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Another Look at the M/G/1 Queue

Analyzing the M/G/1 Queue Using the Method of
Supplementary Variables

The M/G/1 queue may also be analysed using the Method of
Supplementary Variables as described in [Kle75], [Takagi2]. This method
may also be used to study several variations of the basic M/G/1 queue
[Takagi2]. The results obtained using this approach is the same as that
obtained through the Imbedded Markov Chain based analysis given earlier.
However, this method would provide a new insight in to the system and may
therefore lead to a better understanding of the overall operation of the M/G/1
queue.

Consider a M/G/1 queue which has N(t) users at time t. Note that N(t)
will not be a Markov Process by itself. This was the reason why the
Imbedded Markov Chain approach had to imbed the chain at the special time
points, i.e. the departure instants of jobs, where the Markovian property
would hold. However, if we assume that X0(t) is the service time already
received by the user currently in service, then the joint process [N(t), X0(t)]
would be a Continuous Time Markov Process. This process, including the
elapsed service time X0(t) as the supplementary variable, helps in the
analysis of the queue using the method of supplementary variables. Note
that, by definition, we have X0(t)=0 when N(t)=0, i.e. when the system is
empty. We assume that jobs arrive to the queue from a Poisson process with
average arrival rate λ.

As usual, we define Pk(t)=P{N(t)=k} to be the probability of finding the
system in state k at time t. Let pk=Pk(t) as t→∞ be the equilibrium state
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probability distribution for k=0,1,......, ∞. We also define the joint
probability density fk(t, x) as
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Considering this at an arbitrary time instant (i.e. under equilibrium) as t→∞,
we define
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Consider a job which requires a service of duration X with pdf b(x) and
cdf B(x). Let bc(x) be the pdf of the service time X given that X>x, such that
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Using the fact that the cdf B(x)=P{X≤ x} and Baye's rule, we get
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Under equilibrium conditions, we can equate the flow from state 0 to state 1
and vice versa. This gives
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For the higher states, k=1,......,∞, we can similarly show that
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To see this, consider the definition of fk(x) as given in (2) along with the
definition of the elapsed service time (with pdf bc(x)) and the arrival rate λ of
new jobs to the system. Consider the event [N(t+∆x)=k, X0(t+∆x)=x+∆x}
which examines the system at time t+∆x to find k jobs in the system
(including the one being served) and that the job in service has already
obtained a service of duration x+∆x. This event can occur in two ways -
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(a) at time t, the state was [N(t)=k, X0=x] and that there were no arrivals
(probability = 1-λ∆x) and no service completion (probability = 1-bc(x)∆x)
during the interval ∆x.
or
(b) at time t, the state was [N(t)=k-1, X0=x] and that there was an arrival
in the interval ∆x but there was no service completion.

We also assume that t→∞. This is so that we may assume that the system has
reached equilibrium conditions provided the traffic ρ=λE{X} is such that
ρ<1. Retaining only the ∆x terms and dropping those with higher powers of
∆x (in anticipation of the fact that we would eventually let ∆x→0), we get
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Taking the limits as ∆x→0 in (7) gives
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In order to solve for the probability densities fk(x) using (8), we would
need appropriate boundary conditions. Using the earlier arguments for x=0,
we can write these as
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The corresponding normalisation condition may also be written as
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The actual equilibrium solution pk k=0,1,.....,∞ may be obtained by solving
the equations (5), (8) and (9) along with the normalisation condition of (10).
A way to solve this is given next.

We define F(z, x) as
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Multiplying (8) by zk for each k=1,.....,∞ and summing over k, we get
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Note that for obtaining (11), we have used the fact that f0(x)=0 from (2).
Using (9) in a similar way, i.e. by multiplying the kth equation by zk and
summing over k=1,.....,∞, we get
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It is easier to solve this by doing a change of variables defining gk(x) and
its generating function G(z,x) as follows
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where B(x) is the cdf of the service time distribution corresponding to the pdf
b(x). Using (11), we then get
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The solution to (15) may be written as
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where the initial condition G(z,0) may be found using (12). For this, note
that F(z,0)=G(z,0) and fk(0)=gk(0) for k=0,1,.....,∞. Using this in (12) gives
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Note that LB(s) is the Laplace Transform of the pdf b(x) of the service time.
Simplifying yields
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Therefore,
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Note that, in order to obtain (21), we have used the result
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which may be shown by direct integration.
Note that the state probabilities Pk(t) of the system at time t may be

obtained from the definition of fk(t,x) in (1), as
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The corresponding equilibrium state probabilities, pk may be obtained from
(22) as
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where the equilibrium probability p0 of the system being empty will have to
be found by applying the normalisation condition of (10). It may also be
noted that (23) may be used to observe that
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Therefore, evaluating F(z) at z=1,we will get F(1)=1-p0 corresponding to the
required normalisation condition. Using this in (21) gives
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The generating function P(z) of the system state at equilibrium will then
be given by
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Note that this is the same as the P-K Transform Equation result for the
M/G/1 queue obtained in (3.14) using the Imbedded Markov Chain
Approach.

The Elapsed Service Time Approach for the M/G/1 Queue

Consider once again the M/G/1 queue with infinite buffers. Following the
same approach as in Section 3.2, we consider once again the imbedded time
points at the departure instants of the jobs after service completion. These
correspond to the time instants marked with the shaded circles in Fig. 1. As
in our earlier analysis of Section 3.2, we consider the Markov Chain of
system states at these imbedded points where the state of the system is
represented by the number left behind in the queue by a departing job.

r(τ)

τ

X1

X1 X2

X2

X3 X4

X4

Figure 1. Imbedded Points at the Job Departure Instants of the M/G/1 Queue

In the equilibrium analysis of Section 3.2, we directly obtained the
generating function of the system states at these imbedded points (actually
just after the imbedded points). Since the number of jobs in this system can
change by at most ±1, we then used Kleinrock's principle to claim that this
will also be the generating function of the system states at the arrival instants
of jobs. Finally, the PASTA property was used to claim that this generating
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function will also be what will be observed at an arbitrary instant in the
queue.

We consider a slightly different analytical approach in this section. We
still obtain the state distribution at the imbedded points as before. Instead of
obtaining the generating function directly, we actually obtain a system of
equations that may be solved to obtain the state probabilities at the job
departure instants. (These may also be used to find the same generating
function as before.) Let qi be the probability of there being i jobs in the
system as observed by a departing job. We use this and result from residual
life arguments to obtain the state probability pi of there being i jobs in the
system at an arbitrary time instant between successive imbedded points. This
would give us the expected result that pi=qi, i=0,1,.......∞. It may however be
noted that in this case, we get the desired results without invoking
Kleinrock's principle or PASTA.

We define αk as the probability of k arrivals in a service time. Note that
the service times are considered to be random variables with pdf b(t), cdf
B(t) and with the Laplace Transform of the pdf given by LB(s). Let X be the
mean service time. Since the arrivals come from a Poisson process at rate λ,
we get that
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It may be noted that the z-transform of αk, defined as A(z), may be obtained
as in (3.1).
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This will be the generating function of the number of job arrivals in a service
time. We also define Ak, k=0,1,.......,∞ as the probability of there being k or
more arrivals in a service time defined as
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We also have that
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Focussing on the imbedded points under equilibrium conditions, let qij

i,j=0,1,.........., ∞  be the transition probability of the system going from state
i to state j from one imbedded point to the next. These transition
probabilities will be given by
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Using these, we can obtain the equilibrium state probabilities at the
departure instants by solving
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along with the normalisation condition
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Note that, using (30), we can also write (31) as
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Multiplying the kth equation in (33) by zk and summing all the left-hand sides
and the right-hand sides from k=0 to k=∞, we get
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where Q(z) is the generating function of the number left behind in the system
by a departing job under equilibrium conditions. Rearranging terms gives us
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Using the property that Q(1)=1 (evaluated in the same way as done for P(1)
in Section 3.2) will give us
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Using q0 as obtained from (35), we can evaluate qk from (33) as
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Having obtained the state probabilities at the imbedded points, we can
now use these results to get the state probabilities at an arbitrary instant of
time. For this, we first note that the mean time interval D between successive
imbedded points will be given by
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The probability p0 of examining the system at an arbitrary time instant and
finding it empty will be the fraction of time the system stays idle in the time
interval between successive imbedded points. This implies that
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Substituting for q0 using (35), gives us the expected result that

ρ−== 100 qp (39)
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To prove the similar results, i.e. pk=qk for k=1,2,.......,∞, we consider the
event of examining the system at an arbitrary time instant and finding k jobs
in the system. Note that since we are not considering k=0, this arbitrary
instant of time will not be one when the system is empty,  i.e. in the time
duration from the last departure which left the system empty to an instant
after the next arrival, which starts the server once again.)  Two cases may
arise where the arbitrary time instant chosen falls in a service time, i.e. when
the server is busy. These are

(a) The time instant chosen falls in a service time following an imbedded

point where the queue was empty. The probability of this will be 

λ
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Let x be the time interval between the arrival of the first customer following
the last imbedded point (where the system became empty) and the time
instant chosen. The system will have k jobs at the chosen time instant if there
are k job arrivals in this time interval where the arrivals come from a Poisson
process. The pdf of the interval x itself may be obtained from residual life

arguments to be 
X

xB )(1 −

(b) The time instant chosen falls in a service time following an imbedded
point where the queue was not empty. This implies that the system state at
that earlier imbedded point may be j where j may range from 1 to k.  The
probability of choosing an arbitrary time instant within a service time and

with a particular j≥1, will be 
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between the last imbedded point and the time instant chosen. If there were j
jobs in the system at the last imbedded point, we need (k-j) job arrivals in
this time interval where the arrivals come from a Poisson process; this is so
that the system is in state k at the chosen instant. The pdf of the interval x

itself may be obtained from residual life arguments to be 
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as in (a).

Using (a) and (b), we get
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To simplify (40) further, we need the result
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Applying these to (40) gives
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We can show that
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For showing (44), subtract qk+1 from qk using the relevant expression for
both from (33). Manipulation of the resultant expression would lead to (44).

Substituting (44) in (43) gives us the desired result that pk=qk also for
k=1,2,......,∞.  Note that this result has been proved without using PASTA
and Kleinrock's principle.


