

Activity Report during May 2014 to April 2019

by

Sameer Khandekar

Sir M. Visvesvaraya Chair Professor Department of Mechanical Engineering Indian Institute of Technology Kanpur Kanpur 208016

विज्ञान एवं प्रौद्योगिकी विभाग DEPARTMENT OF

BRICS

CEFIPRA

ACKNOWLEDGEMENTS

UG/PG students Colleagues/collaborators Technical staff at IITK Engineering community Friends and family

Phase-change Thermal Systems Laboratory

In this presentation

- Introduction: Liquid-vapour/gas interfacial systems
- Engineering systems involving interfacial thermo-hydrodynamics
 - Pulsating Heat Pipe
 - Loop Heat Pipe
 - Spray Cooling of LEDs
 - Enrichment of Heavy Metals
 - Nuclear Containment Safety

Space and terrestrial sector (thermal management application)

Nuclear engineering sector (Safety and strategic application)

- Experimental techniques and representative results (HSV/ IRT/ PIV/ CFM/ XRT)
- Summary and Outlook

Taylor slug flows

Sameer Khandekar

Aims and Objectives

Interface shape Interfacial heat and mass transfer Three-phase contact line dynamics Force interactions: surface, viscous, inertia, gravity Wall Transport: shear and thermal energy Interaction of interfaces **Multi-Scale Effects** Instrumentation Scaling laws Instabilities

IRT: Porous media

Sprays/Jets/Mist

High speed videography: deforming and merging interfaces

Pool Boiling

Confocal interface microscopy

Dropwise Condensation

6

Experimental research: Challenges

- Control on the boundary conditions: Heat flux/ Temperature/ Wall
- Visualization, coupled with application of boundary conditions
- Strong surface effects: repeatability of experimental data
- Instrumentation at microscale: Intrusive vs non-intrusive
- Viability and applicability of assumptions
- Purity of materials/ dissolution of gases
- Optical alignment/ Signal to noise ratio
- Thermal-hydrodynamic coupling
- Thermal conjugate effects
- Vacuum and leakage

GOAL

Local level understanding to global system development

Work undertaken on Engineering Systems with Strong Involvement of Interfacial Physics

commence

Pulsating Heat Pipe

Simple meandering capillary tube
No wick or porous structure inside it
Evacuated, filled partially with a fluid

Glass tube PHP Video

Aluminum plate PHP

Evaporator

Condenser

Loop Heat Pipe

- Highly efficient mono-porous/ bi-porous wick structure \mathbf{O}
- Excellent passive design for high heat removal \mathbf{O}
- Invented by Dr. Yuri Maydanik in Russia \mathbf{O}

Spray Impingement Cooling

Spray Cooling

Enrichment of Heavy Metals

- (a) Schematic of the reflux condensation experiment
- (b) A conical shaped reflux condensation chamber used for condensation of Bismuth
- (c) Typical condensation patterns of Bismuth on the substrate at 400°C and 20° inclination angle (Experiments: BARC, Mumbai, India)

Cooling of containment walls of nuclear reactor

Reactor Containment Safety

THYCON Facility – IIT Kanpur

- Experimentally simulating post-severe accident scenario
- Steam condensation in the presence NCGs
- Steam + Air + Hydrogen

0 = +90'

 $\Theta = +87$

Sessile Mode

 $\Theta = +45$

 $\Theta = 0^{\circ}$

Vertical Surface Pendant Mode

Sumple or DV D

Several Other Applications

Integrated electronics cooling

Gas-liquid micro-reactors

Sameer Khandekar - IITK

Transport in fuel cells

Microfluidic devices

- Compact
- High area/volume
- Better transport

edrawn from: Brivio, M., Verboom, W., & Reinhoudt, D. N. (2006). Miniaturized continuous flow saction vessels: influence on chemical reactions. Lab on a Chip, 6, p. 329.

Scaling of Forces

- Dominance of interfacial force
 - Bond number (Bo) Gravity/surface tension

$$Bo = \frac{\Delta \rho dD^2}{\sigma} < 2$$

Surface tension >> gravity

Droplet motion/ coalescence

Meniscus shape

- · Young-Laplace at equilibrium
- Capillary number (Ca) Viscous/surface tension

$$Ca = \frac{\mu V}{\sigma} < 10^{-3}$$

Surface tension >> Viscous

• Inertia

• Weber number (We) – Inertia/surface tension

$$We = \frac{\rho U^2 D}{\sigma}$$

Surface tension >> Inertia

Moving contact lines

Bubble growth

Interfacial Transport: Multi-scale Hierarchical System

Stage 1 (Atomic to Nanoscale)

→ Molecular potentials, Adatom dynamics, Cluster dynamics, surface diffusion, Stable cluster size and population density, Accommodation coefficient

Stage 2 (Nanoscale to Microscale)

→ Film stability, topography interaction, stable interfaces, pinning dynamics, wetting-dewetting dynamics, Young-Laplace condition

Stage 3 (Microscale to Macroscale)

→ Interfacial growth, coalescence, merger, interaction of surface force, body force, viscous force and inertia force, momentum flux transfer

Experimental Tools: Fluid-Thermal Laboratory

Laser confocal microscope

Thermal diffusivity system

X-Ray tomography

Infra-red camera

High-speed camera

Micro PIV

Goniometer

High Speed Videography

Two-phase Flow and Heat Transfer

Upward flow boiling patterns in a 2.0 mm tube under different input heat flux conditions

 $J_{tot} = 0.15 \text{ m/s}$

Effect of surface morphology on spray impingement

Sliding path of moving droplet in experiment and simulation

from simulation

Bubble Growth in Binary Mixtures of Aqueous Ethanol

2.0% ethanol T_{sat} = 50°C, q" = 0.046 MW/m²

25.0% ethanol T_{sat} = 50°C, q" = 0.046 MW/m²

Effect of surface roughness

Sameer Khandekar - IITK

R_a = 20 μm

Infra Red Thermography

IRT of Micro-channel Flows and Droplets

Flow patterns in a PHP

Transient Temperature Profiles and Nusselt number

J_{tot} = 0.11 m/s

Variation of wall and fluid temperature with time for Taylor bubble train flow for β = 0.384 and 0.652, respectively.

Axial variation of Nusselt number for different volume flow ratio of Taylor bubble-train flow

Loop Heat Pipe: IRT for Wick Design

(a) Schematic of loop heat pipe (b) Cross-section of evaporator and unit cell (c) Infrared imaging setup (d) Location of the evaporation front from thermography

System level thermography

Particle Image Velocimetry

PIV of single meniscus

interface for $U_{avg} = 0.166$ mm/s, (Ca = 2.27e-6):

- Enhancement in transport due to V comp.
- Away from interface, U is parabolic
- Close to the interface U-velocity reduces,
- Flow becomes 3D very near to interface
- Circulating vortices are observed behind the interface

27

Flow field and its modeling

(a) Streamlines of water plug at Ca = 1e-3 (b) Meniscus shape for various capillary tube wettability at commencement of motion (contact angle 140° for avg. velocity (U_{avg}) is = 0.038 mm/s (Ca = 5e-4))

Variation of Poiseuille number (C_{f} ·Re) experienced along the wall due to the steady meniscus motion, for the three cases of wettability respectively.

PIV of Oscillating Taylor Plug

Confocal Microscopy

Change of Mesh Wettability through Heat Treatment

untreated SS#100 mesh

8µl drop on untreated SS#100 mesh CA ~ 120°

Heat treated SS#200 mesh

Through thermal oxidation, the SS Mesh is made hydrophilic. 31

SS#200

untreated SS#200 mesh 8μl drop on untreated SS#200 mesh CA ~ 120°

The SS Mesh is inherently hydrophobic by nature.

Microstructure Growth on Heat Treatment

In untreated mesh: only primary pores are present

Mesh #100: Average pore size 148 µm Wire diameter = 94 µm Mesh #200: Average pore size 76 µm Wire diameter = 47 µm

> Metal oxide layers are usually hydrophilic and moreover, oxide structures provide secondary micro-pores Chemical+Physical

In heat treated mesh: primary as well as secondary pores due to oxide growth Wire diameter tends to increase/swelling (8-12 μm) Consequently, two length scales appear

33

Visualization of Thin-film Evaporation through Confocal Microscopy

Time evolution of menisci during evaporation in saturated screen mesh

Evaporation dynamics ? Microscale fluid flow during evaporation ?

Fluid motion during thin film evaporation in saturated screen mesh

Visualization of Thin-film Evaporation through Confocal Microscopy

Untreated SS#100 mesh

No liquid film over the wires of mesh Contact line motion on the wires Higher meniscus RoC at rupture Lesser time for complete evaporation

HT SS#100 mesh

Liquid film over the wires – secondary pore No CL motion – secondary pore –film hold up Lower meniscus RoC at rupture Longer time for complete evaporation

Evaporation Mechanism

Hydrophobic nature of untreated meshes – CL motion – No liquid at the wires Larger pore spacing in untreated meshes – High meniscus RoC at ruptures Untreated meshes take lower time to evaporate than HT mesh HT meshes – completely wetting – secondary pores – increased pore saturation

Summary and Outlook

Summary and Outlook

- Fluid-fluid and Fluid solid interfaces are ubiquitous in engineering systems
- Discerning thermo-hydrodynamics of interfaces poses challenging problems
- Local level transport is intrinsically linked with the system level performance
- Multiple-scales/physics interact manifesting a hierarchical problem definition (nano → micro → macro)
- To be meaningful, experiments require strict control of boundary conditions
- Several probing tools → effective exploitation needed to discern local physics
- Interdisciplinary skills need to be groomed in students \rightarrow cooperation/sharing
- Interesting transport physics awaits exploration and translation into products!