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Lecture XI
Euler-Cauchy Equation

1 Homogeneous Euler-Cauchy equation

If the ODE is of the form
az*y” + bxy" +cy = 0, (1)

where a, b and ¢ are constants; then (1) is called homogeneous Euler-Cauchy equation.
Two linearly independent solutions (i.e. basis) depend on the quadratic equation

am?® + (b—a)m +c= 0. (2)

Equation (2) is called characteristic equation for (1). The ODE (1) is singular at x = 0.
Hence, we solve (1) for x # 0. We consider the case when z > 0.

Theorem 1. (i) If the roots of (2) are real and distinct, say my and mso, then two
linearly independent (LI) solutions of (1) are ™ and x™*. Thus, the general solution
to (1) is

y = Crx™ + Cox™2.
(i) If the roots of (2) are real and equal, say my = mg = m, then two LI solutions of
(1) are ™ and 2™ Inx. Thus, the general solution to (1) is

Yy = (Cl + CQ h’lilj’)iljm

(iii) If the roots of (2) are complex conjugate, say m; = a + i and my = o — if3,
then two real LI solutions of (1) are x®cos(BInx) and x*sin(B1Inx). Thus, the general
solution to (1) is

y =z° (01 cos(BInz) 4+ Cysin(fIn x))

Proof: We have seen that the trial solution for a constant coefficient equation is e™*.
Now since power of ™ is reduced by 1 by a differentiation, let us take x™ as trial
solution for (1).

For convenience, (1) is written in the operator form L(y) = 0, where
L= amQ(Z; + bma;i +c.
We also sometimes write L as
L = ax*D?* + bxD + c,
where D = d/dx. Now
L(z™) = (am(m —1)+bm+ c)xm = p(m)z™, (3)

where p(m) = am? + (b — a)m + c¢. Thus, ™ is a solution of (1) if p(m) = 0.
(i) If p(m) = 0 has two distinct real roots my, ms, then both ™ and 22 are solutions
of (1). Since, my # ma, they are also LI. Thus, the general solution to (1) is

y = Crx™ + Cox™2.
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Example 1. Solve 2%y" —xy' — 3y =0

Solution: The characteristic equation is m? —2m — 3 = 0 = m = —1,3. The general
solution is y = C} /x + Cya®

(ii) If p(m) = 0 has real equal roots m; = my = m, then 2™ is a solution of (1). To
find the other solution, note that if m is repeated root, then p(m) = p’(m) = 0. This
suggests differentiating (3) w.r.t. m. Since L consists of differentiation w.r.t. x only,

2 (1am) -1 (a?nm) ~ L™ Ina).
Now
L(z"nx) = (p/(m) + p(m) In I>$ma

where ' represents the derivative. Since, m is a repeated root, the RHS is zero. Thus,
2™ Inz is also a solution to (1) and it is independent of ™. Hence, the general solution
to (1) is

y=(C1+ Cylnz)z™.

(We can also use method of reduction of oder technique i.e. y; = 2™ and yo = v(z)y; =
v(xz)z™. From the given ODE, we find
az®v” + (2am + b)xv' + {am2 + (b—a)m + c} v=0

Since m = m; = my is a double root, we must have am?® + (b — a)m + ¢ = 0 and
m = —(b—a)/2a = 2am + b = a. Hence,
/

v 1
ax’" +ar =0=0"=——=v="=0v=Inz
x x

Hence yo = 2™ In x)
Example 2. Solve 2%y" — 3zy' + 4y = 0

Solution: The characteristic equation is m? —4m +4 = 0 = m = 2,2. The general
solution is y = (Cy + Cy Inx)2?.

(iii) If p(m) = 0 has complex conjugate roots, say m; = a+ i and mg = o — i3, then
two LI solutions are

Y, = plotif) _ xaeiﬁlnx’ and Y, = OBz

But these are complex valued. Note that if Y}, Y, are LI, then so are y; = (Y1 + Y2)/2
and yo = (Y7 — Y5)/2i. Hence, two real LI solutions of (1) are y; = 2 cos(fInx) and
y2 = z®sin(fInz). Thus, the general solution to (1) is

y = z“ (6’1 cos(BInz) + Cysin(SIn 95))

Example 3. Solve 2%y" — 3xy' + 5y = 0
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Solution: The characteristic equation is m? —4m +5 = 0 = m = 2 £ 4. The general
solution is y = 22 (01 cos(Inz) + Cy sin(ln ac))

Comment 1: The solution for x < 0 can be obtained from that of z > 0 by replacing
x by —x everywhere.

Comment 2: Homogeneous Euler-Cauchy equation can be transformed to linear con-
stant coefficient homogeneous equation by changing the independent variable tot = In x
for x > 0.

Comment 3: This can be generalized to equations of the form
a(yz +0)*y" + b(yx + 8y + cy = 0.

In this case we consider (yx 4 §)™ as the trial solution.

2 Nonhomogeneous Euler-Cauchy equation

If the ODE is of the form

az®y" + bry" + cy = 7(x), (4)
where a,b and ¢ are constants; then (4) is called nonhomogeneous Euler-Cauchy equa-
tion. We can use the method of variation of parameters as follows. First divide (4) by
ax? so that the coefficient of ¢ becomes unity:

b c
'+ —y" + w2l = r(z), (5)

where r(z) = 7(z)/ax?®. Now we already know two LI solutions y;, 9. of the homoge-
neous part. Hence, the particular solution to

(4) is given by

o) = —m(e) [ DN

w(o)r(a)
Y2)

dx + ya(x) W vn)

X.

Thus, the general solution to (4) is

y(x) = Cryi(z) + Coya(w) + yp().

Comment: In few cases, it can be solved also using method of undetermined coeffi-
cients. For this, we first convert it to constant coefficient liner ODE by ¢t = Inx. If the
the transformed RHS is of special form then the method of undetermined coefficients
is applicable.

Example 4. Consider

Inx
2y’ —xy — 3y = —, x> 0.
x
The characteristic equation is m? —2m —3 = 0 = m = —1,3. Hence y; = 1/x and
Yo = 2°. Hence,

(@) = yi()u(z) + ya(w)o(z)
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where
@, pare)
w@) == [ G @ = [

Now W (y1,y2) = 4z and |r(x) = Inz /2 || Hence,

Inx (In z)?
u(z) = — de =—"3
Inzx Inz 1
_ dr = — _ -
o) = | 15 = 160 aat

Hence,

(Inz)> Inx 1

wr) == = " e 6ar

Hence the general solution is y = c1y1 + caya + yp, i.c.

A (Inz)> Inx
L S _ T
y(@) x e 8z 16x

Note that last term of y, is absorbed with ;.
Aliter: Let us make the transformation ¢t = Inz. Let y(x) = y(e') = u(t). Then the
given transformed to

i — 2 — 3u = te ",

where "= d/dt. This is the same problem we have solved in lecture 9 using method of
undetermined coefficients. The solution is (see lecture 9)

te !

u(t) = Cle*t + C’ge?’t — 16

(2t +1) = y(e"),
which in terms of original z variable becomes

Inx
+ 02373 — ﬁ(2ln$ + 1),

y(r)

X



