Lecture VII

Second order linear ODE, fundamental solutions, reduction of order
A second order linear ODE can be written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x), \quad x \in \mathcal{I}, \tag{1}
\end{equation*}
$$

where \mathcal{I} is an interval. If $r(x)=0, \forall x \in I$, then (1) is a homogeneous 2 nd order linear ODE, otherwise it is non-homogeneous. We shall assume the following existence and uniqueness theorem for (1).

Theorem 1. Let $p(x), q(x)$ and $r(x)$ be continuous in \mathcal{I}. If $x_{0} \in \mathcal{I}$ and K_{0}, K_{1} are two arbitrary real numbers, then (1) has unique solution $y(x)$ on \mathcal{I} such that $y\left(x_{0}\right)=K_{0}$ and $y^{\prime}\left(x_{0}\right)=K_{1}$.

We shall also consider the homogeneous 2 nd order linear equation

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0, \quad x \in \mathcal{I} . \tag{2}
\end{equation*}
$$

Theorem 2. Let $y_{1}(x)$ and $y_{2}(x)$ be two solutions of (2). Then $y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$ (c_{1}, c_{2} arbitrary constants) is also a solution of (2).

Proof: Trivial
Definition 1. Two function f and g are defined in \mathcal{I}. If there exists constant a, b, not both zero such that

$$
a f(x)+b g(x)=0 \quad \forall x \in \mathcal{I},
$$

then f and g are linearly dependent (LD) in \mathcal{I}, otherwise they are linearly independent (LI) in \mathcal{I}.

Example 1.

(i) $\sin x, \cos x, x \in(-\infty, \infty)$ are LI.
(ii) $x|x|, x^{2}, x \in(-1,1)$ are LI.
(iii) $x|x|, x^{2}, x \in(0,1)$ are $L D$

Definition 2. Let f and g be two differentiable functions. Then

$$
W(f, g)=\left|\begin{array}{cc}
f(x) & g(x) \\
f^{\prime}(x) & g^{\prime}(x)
\end{array}\right|=f(x) g^{\prime}(x)-g(x) f^{\prime}(x)
$$

is called the Wronskian of f and g
Note : Let f and g be differentiable. If f and g are LD in an interval \mathcal{I}, then $W(f, g)=0, \forall x \in \mathcal{I}$. Hence, if two differentiable functions f and g are such that $W(f, g) \neq 0$ at a point $x_{0} \in \mathcal{I}$, then f and g are LI.
But the converse is not true. If $W(f, g)=0, \forall x \in \mathcal{I}$, then f and g may not be LD. For example, consider $f(x)=x|x|, g(x)=x^{2}, x \in(-\infty, \infty)$. Here $W(f, g)=0, \forall x$ but still f and g are LI.

Example 2. For $f(x)=x, g(x)=\sin x$, we find $W(f, g)=x \cos x-\sin x$ which is nonzero, for example, at $x=\pi$. Hence, x and $\sin x$ are LI. Note that $W(f, g)$ may be zero at some point such as $x=0$.

Theorem 3. Two solutions y_{1}, y_{2} of (2) are LD iff $W\left(y_{1}, y_{2}\right)=0$ at certain point $x_{0} \in \mathcal{I}$.

Proof: Let y_{1}, y_{2} be LD. Thus, there exists a, b not both zero such that

$$
\begin{equation*}
a y_{1}(x)+b y_{2}(x)=0 \tag{3}
\end{equation*}
$$

We can differentiate (3) once and obtain

$$
\begin{equation*}
a y_{1}^{\prime}(x)+b y_{2}^{\prime}(x)=0 \tag{4}
\end{equation*}
$$

Now (3) and (4) can be viewed as linear homogeneous equations in two unknowns a and b. Since the solution is nontrivial, the determinant must be zero. Thus $W\left(y_{1}, y_{2}\right)=$ $0, \forall x \in \mathcal{I}$. Hence, $W\left(y_{1}, y_{2}\right)$ must be zero at $x_{0} \in \mathcal{I}$.
Conversely, suppose $W\left(y_{1}, y_{2}\right)=0$ at $x_{0} \in \mathcal{I}$. Now consider

$$
\begin{equation*}
a y_{1}\left(x_{0}\right)+b y_{2}\left(x_{0}\right)=0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
a y_{1}^{\prime}\left(x_{0}\right)+b y_{2}^{\prime}\left(x_{0}\right)=0 \tag{6}
\end{equation*}
$$

Now the determinant of the system of linear equations (in unknowns a, b) of (5) and (6) is the Wronskian $W\left(y_{1}, y_{2}\right)$ at x_{0}. Since, this is zero, we can find nontrivial solution for a and b. Take these nontrivial a and b and form

$$
y(x)=a y_{1}(x)+b y_{2}(x)
$$

By (5) and (6), we find $y\left(x_{0}\right)=y^{\prime}\left(x_{0}\right)=0$. Hence, by uniqueness theorem $y(x) \equiv 0$, i.e. for nontrivial a and b

$$
a y_{1}(x)+b y_{2}(x)=0, \quad x \in \mathcal{I}
$$

Hence y_{1}, y_{2} are LD.
Comment: This theorem says that if f and g are solutions of (2) and $W(f, g)=0$ at $x_{0} \in \mathcal{I}$, then f and g must be LD. But in Example 2, $W(f, g)=0$ at $x=0$ but still f and g are LI. Do you find any contradiction in it?

Corollary 1. Let y_{1}, y_{2} be solutions of (2). If the Wronskian $W\left(y_{1}, y_{2}\right)=0$ at $x_{0} \in I$, then $W\left(y_{1}, y_{2}\right)=0 \forall x \in \mathcal{I}$.

Proof: We proceed as in the converse part of the previous theorem to prove that y_{1} and y_{2} are LD. Now proceed as in the first part of the same theorem to prove that $W\left(y_{1}, y_{2}\right)=0, \forall x \in \mathcal{I}$.
Aliter: Since y_{1} and y_{2} are solutions of (2), we obtain

$$
\begin{array}{r}
y_{1}^{\prime \prime}+p(x) y_{1}^{\prime}+q(x) y_{1}=0 \\
y_{2}^{\prime \prime}+p(x) y_{2}^{\prime}+q(x) y_{2}=0 . \tag{8}
\end{array}
$$

Multiply (7) by y_{2} and (8) by y_{1} and subtract. This leads to

$$
\frac{d W}{d x}+p(x) W=0
$$

where we have used the short notation W for $W\left(y_{1}, y_{2}\right)$. Integrating, we find

$$
W(x)=C e^{-\int p(x) d x}
$$

Since $W\left(x_{0}\right)=0$, this gives $C=0$ and hence $W \equiv 0$.
Theorem 4. Let y_{1}, y_{2} be solutions of (2). If there exists a point $x_{0} \in \mathcal{I}$ such that $W\left(y_{1}, y_{2}\right) \neq 0$ at x_{0}, then y_{1} and y_{2} are LI and forms a basis solution for (2).

Proof: If y_{1} are y_{2} are LD , then $W\left(y_{1}, y_{2}\right) \equiv 0$ which contradicts $W\left(y_{1}, y_{2}\right) \neq 0$ at x_{0}. Hence, y_{1} and y_{2} are LI.
Now we shall show that y_{1} and y_{2} spans the solution space for (2). Let y be any solution with $y\left(x_{0}\right)=K_{0}$ and $y^{\prime}\left(x_{0}\right)=K_{1}$. Now, the system

$$
\begin{aligned}
& a y_{1}\left(x_{0}\right)+b y_{2}\left(x_{0}\right)=K_{0} \\
& a y_{1}^{\prime}\left(x_{0}\right)+b y_{2}^{\prime}\left(x_{0}\right)=K_{1}
\end{aligned}
$$

has unique solution $a=c_{1}$ and $b=c_{2}$, since the determinant is nonzero. Let $\zeta(x)=$ $c_{1} y_{1}(x)+c_{2} y_{2}(x)$. Then, $\zeta\left(x_{0}\right)=K_{0}, \zeta^{\prime}\left(x_{0}\right)=K_{1}$. But by the existence and uniqueness theorem, we have $y(x) \equiv \zeta(x)$ and thus

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x), \quad \forall x \in \mathcal{I}
$$

Hence, y_{1} and y_{2} spans the solution space. Thus, y_{1} and y_{2} form a basis of solution for (2). Thus, a general solution $y(x)$ of (2) can be written as

$$
y(x)=A y_{1}(x)+B y_{2}(x),
$$

where A and B are arbitrary constants. For an IVP, these constants take particular values to satisfy the initial condition.
Existence of basis: By the existence and uniqueness theorem, there exists a solution $y_{1}(x)$ of (2) with $y_{1}\left(x_{0}\right)=1, y_{1}^{\prime}\left(x_{0}\right)=0$. Similarly, there exists a solution $y_{2}(x)$ of (2) with $y_{2}\left(x_{0}\right)=0, y_{2}^{\prime}\left(x_{0}\right)=1$. Hence, $W\left(y_{1}, y_{2}\right)=1 \neq 0$ at x_{0}. By the previous, theorem y_{1} and y_{2} form a basis solution for (2).

Example 3. $y_{1}(x)=\sin x$ and $y_{2}(x)=\cos x$ satisfy $y^{\prime \prime}+y=0$ and $W\left(y_{1}, y_{2}\right)=-1 \neq 0$. Hence, $\sin x$ and $\cos x$ form a basis of solution for $y^{\prime \prime}+y=0$. Thus, a general solution of $y^{\prime \prime}+y=0$ is $y(x)=C_{1} \sin x+C_{2} \cos x$.

Reduction of order: Consider the homogeneous 2nd order linear equation

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 . \tag{9}
\end{equation*}
$$

If we know one nonzero solution $y_{1}(x)$ (by any method) of (9), then it is easy to find the second solution $y_{2}(x)$ which is independent of y_{1}. Thus, y_{1} and y_{2} will form a basis of solution.
We assume that $y_{2}(x)=v(x) y_{1}(x)$, where $v(x)$ is an unknown function. Since, y_{2} is a solution, we substitute $y_{2}(x)=v(x) y_{1}(x)$ into (9). Taking into account the fact that y_{1} is also a solution of (9), we find

$$
y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0 .
$$

Dividing this by y_{1} and writing U for v^{\prime}, we get

$$
U^{\prime}+\left(\frac{2 y_{1}^{\prime}}{y_{1}}+p\right) U=0
$$

Since this is linear equation, it has general solution

$$
U=\frac{C}{y_{1}^{2}} e^{-\int p d x}
$$

where C is a constant of integration. Thus, we find

$$
v(x)=C \int \frac{1}{y_{1}^{2}} e^{-\int p d x}+D,
$$

where D is another constant of integration. Finally, multiply v by y_{1} to find y_{2} :

$$
y_{2}(x)=C y_{1}(x) \int \frac{1}{y_{1}^{2}} e^{-\int p d x}+D y_{1}(x) .
$$

Since, we are looking for a solution independent of y_{1}, this can be taken with $C=1$ and $D=0$. Thus

$$
y_{2}(x)=y_{1}(x) \int \frac{1}{y_{1}^{2}} e^{-\int p d x} .
$$

To show that they are LI, note that

$$
W\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=y_{1}^{2} v^{\prime}=y_{1}^{2} U=e^{-\int p d x} \neq 0 .
$$

Thus, y_{1} and y_{2} form a basis of solution.
Example 4. Solve $x y^{\prime \prime}+(2 x+1) y^{\prime}+(x+1) y=0$
Solution: Since at $x=0$, the equation becomes singular, we solve the above for $x \neq 0$. WLOG, we assume that $x>0$. Clearly, $y_{1}(x)=e^{-x}$ is a solution. We write this equation as

$$
y^{\prime \prime}+\left(2+\frac{1}{x}\right) y^{\prime}+\frac{x+1}{x} y=0 .
$$

Hence, $p(x)=2+1 / x$. Substituting $y_{2}(x)=v(x) y_{1}(x)$ and solving we find

$$
v(x)=\int \frac{1}{e^{-2 x}} \exp \left(-\int(2+1 / x) d x\right)=\ln x
$$

Hence, $y_{2}(x)=e^{-x} \ln x$. Thus, the general solution is $y(x)=e^{-x}\left(C_{1}+C_{2} \ln x\right), \quad x>0$. What is the general solution for $x<0$?

