes, thermosyphons and related passive phase-change heat transfer devices/systems. The historical timeline of the conference is summarized below:

#	Location	Year
1st IHPC	Stuttgart, Germany	1973
2nd IHPC	Bologna, Italy	1976
3rd IHPC	Palo Alto, USA	1978
4th IHPC	London, UK	1981
5th IHPC	Tsukuba, Japan	1984
6th IHPC	Grenoble, France	1987
7th IHPC	Minsk, Belarus	1990
8th IHPC	Beijing, China	1992
9th IHPC	Albuquerque, USA	1995
10th IHPC	Stuttgart, Germany	1997
11th IHPC	Tokyo, Japan	1999
12th IHPC	Moscow, Russia	2002
13th IHPC	Shanghai, China	2004
14th IHPC	Florianopolis, Brazil	2007
15th IHPC	Clemson, USA	2010
16th IHPC	Lyon, France	2012
17th IHPC at Kanpur, India in 2013 Celebrating the Jubilee: 40 years of the IHPC series		

The last forty years have seen phenomenal technological growth and market penetration of heat pipe systems. The past 16 uninterrupted IHPC editions have diligently reflected this extraordinary progress. Today IHP conferences are the established primary knowledge repository of this art.

Commemorating forty years of successful organization of the International Heat Pipe Conference series, the 17th jubilee edition was held in the campus of Indian Institute of Technology Kanpur, Kanpur (UP), India, during October 13 to 17, 2013 (<u>www.iitk.ac.in/ihpc17</u>). The conference was organized by the Department of Mechanical Engineering, Indian Institute of Technology Kanpur, under the coordination of the Committee on International Heat Pipe Conferences and the local/national organization and advisory committees. The aim of the conference was to bring together experts, students, practicing engineers and industry representatives from across the world

on a common platform to share state-of-the-art information, experiences and latest developments on the science and technology of all kinds of heat pipes and passive phase-change devices and thermal systems. The main topics covered in the conference were:

- Fundamental studies on thermal and fluid-dynamic phenomena associated with passive heat pipes and closed two-phase thermosyphons, CPLs, LHPs, oscillating heat pipes, mini/micro- heat pipes, etc.
- Theoretical and experimental studies on thermosyphons and heat pipes including CPL, LHP, oscillating heat pipes, mini/micro-heat pipes, etc.
- Heat pipe and thermosyphon application in various industries, including passive heat removal, heat pipe heat exchangers, heat regenerators, vapor generators, renewable and new energy systems, etc.
- Microelectronics and power electronics thermal control applications.
- Aerospace applications of heat pipes, including spacecraft thermal control, space power systems, space experiments and high speed aircraft applications.
- Applications in manufacturing process and material processing, including new developments of wicks, fluids, materials, modeling of corrosion and life tests.
- State-of-art of heat pipe development in different countries and different fields and new ideas of heat pipe development.

It was our pleasure to welcome 130 participants from 21 countries to the campus of Indian Institute of Technology Kanpur, Kanpur, India, to participate in the jubilee conference. Now, with this publication, the deliberations of the conference will be preserved for posterity. We hope that the readers will find this publication highly useful, not only to understand and appreciate the contemporary developments through the presented papers, but also to note the seminal contributions of 'heat pipers' in thermal management of critical engineering systems and components, throughout the rich history of its development and applications.

We heartily thank the entire local as well as the international organization committee, all the sponsors, Keynote lecturers, several anonymous reviewers, participants, well-wishers and student volunteers from IIT Kanpur, without whose support organization of this event was not possible. Special thanks are also due to the entire administration of IIT Kanpur, for providing us an exemplary and memorable experience throughout our stay at the campus.

Yuri Maydanik President Committee on International Heat Pipe Conferences

Sameer Khandekar Convener 17th IHPC