Lecture XI
Euler-Cauchy Equation

1 Homogeneous Euler-Cauchy equation

If the ODE is of the form

$$
\begin{equation*}
a x^{2} y^{\prime \prime}+b x y^{\prime \prime}+c y=0, \tag{1}
\end{equation*}
$$

where a, b and c are constants; then (1) is called homogeneous Euler-Cauchy equation. Two linearly independent solutions (i.e. basis) depend on the quadratic equation

$$
\begin{equation*}
a m^{2}+(b-a) m+c=0 . \tag{2}
\end{equation*}
$$

Equation (2) is called characteristic equation for (1). The ODE (1) is singular at $x=0$. Hence, we solve (1) for $x \neq 0$. We consider the case when $x>0$.

Theorem 1. (i) If the roots of (2) are real and distinct, say m_{1} and m_{2}, then two linearly independent (LI) solutions of (1) are $x^{m_{1}}$ and $x^{m_{2}}$. Thus, the general solution to (1) is

$$
y=C_{1} x^{m_{1}}+C_{2} x^{m_{2}} .
$$

(ii) If the roots of (2) are real and equal, say $m_{1}=m_{2}=m$, then two LI solutions of (1) are x^{m} and $x^{m} \ln x$. Thus, the general solution to (1) is

$$
y=\left(C_{1}+C_{2} \ln x\right) x^{m} .
$$

(iii) If the roots of (2) are complex conjugate, say $m_{1}=\alpha+i \beta$ and $m_{2}=\alpha-i \beta$, then two real LI solutions of (1) are $x^{\alpha} \cos (\beta \ln x)$ and $x^{\alpha} \sin (\beta \ln x)$. Thus, the general solution to (1) is

$$
y=x^{\alpha}\left(C_{1} \cos (\beta \ln x)+C_{2} \sin (\beta \ln x)\right) .
$$

Proof: We have seen that the trial solution for a constant coefficient equation is $e^{m x}$. Now since power of x^{m} is reduced by 1 by a differentiation, let us take x^{m} as trial solution for (1).
For convenience, (1) is written in the operator form $L(y)=0$, where

$$
L \equiv a x^{2} \frac{d^{2}}{d x^{2}}+b x \frac{d}{d x}+c .
$$

We also sometimes write L as

$$
L \equiv a x^{2} D^{2}+b x D+c,
$$

where $D=d / d x$. Now

$$
\begin{equation*}
L\left(x^{m}\right)=(a m(m-1)+b m+c) x^{m}=p(m) x^{m}, \tag{3}
\end{equation*}
$$

where $p(m)=a m^{2}+(b-a) m+c$. Thus, x^{m} is a solution of (1) if $p(m)=0$.
(i) If $p(m)=0$ has two distinct real roots m_{1}, m_{2}, then both $x^{m_{1}}$ and $x^{m_{2}}$ are solutions of (1). Since, $m_{1} \neq m_{2}$, they are also LI. Thus, the general solution to (1) is

$$
y=C_{1} x^{m_{1}}+C_{2} x^{m_{2}} .
$$

Example 1. Solve $x^{2} y^{\prime \prime}-x y^{\prime}-3 y=0$
Solution: The characteristic equation is $m^{2}-2 m-3=0 \Rightarrow m=-1,3$. The general solution is $y=C_{1} / x+C_{2} x^{3}$
(ii) If $p(m)=0$ has real equal roots $m_{1}=m_{2}=m$, then x^{m} is a solution of (1). To find the other solution, note that if m is repeated root, then $p(m)=p^{\prime}(m)=0$. This suggests differentiating (3) w.r.t. m. Since L consists of differentiation w.r.t. x only,

$$
\frac{\partial}{\partial m}\left(L\left(x^{m}\right)\right)=L\left(\frac{\partial}{\partial m} x^{m}\right)=L\left(x^{m} \ln x\right) .
$$

Now

$$
L\left(x^{m} \ln x\right)=\left(p^{\prime}(m)+p(m) \ln x\right) x^{m}
$$

where ' represents the derivative. Since, m is a repeated root, the RHS is zero. Thus, $x^{m} \ln x$ is also a solution to (1) and it is independent of x^{m}. Hence, the general solution to (1) is

$$
y=\left(C_{1}+C_{2} \ln x\right) x^{m} .
$$

(We can also use method of reduction of oder technique i.e. $y_{1}=x^{m}$ and $y_{2}=v(x) y_{1}=$ $v(x) x^{m}$. From the given ODE, we find

$$
a x^{2} v^{\prime \prime}+(2 a m+b) x v^{\prime}+\left\{a m^{2}+(b-a) m+c\right\} v=0
$$

Since $m=m_{1}=m_{2}$ is a double root, we must have $a m^{2}+(b-a) m+c=0$ and $m=-(b-a) / 2 a \Rightarrow 2 a m+b=a$. Hence,

$$
a x^{2} v^{\prime \prime}+a x v^{\prime}=0 \Rightarrow v^{\prime \prime}=-\frac{v^{\prime}}{x} \Rightarrow v^{\prime}=\frac{1}{x} \Rightarrow v=\ln x
$$

Hence $y_{2}=x^{m} \ln x$)
Example 2. Solve $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$
Solution: The characteristic equation is $m^{2}-4 m+4=0 \Rightarrow m=2,2$. The general solution is $y=\left(C_{1}+C_{2} \ln x\right) x^{2}$.
(iii) If $p(m)=0$ has complex conjugate roots, say $m_{1}=\alpha+i \beta$ and $m_{2}=\alpha-i \beta$, then two LI solutions are

$$
Y_{1}=x^{(\alpha+i \beta)}=x^{\alpha} e^{i \beta \ln x}, \quad \text { and } \quad Y_{2}=x^{\alpha} e^{-i \beta \ln x} .
$$

But these are complex valued. Note that if Y_{1}, Y_{2} are LI, then so are $y_{1}=\left(Y_{1}+Y_{2}\right) / 2$ and $y_{2}=\left(Y_{1}-Y_{2}\right) / 2 i$. Hence, two real LI solutions of (1) are $y_{1}=x^{\alpha} \cos (\beta \ln x)$ and $y_{2}=x^{\alpha} \sin (\beta \ln x)$. Thus, the general solution to (1) is

$$
y=x^{\alpha}\left(C_{1} \cos (\beta \ln x)+C_{2} \sin (\beta \ln x)\right) .
$$

Example 3. Solve $x^{2} y^{\prime \prime}-3 x y^{\prime}+5 y=0$

Solution: The characteristic equation is $m^{2}-4 m+5=0 \Rightarrow m=2 \pm i$. The general solution is $y=x^{2}\left(C_{1} \cos (\ln x)+C_{2} \sin (\ln x)\right)$
Comment 1: The solution for $x<0$ can be obtained from that of $x>0$ by replacing x by $-x$ everywhere.
Comment 2: Homogeneous Euler-Cauchy equation can be transformed to linear constant coefficient homogeneous equation by changing the independent variable to $t=\ln x$ for $x>0$.
Comment 3: This can be generalized to equations of the form

$$
a(\gamma x+\delta)^{2} y^{\prime \prime}+b(\gamma x+\delta) y^{\prime}+c y=0
$$

In this case we consider $(\gamma x+\delta)^{m}$ as the trial solution.

2 Nonhomogeneous Euler-Cauchy equation

If the ODE is of the form

$$
\begin{equation*}
a x^{2} y^{\prime \prime}+b x y^{\prime \prime}+c y=\tilde{r}(x), \tag{4}
\end{equation*}
$$

where a, b and c are constants; then (4) is called nonhomogeneous Euler-Cauchy equation. We can use the method of variation of parameters as follows. First divide (4) by $a x^{2}$ so that the coefficient of $y^{\prime \prime}$ becomes unity:

$$
\begin{equation*}
y^{\prime \prime}+\frac{b}{a x} y^{\prime \prime}+\frac{c}{a x^{2}} y=r(x), \tag{5}
\end{equation*}
$$

where $r(x)=\tilde{r}(x) / a x^{2}$. Now we already know two LI solutions y_{1}, y_{2} of the homogeneous part. Hence, the particular solution to
(4) is given by

$$
y_{p}(x)=-y_{1}(x) \int \frac{y_{2}(x) r(x)}{W\left(y_{1}, y_{2}\right)} d x+y_{2}(x) \int \frac{y_{1}(x) r(x)}{W\left(y_{1}, y_{2}\right)} d x .
$$

Thus, the general solution to (4) is

$$
y(x)=C_{1} y_{1}(x)+C_{2} y_{2}(x)+y_{p}(x) .
$$

Comment: In few cases, it can be solved also using method of undetermined coefficients. For this, we first convert it to constant coefficient liner ODE by $t=\ln x$. If the the transformed RHS is of special form then the method of undetermined coefficients is applicable.

Example 4. Consider

$$
x^{2} y^{\prime \prime}-x y^{\prime}-3 y=\frac{\ln x}{x}, \quad x>0
$$

The characteristic equation is $m^{2}-2 m-3=0 \Rightarrow m=-1,3$. Hence $y_{1}=1 / x$ and $y_{2}=x^{3}$. Hence,

$$
y_{p}(x)=y_{1}(x) u(x)+y_{2}(x) v(x)
$$

where

$$
u(x)=-\int \frac{y_{2}(x) r(x)}{W\left(y_{1}, y_{2}\right)} d x, \quad v(x)=\int \frac{y_{1}(x) r(x)}{W\left(y_{1}, y_{2}\right)} d x .
$$

Now $W\left(y_{1}, y_{2}\right)=4 x$ and $r(x)=\ln x / x^{3}$! Hence,

$$
\begin{gathered}
u(x)=-\int \frac{\ln x}{4 x} d x=-\frac{(\ln x)^{2}}{8} \\
v(x)=\int \frac{\ln x}{4 x^{5}} d x=-\frac{\ln x}{16 x^{4}}-\frac{1}{64 x^{4}}
\end{gathered}
$$

Hence,

$$
y_{p}(x)=-\frac{(\ln x)^{2}}{8 x}-\frac{\ln x}{16 x}-\frac{1}{64 x}
$$

Hence the general solution is $y=c_{1} y_{1}+c_{2} y_{2}+y_{p}$, i.e.

$$
y(x)=\frac{A}{x}+B x^{3}-\frac{(\ln x)^{2}}{8 x}-\frac{\ln x}{16 x}
$$

Note that last term of y_{p} is absorbed with y_{1}.
Aliter: Let us make the transformation $t=\ln x$. Let $y(x)=y\left(e^{t}\right)=u(t)$. Then the given transformed to

$$
\ddot{u}-2 \dot{u}-3 u=t e^{-t},
$$

where $=d / d t$. This is the same problem we have solved in lecture 9 using method of undetermined coefficients. The solution is (see lecture 9)

$$
u(t)=C_{1} e^{-t}+C_{2} e^{3 t}-\frac{t e^{-t}}{16}(2 t+1)=y\left(e^{t}\right)
$$

which in terms of original x variable becomes

$$
y(x)=\frac{C_{1}}{x}+C_{2} x^{3}-\frac{\ln x}{16 x}(2 \ln x+1),
$$

