S. Ghorai

Feedback

This will be updated with some interesting (!) questions posed by the students.

- Q1. About the singular solution in Lecture I: $y = cx c^2$ is the general solution of $y'^2 xy' + y = 0$ and $y_s(x) = x^2/4$ is the singular solution. Suppose $z(x) = cx c^2 + x^2/4$. Now z(x) has one arbitrary constant and we can obtain $y_s(x)$ from z(x) by taking c = 0. Thus, $y_s(x)$ is a particular solution of z(x)! Why then $y_s(x)$ is called singular?
- A1. It is true that $y_s(x)$ is a particular solution of z(x). But z(x) is NOT the general solution of $y'^2 xy' + y = 0$. Verify yourself. Note that z(x) is not the general solution of the original equation because the original equation is *nonlinear*. Hence, superimposition of two solutions will be a solution does not hold for nonlinear problem. But it is definitely true for linear problems.