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Chapter #4

Analysis of the G/M/1 Queue

We consider here the analysis of the G/M/1 queue. This may be
considered to be the dual of the M/G/1 queue which has been discussed in
detail in Chapter 3. It may be noted that the G/M/1 queue is a queue with a
single server and an infinite buffer. In this queue, the service times are
exponentially distributed but arrivals may come from any general process,
i.e. one where the inter-arrival times are generally distributed with a given
distribution. It can be easily seen that this is exactly the opposite of what we
had assumed for the M/G/1 queue, i.e. inter-arrival times are exponentially
distributed but the service times may have any general distribution.

The G/M/1 queue may also be analysed in a variety of ways. Here we
follow an approach based on an appropriately imbedded Markov chain at the
customer arrival instants. An alternative approach using the method of
supplementary variables may also be used where a two-dimensional state
description is used; this would consist of the number in the system and the
elapsed time since the last arrival. The approach using the imbedded Markov
chain is easier to follow. It may also be easily extended to analyse a general
G/M/m queue (i.e. with m servers) as given in [Kle75].

We consider the G/M/1 queue following an FCFS service strategy. Jobs
are assumed to arrive with inter-arrival times that are identical,
independently distributed random variables with pdf a(t) and cdf A(t). We
also assume that the Laplace Transform of a(t) is LA(s). The mean inter-
arrival time is λ-1 corresponding to a mean arrival rate of λ. The service
times are exponentially distributed with mean µ-1 so that the total traffic
offered to the queue is ρ=λ/µ erlangs. Stability considerations will require
that the queue will be at equilibrium only when ρ<1.

For the imbedded Markov chain analysis of the G/M/1 queue, we
consider the imbedded time points to be the arrival instants of jobs to the
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system. The system state is considered to be the number in the system
immediately before the arrival instants. For the ith arrival, let ni be the
number in the system just before this arrival. Let si+1 be the number of jobs
served between the ith and the (i+1)th arrival. We then get
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Figure 1. Imbedded Markov Chain for the G/M/1 Queue

This has been illustrated in Fig. 1. It may be easily verified from (1), that the
{ni} will indeed form a Markov chain. We consider this chain at equilibrium,
i.e. with i→∞. Under these equilibrium conditions, let ni+1=k and ni=j. The
one-step transition probability of this Markov chain will then be given by
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where pjk is the probability that (j+1-k) jobs get served between the
consecutive arrival instants. The equilibrium values of these one-step, state
transition probabilities are obtained subsequently. However, we note that
once these are obtained for a G/M/1 queue at equilibrium, we can use them
to obtain the equilibrium state probabilities pj j=0,1,.....∞ of finding j jobs in
the system just before an arbitrary arrival instant. This would require solving
the set of equations
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Note that the pk's must also satisfy the normalisation condition ∑
∞
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Figure 2. The Allowable State Transitions of the G/M/1 Queue

In Fig. 2, we have shown the state transitions j→k which will be allowed
from just before one job arrival instant to just before the subsequent job
arrival instant. The points that have not been shown on Fig. 2 are ones for
which the corresponding j→k transition will not occur. The dashed lines
shown in Fig. 2 correspond to the number of departures between successive
arrival instants that must occur in order to get the corresponding j→k
transition. Let αn be the probability of n departures in an inter-arrival time
interval, given that the server is busy for that entire interval. We can use this
to write the following balance equations.
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where α j  may be found using
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Note that (5) follows from the fact that the service times are exponentially
distributed and that, therefore, the number of departures within an inter-
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arrival time (where the server is always busy) would have a Poisson
distribution. From (5), it also follows that the α j's may also be found as the
coefficient of the zj in the expansion of the Laplace Transform LA(µ-µz) of
the pdf of the inter-arrival times. These values of α j's may be used to solve
the balance equations of (4) to obtain the state probabilities pj j=0,1,.....,∞.

The solution for the equilibrium state probabilities pj j=0,1,....,,∞ just
before the job arrival instants are given by

∞=−= ,.......,1,0)1( jp j
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where σ is a unique root of

)( µσµσ −= AL (7)

We verify this below by direct substitution in the expression for pj given in
(4).
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which will be satisfied if σ is a unique root of LA(µ-µσ). It has been shown
that if ρ<1, then there will be a unique real solution for σ using (7) which
will be in the range 0<σ<1. This is the value of σ which should be used to
obtain the state probabilities given by (6). Note that σ=1 will always be a
solution of (7) since LA(0)=1 will always hold.

The number of jobs in the system at the job arrival instants is
geometrically distributed with parameter σ. This follows from the state
distribution given in (6). It is interesting to note that this holds for the G/M/1
queue regardless of the actual nature of the arrival process, i.e. the
distribution of the inter-arrival times. The actual solution procedure would
be to use the pdf (or its Laplace Transform) of the inter-arrival time to get a
solution σ of σ=LA(µ-µσ) which lies in the range 0<σ<1. This value can
then be used to get the state distribution from (6). It may be noted that this
state distribution will be the equilibrium distribution that will be seen if the
system is examined just before the arrival instant of a job to the system. This
will not hold at any arbitrary time instant as PASTA will not be applicable
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for a G/M/1 queue. Since the state changes in the actual queue are at the
most +1 or -1, Kleinrock's principle may applied to claim that the state
distribution of (6) will also be applicable at the departure instants of jobs
from the system.

Consider an arrival to a G/M/1 queue. Its waiting time wq in queue will be
zero if it finds the system to be empty on arrival (with probability p0). If it
finds n jobs in the system (including the one currently in service), then it
must wait for all of them to get served before its own service can begin. Note
that we are assuming an FCFS model here even though the mean results will
be the same regardless of the actual discipline being followed. Using the
memory less property of the exponential distribution (for the job that is
currently in service), we get the mean waiting time in queue, Wq, to be
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Note that a job, which sees n jobs already in the system (including the one in
service) when it arrives, will encounter a random waiting time that will be
the sum of n independent, exponentially distributed random variables. Using
this, it can be shown that the pdf fWq(t) of the waiting time will be
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Note that this corresponds to an exponential distribution which has a jump
(because of the delta function) of (1-σ) at the origin t=0. This may also be
used to directly find the mean waiting time in queue to be the same result as
in (8).


