Analysis of the M/G/1/-/N Queue

We consider here the basic M/G/1 queue again, but with the limitation,
that the number of sources generating jobs for the queue is finite.
Specifically, we assume that there are N sources generating jobs that require
service. These jobs are buffered in the system's queue if their service cannot
start immediately. Moreover, a source that has aready generated a job for
which service is pending (i.e. the job is either buffered in the system or is
presently in service) cannot generate a new job until the previous (pending)
job is served. A source may therefore be considered to be in one of two
states - thinking when it can generate a new job and blocked when its
previous job has not yet completed service.

Figure 1. A M/G/1/-N Queue



The overall system of N sources and the M/G/1 queue may be considered
to bein state n(t) at timet if there are n(t) jobs (waiting and in-service) in the
gueue at that time. A thinking user is assumed to generate jobs following a
Poisson process at rate | while a blocked user cannot generate new jobs until
its previous job is served. A system of this type may be represented as shown
in Fig. 1. Note that the overall arrival rate to a system in state n will also be
Poisson with rate (N-n)l . The service times of the individual jobs are
assumed to be generaly distributed with pdf b(t) and cdf B(t) as before. We
also assume that Lg(t) is the Laplace Transform of the pdf b(t) and that the
mean service timeis E{X}=m".

To anadyse this system, we again imbed the Markov Chain at the
departure instants of the jobs leaving the system (i.e. leaving the queue after
service). (It should be noted that to maintain consistency with our earlier
definitions, we consider the system to be the queue with its server.) Let n; be
the number in the system left behind when the i" departure leaves the system
after getting its required service. We can then see that the system state at the
(i+1)™ departure will be related to the system state at the i departure as
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where a,; is the number of jobs arriving to the system during the (i+1)"
service time. Note that this system will be unconditionally stable. As |
increases, in the worst case, all the N sources will be blocked and their
corresponding jobs either will be at the server or will be waiting in the
gueue. In that case, the system state will saturate to N and cannot blow up to
infinity to cause instability. It may aso be noted that the state at the job
departure instants may only range between 0 and (N-1) - thisis because the
job finishing service and departing is not considered in the representation of
the system state.

Considering the system at equilibrium, let pqx be the probability of state k
for this chain (at the departure instants) and let pqj« be its one-step transition
probability for going from state j to state k, OF j,kE(N-1). We can then write
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The corresponding state probabilities pgx k=0,1,
found by solving the following set of equations
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(N-1) may then be
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This is most conveniently done by using the generating function Py(2),

defined as
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The somewhat unusual form of the z-transform of the sequence pqo,, P2
,----Pa n-1 Should be noted. Unlike the usual definition of the z-transform, the
definition given in (4) reverses the sequence for computational convenience.

Substituting (3) in (4), we get
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Using (2) in the inner summeation gives
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Substituting these in (5) yields
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+ '\51 Pa, d1+ (z- 1)9_“)N_ j b(t)dt
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Simplifying (6) gives
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Note that (8) gives a functiona equation for the generating function Py(2)
as defined in (4). This would have to be solved to get the actua generating
function from which the state probabilities at the departure instants may be
caculated. To solve this, we consider Py(2) as an expansion defined
differently as

P(2=8a,(z- )" ©)
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Expanding this and matching its terms with those of (4), we can show that
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In order to use the above, we define y=z-1 and substitute thisin (9) to get
PRI

R(y)=aa.y (12)
n=0

A similar substitution in (8) gives
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¥

e :
R(Y=aa.gl+ ye'“)(ye'“) b(t)dt
n=0 0

y (13)
-t -1t |N-1

- PaoYCP (1+ye ) b(t)dt
0

Simplifying (13) using the Laplace Transform Lg(s) of the pdf b(t) and
using (12), we can write
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Comparing the coefficients of y" on both sides of (14) for n=1, ...... , N-1 will
adlow us to find recurrence relations for the various a, for n=1,....., N-1 as
given subsequently in (16). However, we cannot find a, with this approach

as can be verified by considering the coefficient of y° in (14). To find ao, we
need to use the normalisation condition on (12) as

a,=Fy (Y)|y:0 =Py (Z)|Z:1 =1 (16)

As stated earlier, by comparing the coefficients of y" on both sides of (14)
forn=1, ...... , N-1, we get
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Note that (16) and (17) give N+1 equations which need to be solved for the
N+ 1 unknowns ag,as,......,an-1 and pqgo. Defining a sequence b; i=0,1,..., N-1

(18)
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it may be shown that (17) may be written in the form

a, _aN-10pq0
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To find ay, we sum the first equation of (19) from n=(k+1) to n=(N-1) to get

Using the result an.;=pqo from (19), we can simplify thisto

S alN -1y,
by Peod b, )" k=1,........,(N-1) (20)
n=k

o
Similarly summing the first equation of (19) from n=1 to n=(N-1), we get
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Simplifying this with an.1=pqe, 80=1 and by=1, gives
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Note that since b; i=0,1,..., N-1 are known from (18), the sequence ay
k=0,1,..., N-1 may be caculated using (22). These can, in turn, be used in
(11), to get the state equilibrium probabilities pyx k=0,1,..., N-1 at the job
departure instants.
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In order to find the system performance parameters for this queue,
consider the jobs generated by one of the N sources in the system. Note that
once a job is generated, it will spend a mean time W in the system (waiting
and in service). After thisjob is serviced, the source can generate another job
again. The mean time between completion of the job from the i source and
the generation of the next job by this source would be | * - this comes from
the memoryless exponential interarrival time distribution of the Poisson
source. The throughput rate of an individual source will then be 1/(W+1 ™).
The system throughput rate g will be the sum of the throughputs of all the N
(identical) sources and will be given by

N

9= (23)

ot

The overall system throughput rate g multiplied by the mean service time ni*
may also be interpreted as the fraction of time (probability) that the server at
the queue is not idle. Let py be the equilibrium probability that the server is
found idle when the system is examined at an arbitrary time instant. (Note
that this is not the same as pyo Which is the probability of finding the server
idle at the job departure instants.) We can then get

1- po=f’—n (24)

Eliminating g from (23) and (24), we have
= L - 1 (25)
1- po)m |

As in Section 3.4, we can consider the time axis to be divided in Idle
Periods (IP, i.e. when the server isidle) and Busy Periods (BP, i.e. when the
server is busy). The probability p, may then be expressed as

po= IR 28
{BP} + E{1P}

When the server isidle, the arrival process to the queue is Poisson with rate

NI and, therefore, E{IP}=1/(NlI ). Moreover, since the busy period

terminates with a job departure instant which leaves the system empty, the

mean length of the busy period will be 1/(npqp). (This latter may be seen by
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observing that if pqo is the probability that the system is empty after a job
finishes service then 1/pyo Will be the average number of jobs that are served
in the busy period.) Using these in (26), we can calculate py as

1
_ NI _ Pao
pO - 1 . 1 - . NI (27)
[ S ot ——
NIy m

Substituting this result in (24) and (25), we can get the throughput g and
the mean time spent in system (waiting and in service) to be

NI

pd0+&
' m

9= (28)
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(29)

Actual values for these may be found by substituting the value of pyo from
(22) in (28) and (29) to get the throughput and mean delay of this M/G/1/-/N
queue.

It isimportant to note that the equilibrium probabilities pyx k=0,1,...,(N-1)
found in the above analysis only give the state probabilities of the system at
the job departure instants, i.e. the number left behind in the system as seen
by ajob leaving after it gets its required service. These probabilities will not
be the same as the state probahilities px k=0,1,....,N observed if the system is
examined at an arbitrary time instant. (We have only found one of these
probabilities, i.e. py, in (27) above.) The equilibrium state probabilities
obtained by examining the system at an arbitrary instant of time may be
found using a level crossing argument (originally due to Takacs) is given
next. Other approaches for this may be found in [Takagi2].

Consider the M/G/1/-/N system and let Dy be the rate of state transitions
from state k+1 to state k because of a service completion, i.e. the rate of the
down transitions. Similarly, let Uy be the rate of state transitions from state k
to state k+1 because of an arrival, i.e. the rate of the up transitions. (Note
that the transitions can only be value +1 or -1 as multiple arrivals and service
completions are not possible.)

Since E{IP}=(NI )" and E{BP}=("pqc)”, the mean length of a cycle (i.e.
an idle period followed by a busy period) will be [(NI )™+ (npao)™]. If we
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now consider a long time interval of length T, then the number of cyclesin
that interval would be T/[(NI )™+ (npqo)™]. However, this must also be equal
to the mean number of transitions from state 1 to state 0, which would be
given by DoT. (Note that this follows from the fact that we would start a new
cycle every time the system becomes idle.) Therefore, equating the two, we
will have

D, = =
0 1+1

Myo NI

Pa,0 =9P4,0 (30)
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where gisthe system's equilibrium throughput rate obtained earlier.

We now need the results from a theorem on the visit ratio for Markov
Chains which states Dy will be proportiona to pqx (i.e. the transition rate
from state k+1 to k will be proportional to the probability of state k at the
departure instant). This implies that

D.
D _ P jk=0,1,......,(N-1) (31
Pak  Pa,j

Since (31) will also hold for j=0, we can use the result of (30) to claim that

é u
¢ n U
D, :g—NI de,k =0 Py k=0,1,......,(N-1) (32)
aPgo X
g ully

Now consider the number of transitions from state k to k+1 for k=
0,1,......,(N-1). Measured over along time interval T, this will be (N-K)I pT,
since the average arrival rate in state k will be (N-K)I . This gives

U, =(N- k) p, k=0,1,......,(N-1) (33)

where it should be noted that py is the probability of finding the system in
state k at an arbitrary time instant.

Note that since the system is being considered at equilibrium, the up
transition rate from state k (i.e. Uy) must equal the down transition rate to
state k (i.e. Dy). Therefore, equating (32) and (33) for the same value of k
will give
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9Pa k
= k=0,1,......,(N-1 34
P =N 10 (N-1) (34
as the required state probabilities at an arbitrary time instant for k=0,1,..
...(N-1). To find the probability of the remaining state py (i.e. the
probability that all sources are blocked at the queue), we can use the
normalisation result. Thiswill give

N1
Py =1- A Py (35)

k=0

Since we had earlier found the state probabilities pgx k=0,1,......,(N-1) at
the departure instants and the throughput g, (34) and (35) may now be used
to find the state probabilities of the system at an arbitrary instant of time.



