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Analysis

of

A Finite Capacity, Single Server Queue

(M/G/1/K)
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(K-1)Waiting
Positions

Jobs leaving
without service

Arrivals Departures

Server

A Finite Capacity, Single Server, M/G/1/K Queue

Probability of Blocking
PB= P{arrival finds queue full}
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• We use the same notation as that used earlier for the M/G/1
queue in Section 3.2.

• The system state (i.e. the number in the system) at the
imbedded points corresponding to the time instants just after a
job completion will form a Markov Chain

ni = Number left behind in the system by the ith departure

Imbedded Points ⇔ Departure Instants of Jobs after
completing service

The “max” function in (1) will lead to loss of jobs which are
denied entry into the queue when the system is full
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Considering the Markov Chain of states at the imbedded points
(corresponding to the departure instants), we will have at
equilibrium -

State Probability at equilibrium:

pd,k = P{system in state k}         k=0,1,.....,(K-1)

}|{ 1, jnknPp iijkd === +

State Transition Probability at equilibrium

0 ≤ j, k≤ (K-1)

Note that the system state at the departure instant can only
be between 0 and (K-1)
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αk = P{k arrivals occurring in a service time}
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Note that αk may also be found as the coefficient of zk in the
expansion of LB(λ -λz)

The state transition probabilities pd,jk for this Markov Chain (at
the departure instants) may then be found in terms of αk as
given in the next slide

Copyright 2002, Sanjay K. Bose 6







−=

−≤≤
= ∑

∞

−= 1

0, 1

20

Km
m

k

kd Kk

Kk

p α

α









−=

−≤≤−

= ∑
∞

−=

+−

jKm
m

jk

jkd Kk

Kkj

p
1

211

, α

α

j=0

1≤ j≤ (K-1)

(4)

State Transition Probabilities for the Departure Instants
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Normalization Condition
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As usual, we can solve for the equilibrium departure state probabilities
{pd,j} j=0,1,….,(K-1) using any (K-1) equations from (5) along with
the normalization condition of (6).
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Alternatively, we can solve for {pd,j} j=0,1,….,(K-1) using the
following - 
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See notes for another solution approach

We now need to use {pd,k} k=0,1,….,K-1 to find the equilibrium
state probabilities {pk} k=0,1,….,K  at an arbitrary time instant.
We would also like to find the probability PB that an arrival
finds the system full and is blocked, i.e. leaves without service.
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We summarize our equilibrium state probability definitions as 
the following

{pd,k} k=0,….,K-1 State probabilities at departure instants

{pa,k} k=0,….,K State probabilities at arrival instants 
regardless of whether the job joins the 
queue or is blocked

{pac,k} k=0,….,K-1 State probabilities at an arrival instant
when the job actually does join the 
queue

Note that the “departure instant” implies the instant just after
a departure and the “arrival instant” implies the instant just
before the actual arrival.
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Average arrival rate of jobs actually entering the system = λc

)1( Bc P−= λλ

Offered Traffic to the queue = Xλρ =

Actual Throughput of the Queue = ρc = ρ (1-PB)

)1(110 Bc Pp −−=−= ρρ

probability of finding the system empty

Copyright 2002, Sanjay K. Bose 12

But from (12), for k=0, we have 0,0 )1( dB pPp −=
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Note that (15) implies that at equilibrium, for a given value of k in
the range k=0,….,(K-1), the state probabilities at an arbitrary
instant pk and the state probabilities at the departure instant pd,k are
strictly proportional.
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Summarizing

• Find the state probabilities {pd,k} k=0,….,(K-1)  at the
departure instants using either (5) & (6) or (7)

• Find the state probabilities {pk} k=0,….,(K-1)  at an
arbitrary instant using (15). Note that pK=PB

• Find the blocking probability PB using (14). This will also
be the same as the probability pK of observing the system to
be in state K at an arbitrary time instant
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Performance Results
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An Alternate Analytical Approach for the M/G/1/K Queue

Consider the mean of the time interval between successive imbedded
points (i.e. departure instants).

X+
λ
1 queue empty at the previous

departure instant
probability = pd,0 

X queue non-empty at the
previous departure instant

probability =1- pd,0
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in (15)
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To find pk, for k=1,….,(K-1), consider when an arbitrarily chosen
time instant falls within a service duration where x is the amount of
service already provided.
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As before, let
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where

Using the expression for Ak, we can obtain

(29)
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To simplify the expression for pk  further, we use the result
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Prove using
recursion

Substituting this, we get the same result as obtained earlier in 
(12) and (15) -
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k=0,1,…,(K-1)

Note that we still need to find pK, the probability of finding
the system full at an arbitrary instant to complete the
analysis.

This is done in the following slides.
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For k=K, we need to take into account the fact that arrivals coming
when the system is full are blocked and denied entry into the
system.
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Using (29),
this gives 
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To simplify
(34) further,
we need the
result
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shown by summing pd,k over
k=1,…,K-1 and using (30)

Applying (35) to (34), and using pK=PB and ρc =ρ(1-PB) we get our
earlier result
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