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Abstract

The simultaneous prediction of average and actual values of study variable

in a linear regression model is considered in this paper. Generally, either of the

ordinary least squares estimator or Stein-rule estimators are employed for the

construction of predictors for the simultaneous prediction. A linear combination

of ordinary least squares and Stein-rule predictors are utilized in this paper to

construct an improved predictors. Their efficiency properties are derived using the

small disturbance asymptotic theory and dominance conditions for the superiority

of predictors over each other are analyzed.

1



1 Introduction:

Traditionally the predictions from a linear regression model are made either for the

actual values of study variable or for the average values. However, this may not be

the case in many practical situations and one may be required to predict both the

actual and average values of the study variable simultaneously; see, e.g. Rao et al.

(2008), Shalabh (1995), and Zellner (1994). As an illustrative example, consider a

new drug that promotes the duration of sleep in human beings. The manufacturer

of such a drug will be more interested in knowing the average increase in the sleep

duration by a specific dose, for example, in designing an advertisement or sale

campaign and somewhat less interested in the actual increase of sleep duration. On

the other strand, a user may be more interested in knowing the actual increase in

sleep duration rather than the average duration. Suppose the statistician utilizes

the theory of regression analysis for prediction. It is expected from the statistician

to safeguard the interest of both the manufacturer and user who are interested

in the prediction of the average and actual increase, respectively, although they

may assign varying weight to prediction of actual and average increases of sleep

attributable to the specific dose of new drug. The classical theory of prediction

can predict either the actual value or the average value of study variable but not

simultaneously.

In view of the importance of simultaneous prediction of actual and average

values of study variable in a linear regression model, Shalabh (1995), see also

Rao et al. (2008), has presented a framework for the simultaneous prediction of

actual and average values of study variable. Shalabh (1995) has examined the

efficiency properties of predictions arising from least squares and Stein-rule esti-

mation procedures. The work on the issue of simultaneous prediction has been

extended in various directions from various perspectives in different models in

the literature. Toutenburg and Shalabh (2000), Shalabh and Chandra (2002),

2



and Dube and Manocha (2002) analyzed the simultaneous prediction in restricted

regression model, Chaturvedi and Singh (2000) and Chaturvedi et al. (2008) em-

ployed Stein-rule estimators for simultaneous prediction; Chaturvedi et al. (2002)

discussed the issue of simultaneous prediction in a multivariate set up with an un-

known covariance matrix of disturbance vector; Shalabh et al. (2008) considered

the simultaneous prediction in measurement error models etc. In all such works,

either the ordinary least squares (OLS) predictor or the Stein-rule (SR) predictor

are utilized for predicting the actual and average values of study variable. They

provide more efficient predictions under certain conditions depending on whether

they are used for actual or average value predictions. So a natural question arises

that can we utilize the good properties of the two predictors and obtain an im-

proved estimator? Based on this, we have utilized the OLS and SR predictors

together and have proposed two predictors in this paper. Their efficiency proper-

ties are derived and analyzed. The small disturbance asymptotic theory is utilized

to derive the efficiency properties and dominance conditions for the superiority of

predictors over each other are derived and analyzed.

The plan of this paper is as follows. Section 2 provides these predictions

and presents their motivation. Their properties are analyzed in Sections 3 and 4

employing the small disturbance asymptotic theory. Some concluding remarks are

placed in Section 5. Finally, derivation of main results is outlined in Appendix.

2 Model Specification And Predictions:

Let us postulate the following linear regression model:

y = Xβ + u (2.1)

where y is a n×1 vector of n observations on the study variable, X is a n×pmatrix

of n observations on p(> 2) explanatory variables, β is a p×1 vector of p regression
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coefficients and u is a n×1 vector of disturbances following a multivariate normal

distribution with mean vector 0 and variance covariance matrix σ2In.

It is assumed that the scalar σ2 is unknown and the matrix X has full column

rank.

When the simultaneous prediction of average values Av = E(y) and actual

values Ac = y within the simple is to be considered, we may define our target

function as

T = λAv + (1− λ)Ac (2.2)

where λ is a nonstochastic scalar between 0 and 1; see Shalabh (1995), Rao et

al. (2008). The value of λ may reflect the weight being given to the prediction of

average values in relation to the prediction of actual values.

The least squares estimator of β is given by

bL = (X ′X)−1X ′y (2.3)

which is the best linear unbiased estimator of β. Sometimes the properties like

linearity and unbiasedness may not be desirable. Under such situation, it may be

possible to obtain an estimator with reduced variability by relaxing the properties

of linearity and unbiasedness. The family of Stein-rule estimators gives rise to

such estimators. The Stein-rule estimator of β is defined by

bS =

[
1− 2(p− 2)k

(n− p+ 2)
.
y′H̄y

y′Hy

]
bL (2.4)

where H = X(X ′X)−1X, H̄ = (I −H) and k is any positive nonstochastic scalar;

see, e.g., Judge and Bock (1978), Saleh(2006).

Based on (2.3) and (2.4), predictions for the values of the study variable

are obtained by XbL and XbS which can be used for both the average values

Av = E(y) as well as actual values Ac = y.
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For both the components Av and Ac of T defined by (2.2), we may use XbL

so that the vector of predictions for T is given by

TLL = XbL. (2.5)

Similarly, if we employ XbS for both Av and Ac, we find the vector of predic-

tions as

TSS = Xbs

=

[
1− 2(p− 2)k

(n− p+ 2)
.
y′H̄y

y′Hy

]
XbL. (2.6)

On the other hand, if we use XbL for Ac and XbS for Av in T , we get the

vector of predictions as

TSL = λXbS + (1− λ)XbL

=

[
1− 2(p− 2)λk

(n− p+ 2)
.
y′H̄y

y′Hy

]
bL. (2.7)

Similarly, utilizing XbL for Av and XbS for Ac in T , we find yet another vector

of predictions

TLS = λXbL + (1− λ)XbS

=

[
1− 2(p− 2)(1− λ)k

(n− p+ 2)
.
y′H̄y

y′Hy

]
bL. (2.8)

Our motivation underlying the formulation of (2.7) and (2.8) is as follows.

If we compare XbL and XbS with respect to the criterion of total mean squared

error, it is well known that XbL is superior to XbS for all positive values of k when

the aim is to predict Ac (the actual values of study variable ). When the aim is

to predict Av (the average values of study variable), XbS is superior to XbL for

positive values of k below one. Thus if we use superior predictions, i.e., XbL for

Ac and XbS for Av in T defined by (2.3), we get TSL. Conversely, if we consider

predictions, i.e. XbL for AV and XbS for Ac, it leads to TLS.
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Looking at the expressions in (2.5), (2.6), (2.7) and (2.8). We may define a

family of predictions for T as follows:

Pg =

[
1− 2(p− 2)gk

(n− p+ 2)
.
y′H̄y

y′Hy

]
XbL (2.9)

where 0 ≤ g ≤ 1 is any nonstochastic scalar characterizing the predictions.

Notice that assigning values 0, 1, λ and (1−λ) to g in (2.9) yield TLL, TSS, TSL

and TLS respectively.

Next, let us consider the problem of prediction outside the sample. For this

purpose, let us assume to be given a matrix Xf of m (e.g., future) values of

explanatory values corresponding to which the values of study variable are to be

predicted. Further, we assume that the regression relationship continues to remain

valid so that we can write

yf = Xfβ + uf (2.10)

where yf denotes a m × 1 vector of values of study variable to be predicted and

uf is a m× 1 vector of disturbances having same distributional properties as u in

(2.1).

Further, we assume that u and uf are stochastically independent.

Defining the target function as

Tf = λE(yf ) + (1− λ)yf , (2.11)

we can formulate the following vectors of predictions of Tf in the spirit of (2.5)-

(2.8):

TfLL = XfbL (2.12)

TfSS = XfbS (2.13)

TfSL =

[
1− 2(p− 2)λk

(n− p+ 2)
.
y′H̄y

y′Hy

]
XfbL (2.14)

TfLS =

[
1− 2(p− 2)(1− λ)k

(n− p+ 2)
.
y′H̄y

y′Hy

]
XfbL (2.15)
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whence the following family of predictions can be defined:

Pfg =

[
1− 2(p− 2)gfk

(n− p+ 2)
.
y′H̄y

y′Hy

]
XfbL (2.16)

where 0 ≤ gf ≤ 1 is a nonstochastic scalar characterizing the predictions.

If we set the value of g as 0,1,λ and (1 − λ), we obtain (2.12), (2.13), (2.14)

and (2.15) respectively as special cases.

3 Asymptotic Efficiency Properties of Predic-

tions Within The Sample:

It is easy to see that the predictions based on least squares are weakly unbiased

in the sense that

E(TLL − T ) = 0. (3.1)

Further, the second order moment matrix is

E(TLL − T )(TLL − T )′ = σ2
[
λ2In + (1− 2λ)H̄

]
. (3.2)

Similar exact expressions for the bias vector and second order moment ma-

trix of Pg for any nonzero value of g can be derived following, for instance, Judge

and Bock (1978) but they would be sufficiently intricate and would not permit to

deduce any clear inference regarding the efficiency properties. We therefore pro-

pose to consider their asymptotic approximations employing the small disturbance

asymptotic theory.

Theorem I: The asymptotic approximation for the bias vector of Pg for nonzero

values of g to order O(σ2) is

B(Pg) = E(Pg − T )

= −σ2

[
2(n− p)(p− 2)gk

(n− p+ 2)β′X ′Xβ

]
Xβ (3.3)
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while the difference between the second order moment matrices of Pg and Po ≡ TLL

to order O(σ4) is given by

D(Pg;Po) = E(Po − T )(Po − T )′ − E(Pg − T )(Pg − T )′

= σ4

[
4(n− p)(p− 2)gk

(n− p+ 2)β′X ′Xβ

]
XCX ′ (3.4)

where

C = λ(X ′X)−1 − 2λ+ (p− 2)gk

β′X ′Xβ
ββ′. (3.5)

These results are derived in Appendix.

From (3.3), we observe that Pg is not weakly unbiased. However, if we define

the norm of bias vector to the order of our approximation as

B(Pg)
′B(Pg) = σ4

[
4(n− p)2(p− 2)2g2k2

(n− p+ 2)2β′X ′Xβ

]
(3.6)

then with respect to the criterion of such a norm, Pg is superior than Pg∗ for g

less than g∗. In particular, both TSL and TLS are better than TSS for positive

λ. Further, TSL is superior or inferior than TLS when λ is less or greater than

0.5. When λ = 0.5, i.e., equal weight is assigned to the prediction of actual and

average values of study variable, both TLS and TSL are equally good.

Next, let us compare the predictions with respect to the criterion of second

order moment matrix to order O(σ4). For this purpose, we utilize the following

two results for any p× 1 vector a and p× p positive definite matrix A.

Result I: The matrix (A−1 − aa′) is positive definite if only only if a′Aa is less

than 1; see, e.g., Yancey, Judge and Bock (1974) for proof.

Result II: The matrix (aa′−A−1) cannot be non-negative definite for p > 1; see,

e.g., Gulkey and Price (1981).

Applying Result I to matrix C given by (3.5), we observe that it cannot be

positive definite whence it follows from (3.4) that Pg cannot be superior to Po
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with respect to the criterion of second order moment matrix to the order of our

approximation.

Similarly, using Result II, we find that the matrix C cannot be non-negative

definite by virtue of our specification that p exceeds 2. In other words, Po cannot

be superior to Pg.

It is thus seen that Pg neither dominates Po nor is dominated by Po according

to second order moment matrix criterion.

For the comparison of Pg and Pg∗, we observe from (3.4) that

D(Pg;Pg∗) = E(Pg∗ − T )(Pg∗T )
′ − E(Pg − T )(Pg − T )′

= σ4 4(n− p)(p− 2)gk

(n− p+ 2)β′XXβ
(g − g∗)

×
[
λ(X ′X)−1 − 2λ+ (g + g∗)k

β′X ′Xβ
ββ′

]
. (3.7)

Applying Result I and Result II, once again we find no clear dominance of Pg

over Pg∗.

Let us now compare the predictions with respect to the criterion of trace of

second order moment matrix to order O(σ4).

From (3.4), we see that

trD(Pg;Po) = σ4 4(n− p)(p− 2)2gk

(n− p+ 2)β′XXβ
(λ− gk) (3.8)

which is positive when

k <
λ

g
. (3.9)

Thus P1 ≡ TSS, Pλ ≡ TSL and P1−λ ≡ TLS are better than Po ≡ TLL when k

is less than λ, 1 and (1− λ) respectively.

Just the reverse is true, i.e., TLL beats TSS, TSLand TLS for k exceeding λ, 1

and (1− λ) respectively which holds true at least so long as k exceeds 1.
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Table 1: Choice of k for the superiority of predictions

Predictions TLL TSS TSL TLS

TLL * k > λ k > 1 k > (1− λ)

TSS k < λ ∗ k < λ
1+λ

k < λ
2−λ

TSL k < 1 k > λ
1+λ

*

k < λ for λ > 1
2

k > λ for λ < 1
2

TLS k < (1− λ) k > λ
2−λ

k < λ < 1
2

k > λ < 1
2

*

The entry in the (i, j)th cell gives the condition for the superiority

of predictions in the ith row over the predictions in the jth column.

For example, the entry in (1, 2)th cell is which is the condition for the

superiority of TLL over TSS.

Similarly, we observe from (3.7) that

trD(Pg;Pg∗) = σ4

[
4(n− p)(p− 2)2

(n− p+ 2)β′X ′Xβ

]
(g − g∗)[λ− (g + g∗)k] (3.10)

which is positive when

k <

(
λ

g + g∗

)
for g > g ∗ (3.11)

k >

(
λ

g + g∗

)
for g < g ∗ . (3.12)

This result can be used to study the relative performance of TSL and TLSThe

findings are assembled in Table 1.

It is interesting to observe that the superiority conditions presented in the

tabular form are simple and easy to use in application.
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4 Asymptotic Efficiency Properties Of Predic-

tions Outside The Sample

Let us now consider the predictions for Tf specified by (2.11).

It is easy to see that

E(TfLL − Tf ) = 0 (4.1)

E(TfLL − Tf )(TfLL − Tf )
′ = σ2

[
(1− λ)2In +Xf (X

′X)−1X
′
f

]
. (4.2)

Assuming g to be different from zero, we observe from (2.16) that Pfg is not

weakly unbiased for Tf unlike Pfo ≡ TfLL as is evident from (4.1).

Theorem II: The asymptotic approximation for the bias vector of Pfg to order

O(σ2) is

B(Pfg) = E(Pfg − Tf )

= −σ2

[
2(n− p)(p− 2)gfk

(n− p+ 2)β′X ′Xβ

]
Xfβ (4.3)

and the difference between the second order moment matrices of Pfg and Pfo ≡
TfLL is

D(Pfg;Pfo) = E(Pfo − Tf )(Pfo − Tf )
′ − E(Pfg − Tf )(Pfg − Tf )

′

= σ4

[
4(n− p)(p− 2)gfk

(n− p+ 2)β′X ′Xβ

]
XfCfX

′
f (4.4)

where

Cf = (X ′X)−1 − 2 + (p− 2)gfk

β′X ′Xβ
ββ′. (4.5)

It is interesting to note from (4.3) and (4.4) that bias vector as well as the

matrix difference is free from λ, at least to the order of our approximation. This

means that our findings arising from these expressions remain valid whether the

aim is to predict actual values or average values as well as both.
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Taking the criterion to be the norm of bias vector to the order of our approx-

imation, as in (3.6), it is observed that both TfSL and TfLS are better than TfSS.

Further, TfSL is better than TfLS when λ is less than 0.5. The reverse is true, i.e.,

TfLS is better than TfSL when λ exceeds 0.5.

If we choose the criterion to be second order moment matrix to order O(σ4)

and use the Results I and II stated in preceding Section, it is found that neither

Pfg is better than Pfo nor vice-versa.

Finally, let us take the criterion as trace of second order moment matrix to

order O(σ4). Proceeding in the same manner as indicated in the preceding Section,

we can easily find the conditions for the superiority one over the other. These are

assembled in Table 2.

First we observe from (4.4) that

trD(Pfg;Pfo) = σ4

[
4(n− p)(p− 2)gfkβ

′X
′
fXfβ

(n− p+ 2)(β′X ′Xβ)2

]

×
[
β′X ′Xβ

β′X
′
fXfβ

tr(X ′X)−1X
′
fXf − 2− (p− 2)gfk

]
. (4.6)

The expression on the right hand side is positive when

k <
1

(p− 2)gf

[
β′X ′Xβ

β′X
′
fXfβ

tr(X ′X)−1X
′
fXf − 2

]
(4.7)

provided that the quantity in the square brackets is positive.

If we define

q1 =

(
1

p− 2

)[
1

α1

p∑

i=2

αi − 1

]
(4.8)

qp =

(
1

p− 2

)[
1

αp

p−1∑

i=1

αi − 1

]
(4.9)

with α1 ≤ α2 ≤ . . . ≤ αp denoting the eigenvalues of X
′
fXf in the metric of X ′X,
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we observe that the condition (4.7) is satisfied at least as long as

k <
qp
gf

; qp > 0. (4.10)

This condition is easy to verify in any given application. Further, special

cases of it provide the conditions stated in Table 2.

On the other hand, the expression on the right hand side of (4.6) is negative

so long as

k >
q1
gf

(4.11)

which lead to the results stated in the first row of Table 2.

Similarly, for the comparison of TfSS, TfSL and TfLS, we observe that

trD(Pfg;Pfg∗) = σ4

[
4(n− p)(p− 2)kβ′X

′
fXfβ

(n− p+ 2)(β′X ′Xβ)2

]
(gf − g∗f )

×
[
β′X ′Xβ

β′X
′
fXfβ

tr(X ′X)−1X
′
fXf − 2− k(p− 2)(gf + g∗f )

]
.

(4.12)

The expression on the right hand side is positive implying the superiority of

Pfg over Pfg∗ when

k <
1

(p− 2)(gf + g∗f )

[
β′X ′Xβ

β′X
′
fXfβ

tr(X ′X)−1X
′
fXf − 2

]
; gf > g∗f (4.13)

k >
1

(p− 2)(gf + g∗f )

[
β′X ′Xβ

β′X
′
fXfβ

tr(X ′X)−1X
′
fXf − 2

]
; gf < g∗f (4.14)

provided that the expression on the right hand side of (4.13) is positive.

The conditions (4.13) and (4.14) will surely be satisfied so long as

k <

(
qp

gf + g∗f

)
; qp > 0; gf > g∗f (4.15)

k <

(
q1

gf + g∗f

)
; gf > g∗f . (4.16)
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These conditions provide the remaining entries in Table 2.

14



T
ab

le
2:

C
h
oi
ce

of
k
fo
r
th
e
su
p
er
io
ri
ty

of
p
re
d
ic
ti
on

s

P
re
d
ic
ti
on

s
T
f
L
L

T
f
S
S

T
f
S
L

T
f
L
S

T
f
L
L

*
k
>

q 1
k
>

q 1 λ
k
>

q 1 1
−
λ

T
f
S
S

k
<

q p
;q

p
>

0
∗

k
<

(
q p 1
+
λ

) ;q
p
>

0
k
<

(
q p 2
−
λ

) ;q
p
>

0

T
f
S
L

k
<

q p λ
;q

p
>

0
k
>

(
q 1 1
+
λ

)
*

k
<

(
q p 2
−
λ

) ;q
p
>

0;
λ
>

1 2

k
>

(
q 1 2
−
λ

) ;
λ
<

1 2

T
f
L
S

k
<

q p
(1
−
λ
)
;q

p
>

0
k
>

(
q 1 2
−
λ

)
k
>

(
q 1 2
−
λ

) ;λ
<

1 2

k
<

(
q p 2
−
λ

) ;q
p
>

0;
λ
>

1 2

∗

T
h
e
en
tr
y
in

th
e
(i
,j
)t
h
ce
ll
gi
ve
s
th
e
co
n
d
it
io
n
fo
r
th
e
su
p
er
io
ri
ty

of
p
re
d
ic
ti
on

s
in

th
e
it
h
ro
w

ov
er

th
e
p
re
d
ic
ti
on

s
in

th
e
jt

h
co
lu
m
n
as

in
T
ab

le
1.

15



5 Some Concluding Remarks:

If we take the performance criterion to be total mean squared error, it is well-

known that least squares predictions are better than Stein-rule predictions for the

actual values of study variables while the opposite is true, i.e., Stein-rule predic-

tions under some mild constraints are better than the least squares predictions for

average values of study variable. This observation has prompted us to present two

predictions when the objective is to predict both the actual and average values

simultaneously.

The proposed predictions are based like Stein-rule predictions. However, if

we look at the norms of bias vectors to the order of our approximation, both

are found to be superior to Stein-rule predictions. Next, we have compared the

predictions according to the criterion of second order moment matrix to the order

of our approximation and have found that none of the four predictions is uniformly

superior to the other . Finally, taking the criterion as trace of second order moment

matrix, we have deduced conditions for the superiority of one over the other and

have presented them in a tabular form. These conditions are elegant and easy to

apply in developing efficient predictions.

It may be remarked that our investigations can be easy extended on the lines

of Ullah, Srivastava and Chandra (1983) to the case when the disturbances are

not necessarily normally distributed.

Appendix

In order to find small disturbance asymptotic approximations for the bias vectors

and mean squared error matrices, we replace u in (2.1) by σv so that v has

a multivariate normal distribution with mean vector 0 and variance covariance
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matrix In. Thus we can express

y′H̄y

y′Hy
= σ2 v′H̄v

β′X ′Xβ

[
1 + 2σ

β′X ′v

β′X ′Xβ
+ σ2 u′Hu

β′X ′Xβ

]−1

= σ2 v′H̄v

β′X ′Xβ
− 2σ3v

′H̄v.β′X ′v

(β′X ′Xβ)2
+Op(σ

4).

Using it in (2.9) and observing that

bL = β + σ(X ′X)−1X ′v (5.1)

we find

(Pg − T ) = σ(λIn − H̄)v − 2σ2 (p− 2)gk v′H̄v

(n− p+ 2)β′X ′Xβ
Xβ

−σ3 2(p− 2)gk v′H̄v

(n− p+ 2)β′X ′Xβ

(
H − 2

β′X ′Xβ
Xββ′X ′

)
v +Op(σ

4).

Thus the bias vector of Pg is given by

E(Pg − T ) = −2σ2 (n− p)(p− 2)gk

(n− p+ 2)β′X ′Xβ
+O(σ3) (5.2)

which provides the result (3.3) of Theorem I.

Similarly, dropping the terms with expectation as null matrix, the mean

squared error matrix of Pg is

E(Pg − T )(Pg − T )′ = σ2(λIn − H̄)E(vv′)(λIn − H̄)

−σ4 2(p− 2)gk

(n− p+ 2)β′X ′Xβ

[(
H − 2

β′X ′Xβ
Xββ′X ′

)

×E(v′H̄v.vv′)(λIn − H̄ ′)

+(λIn − H̄)E(v′H̄v.vv′)

(
H − 2

β′X ′Xβ
Xββ′X ′

)

− 2(p− 2)gk

(n− p+ 2)β′X ′Xβ
E(v′H̄v)2Xββ′X ′

]
+O(σ5)

= σ2
[
λ2In + (1− 2λ)H̄

]

−σ4 4(n− p)(p− 2)gk

(n− p+ 2)β′X ′Xβ

[
λH − 2λ+ (p− 2)gk

β′X ′Xβ
Xββ′X ′

]

+O(σ5)
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which leads to the result (3.4) of Theorem I.

The results of Theorem II can be derived in a similar manner.
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