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Lecture XIX

Laplace Transform of Periodic Functions, Convolution, Applications

1 Laplace transform of periodic function

Theorem 1. Suppose that f : [0,00) — R is a periodic function of period T > 0, i.e.
ft+T)= f(t) for allt > 0. If the Laplace transform of f exists, then

/ ' f(t)e =t dt
F(s) =22 :

1 —esT
Proof: We have
F(s) = / F(t)e—" dt
0
00 (nt1)T
=y / Flt)e st dt
n=0 v 1T

0o T
= Z/ flu+nT)e " Tdy  u=t—nT
n=0 "0
o0 T
= Z eS"T/ flu)e™*" du
n=0 0

_ ( /0 ' Flu)e du) nf%e—s”
/0 ' flu)e" du

1 —esT

The last line follows from the fact that
Z e—snT
n=0

is a geometric series with common ration e—*7 < 1 for s > 0.

Example 1. Consider f(t) = sin(wt), which is a periodic function of period 2m /w.

Solution: Using (1), we find

1 2w Jw . w 1 — e—27rs/w W
F(s) = 1—6—2”5/“"/ e " sin(wt) dt = — TP o2l 22

Example 2. Consider a saw-tooth function (see Figure 1)

t, 0<t<1,

f(t):{ fle—1), t>1.
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Figure 1: A saw-tooth function.

Solution: Here period T'= 1. Using (1), we find

1 ! l—e®(1+s) 1 e~*
F(s) = tet dt = e —
(s) 1—es /0 ‘ s2(1—es 2 s(1—e9)
Example 3. Consider the following function (see Figure 2)
t, 0<t<l,
fy=4 2-t 1<t<2

flt—2), t>2

f(t)

Figure 2: A saw-tooth function.

Solution: Here f(t) is a periodic function of period 7' = 2. Hence, using (1), we find

1 2 1 1 2

= / ft)e "t dt = =~ </ te " dt —|—/ (2—t)e ™ dt)
0 0 1

Simplifying the RHS, we find

(1 —e*)? o l—e
s2(1 —e=2)  s2(14e*)

F(s) =

F(s) = = 8—12tanh(3/2)

Aliter: Note that
1, 0<t<l,

JHOE -1, 1<t<2,
ft—=2), t>2.
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Since f’ is piecewise continuous and is of exponential order, its Laplace transform exist.
Also, f’ is periodic with period T" = 2. Hence,

! 1 ? / —st 1 ! —st ? —st (1 _6_8)2
ﬁ(f>1—e_23/0 f(t)e dt—l_e_2s (/(; e dt+/1 —€ dt)m

Hence,

1 1 1
E( f’) = ~tanh(s/2) = sF(s) = f(0) = ~ tanh(s/2) = F(s) = = tanh(s/2)
Comment: Is it possible to do similar calculations (like in aliter) in Example 27 If

not, why not?

2 Convolution

Suppose we know that a Laplace transform H(s) can be written as H(s) = F(s)G(s),
where E(f(t)) = F(s) and £<g(t)) = G(s). We need to know the relation of h(t) =

£*1<H(s)> to f(t) and g(t).

Definition 1. (Convolution) Let f and g be two functions defined in [0,00). Then
the convolution of f and g, denoted by f x g, is defined by

Fea)O)= [ e 2)
Note: It can be shown (easily) that f g = g * f. Hence,

(f*g)(t) = / )t —r)dr 3)

We use either (2) or (3) depending on which is easier to evaluate.

Theorem 2. (Convolution theorem) The convolution f * g has the Laplace trans-
form property

L((f*9)®) = F(s)G(s). (4)

OR conversely

L7 (FE)G() = (£ 5 90

Proof: Using definition, we find

£((Fra0) = [ (reamear

:/ (/f t—TdT)e_Stdt

The region of integration is the area in the first quadrant bounded by the t-axis and
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Figure 3: Effects of unit step function on a function f(¢). Here b > a.

the line 7 = t. The variable limit of integration is applied on 7 which varies from 7 = 0
to T =1.

Let us change the order of integration, thus apply variable limit on ¢. Then ¢ would
vary from ¢t = 7 to t = oo and 7 would vary from 7 = 0 to 7 = oo. Hence, we have

“(reato) - /ooo ( /TOO ¢ glt=7) dt) f(r)dr
= /OOO (/OOO e g(u) du) F(r)e=* dr, o
= ([ et ([T estoar)

= F(s)G(s)

Example 4. Consider the same problem as given in Example 4 of Lecture Note 18,
i.e. find inverse Laplace transform of 1/s(s + 1)%.

Solution: We write H(s) = F(s)G(s), where F(s) = 1/s and G(s) = 1/(s+1)?. Thus
f(t) =1 and g(t) = te~*. Hence, using convolution theorem, we find

/ft—T dT_/TG_Tdel—(t—l-l)e_t
0

Note: We have used f(t—7)g(7) in the convolution formula since f(¢) = 1. This helps
a little bit in the evaluation of the integration.

Example 5. Find inverse Laplace transform of 1/(s* + w?)%.

Solution: Let H(s) = F(s)G(s), where F(s) = 1/(s* + w?) and G(s) = 1/(s* + w?).
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Thus, f(t) = sin(wt)/w = ¢(t). Hence,

h(t) = % i sin(wr) sin(w(t — 7))dr

— % < sin(wt) — wt cos(wt)) .

3 Applications
Example 6. (Differential equation) Solve the IVP
y'+y=t  y(0)=0y(0)=2

Solution: Take Laplace transform on both sides. This gives

1 n 2
$2(s2+1)  s2+1

1
Y —24Y =5 = Y =
S

Using partial fraction, we find

1 1
Y ==
32+52+1

— y(t) =t +sint

Aliter: In the method above, we evaluated Laplace transform of the nonhomogeneous
term in the right hand side. Now here we don’t evaluate it. Let g(¢) be nonhomogeneous
term (in this case g(t) = t). Let G(s) be the Laplace transform of g. Now Take Laplace
transform on both sides. This gives

G(s) 2

2y —24Y = Y =
S + G(s) = e

Taking inverse transform and convolution, we find

t t
y(t) = / g(t —7)sin(7) dt + 2sint = y(t) = / (t — 7)sin(7) dt + 2sint
0 0
OR (using integration by parts)
y(t) =t +sint
Example 7. (Differential equation) Solve the IVP

) _ 8sint, 0<t<m, . , .
y+9y—{07 > y(0) = 0,v'(0) = 4.

Solution: Consider g(t) = 8<u0(t) — uﬂ(t)> sint. Then Laplace transform of the

nonhomogeneous term is the same as that of g(¢). Now we write g(t) as

g(t) = 8ug(t) sint + +8u,(t) sin(t — 7).
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Now taking Laplace transform of the ODE, we get
8 e "* 4 1 1

Y —4+4+9Y = 8 — Y = 8 8e 7
ST = e 210 @ r )R D219

Using partial fraction, we get

yo 4 (1 LN, (] 1
= — — e - .
5249 s24+1 s249 s2+1 s249

1 1 1
L (sint —3 sin 3t) =

$2+1 s2+9
Hence, using shifting theorem and inverse transform, we find

4 sin 3t
y(t) =

1 1
+sint — 3 sin 3t + u.(t) (sin(t —7) — 3 sin 3(t — W))

Further, this can be break up as

sin 3t + sint, 0<t <,
yt) =19 4 .
—sin 3¢, t>m,
3
Example 8. (Differential equation) (Variable coefficient) Solve the IVP
y' =2y +4y=0, y(0)=1y(0)=0

Solution: Take Laplace Transform on both sides, we find

d
2 . ] el / —
$Y — sy(0) y(0)+2d8(£(y)>+4Y 0,
OR
2 d / 2 ! S
s Y—5+2£<8Y—y(0))+4§/:0 = 25Y'+(s°4+6)Y =s = Y'+ 5+— Y =

This is linear equation. Hence,

1 )
Ys3es /4 = 3 / s3es* /1 ds +C

OR ) ”
s —4 e ?
Y= 53 +C 53
OR ,
_ 1 B i Cefs /4
s s 53

Now it can be shown by Bromwich integral method (not in the syllabus) that

c(F e
2 4 §3
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Hence, we find
x

y(t):(1—2x2)+0<;—i).

OR
y(t) = (1-C/4) +(C/2 - 2)2

Now y(0) =1 = C = 4. Hence
y(z) = (1—22%)
Comment: If we expand e **/*/s% then we find

—s2/4

e 1 1 )
=37 non-negative power of s.
S S 4s

If we assume £71(s*) =0, k=0,1,2,---, then we find

E 17_2 _1 _ 6752/4
2 4 53

Example 9. (Integral equation) Solve

¢
Yy —|—/ y(t — T)6_2Td7' =1, y(0)=1.
0

Solution: Take Laplace Transform on both sides, we find

Y 1 s+ 2

2
sY —y(0) + = = Y=—_ = Y==--—

s+2 s s(s+1)

Hence,
yt)y=2—¢"

s+1



