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» We use the same notation as that used earlier for the M/G/1
gueue in Section 3.2.

* The system state (i.e. the number in the system) at the
imbedded points corresponding to the time instants just after a
job completion will form aMarkov Chain

ni+1 = min{aiﬂ! K- 1} for ni =0 (1)
=min{n; - 1+a;,,, K- 1 for n =1...., (K-1

n; = Number |eft behind in the system by the ith departure

Imbedded Points U Departure Instants of Jobs after
completing service

The “max” function in (1) will lead to loss of jobs which are
denied entry into the queue when the systemis full
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Considering the Markov Chain of states at the imbedded points
(corresponding to the departure instants), we will have at
equilibrium -
State Probability at equilibrium:
Py = P{systemin state k} k=0,1,.....,(K-1)

State Transition Probability at equilibrium
Pg ik = P{Nig =k =j} 0£j, k& (K-1)

Note that the system state at the departure instant can only
be between 0 and (K-1)

Copyright 2002, Sanjay K. Bose




a, = P{k arrivals occurring in aservice time}

a, = é%e'“b(t)dt ©)

t=0

Note that a, may aso be found as the coefficient of Z in the
expansion of Lg(l -l 2)

The state transition probabilities py, for this Markov Chain (at
the departure instants) may then be found in terms of a, as
given in the next dlide
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State Transition Probabilities for the Departure | nstants

\

lay OEkEK-2 .
b4 1=0
P, ok iaam k=K-1
| m=K-1
> 4
_i_ak_j+1 j-l£k£K-2
Py ik =1 & 1£j£ (K-1)
dojk [ dan k=K-1
| m=K-j
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K Balance Equations

1

Pa.; Pa. jk k=04,...... K-1 (5

Qo7

Pax =
0

Normalization Condition

1
Pax =1 (6)

Qo7

=~
1l

0

As usual, we can solve for the equilibrium departure state probabilities
{pg;} 1=0.1,....,(K-1) using any (K-1) equations from (5) along with
the normalization condition of (6).
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Alternatively, we can solve for {py;} j=0,1,....,(K-1) using the
following -

N
Igl
Pak = Pac®k T A Pa,jk-ju k=01......... JK-2
j=1
> (7
o
a Pax =1
k=0
J

See notes for another solution approach

We now need to use {py,} k=0,1,....,K-1to find the equilibrium
state probabilities{p,} k=0,1,....,K at an arbitrary time instant.
We would aso like to find the probability Pg that an arrival
finds the system full and is blocked, i.e. leaves without service.
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We summarize our equilibrium state probability definitions as
thefollowing

{pgd k=0,....K-1 State probabilities at departure instants

{P.d k=0,....K State probabilities at arrival instants
regardless of whether the job joins the
gueue or is blocked

{Pacit k=0,....,K-1 State probabilities at an arrival instant
when the job actually doesjoin the
queue

Note that the “departure instant” implies the instant just after
a departure and the “arriva instant” implies the instant just
before the actual arrival.
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PASTA ) P« = Pax k=01, K (10)

gg};o"k S Py =Pax k=0L.K-1 (11)

Therefore

Pk = Pax =(L- Pg)Pack =@- Pg)pgx k=01...... K-1 (12

Arrival is not blocked
and findsk in system

and
I%-l

I:)B = pa,K =1- a pa,k
k=0
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Average arrival rate of jobs actually entering the system =1
l.=1(1-Pg)

Offered Trafficto the queue= I =1 X

Actual Throughput of the Queue=r .= r (1-Pg)

1

P =1- o =1- r (- Py)

probability of finding the system empty
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But from (12), for k=0, we have Po =(L- Pg)Pg,o

Therefore
1
1-r(- Py)=(Q1- Py)py, = P=1-——F (14
' Pgo t T
and
= 1 k=01, K-1 15
Py e Pa k L. (15)

Note that (15) implies that at equilibrium, for a given value of kin
the range k=0,....,(K-1), the state probabilities at an arbitrary
instant p, and the state probabilities at the departure instant py, are
strictly proportional.
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Summarizing

» Find the state probabilities { py,} k=0,....,(K-1) at the
departure instants using either (5) & (6) or (7)

* Find the blocking probability Pg using (14). Thiswill also
be the same as the probability p, of observing the system to

bein state K at an arbitrary time instant

* Find the state probabilities{p} k=0,....,(K-1) at an
arbitrary instant using (15). Note that p,=Pg
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Performance Results

K K-1 ® 8
N=3 kpy =;é kpd,k+K§1' ;:
k=0 (Pao + 1) k=0 (Pao +1)g
| =1@-P)=—!
¢ 5 a0 *T)
1%t K
W, =W - X:Té kpdk+|_(pd0+r -D-X
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An Alternate Analytical Approach for the M/G/1/K Queue

Consider the mean of the time interval between successive imbedded
points (i.e. departure instants).

1
|

x|

+X  Queueempty at the previous probability = py,
departure instant
gueue non-empty at the probability =1- p,,

previous departure instant

Therefore o @
"+ Pao
el g Pao

Po = =

géﬂ?gpdo”_((l- Pa,o) Pao ™1
el g '
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1- B(x)
X

Tofind p,, for k=1,....,(K-1), consider when an arbitrarily chosen
time instant falls within a service duration where x is the amount of
service already provided.

when previous
departure leaves

€ (x“' _,1- B(®
P =T &Pg. e ——=dxa
SRS T X g 29)
é k ¥ k- j . u
+rCAo pd,jé(l ) . e'lxl E(X)dxu
éj:l 0 (k- J)I X g

r. P{chosentimeinstant will \

fall within a service time} when previous

departure leaves

pdf of elapsed service time System non-empty
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Asbefore, let A = ékaj = gk c‘,('J’_‘_I)Je-' b(ydx  k=12,.....¥
_i\(l X)k'1J -on
_oo(k_—l)!e [1- BX)]l dx (29)
¥ _
where g A =IX=r (30)

=~
1,

1

Using the expression for A,, we can obtain

r
Py =_c
r

@ D D

: a
PooA + A PojAcjall k12 ¥ (31)
=1 f
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To simplify the expression for p, further, we use the result
& Prove using
Pak = PaoAta Pa,jAcjs recursion
j=1
Substituting this, we get the same result as obtained earlier in
(12) and (15) -
r
Py :TC Pax =1 Ps) Py k=0,1,...,(K-1)
Note that we still need to find py, the probability of finding
the system full at an arbitrary instant to complete the
analysis.
Thisis done in the following slides.
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For k=K, we need to take into account the fact that arrivals coming
when the system is full are blocked and denied entry into the

system.
{1

K=K-10 k! X g (33

K-1 ¥ ¥ k

(X 41- B(X
+rcépdjé (k') el _()dX
i k=K-jo
. roe ¥ 1 £ U g

U?‘”Q (29), Pk =—épsoa A +ta Pa,j A AU (34)
thisgives e «=x j=1 k=K- j+1 [
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To simplify 6 ¥ 1 ¥ o0

(34) further, ePaod Acta Puj A AU=T +Pgo-1 (35)
we need the 8 k=K j=1 k=K- j+1 Q

result

shown by summing py, over
k=1,...,K-1 and using (30)

Applying (35) to (34), and using px=Pg and r . =r (1-Pg) we get our
earlier result

1

Pgo + T

Pk =P =1-

Copyright 2002, Sanjay K. Bose 20

10



