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The

G/M/1, G/G/1, G/G/m and M/G/m/m

Queues

Copyright 2002, Sanjay K. Bose 2

• The G/M/1 queue is the dual of the M/G/1 queue where the
arrival process is a general one but the service times are
exponentially distributed.

• Service time distribution is exponential with parameter 1/µ

• General Arrival Process with mean arrival rate λ.

Inter-arrival time is random with pdf a(t), cdf A(t)
and L.T.    of the pdf as LA(s)

• Total Traffic ρ =λ/µ

Stability consideration require that ρ <1 for the
queue to be at equilibrium

The G/M/1 Queue
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• For analyzing the G/M/1 queue using the Imbedded Markov
Chain approach, the imbedded points are chosen to be the
arrival instants of jobs to the system

• System State = Number in the system immediately before an
arrival instant

ni = Number in the system just before the ith arrival

si+1 = Number of jobs served between the ith and the (i+1)th

arrivals

The sequence {ni}, i=1,2,…… at the imbedded Markov points
(i.e. just before arrival instants) forms a Markov Chain.
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ith arrival
ni jobs in system just
before this instant

si+1 jobs served in
(i+1)th inter-arrival time

(i+1)th inter-arrival
time

(i+1)th arrival
ni+1 jobs in system just

before this instant

 ni=0,1,....,∞      si+1≤ ni+1                 (1)11 1 ++ −+= iii snn
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Consider the chain
at equlibrium
(i.e. for i→∞)

 ni=0,1,....,∞      si+1≤ ni+111 1 ++ −+= iii snn

One-Step Transition
Probabilities 10

}|{ 1

+>=

=== +

jkforp

jnknPp

jk

iijk (2)

Balance
Equations

∑
∞

=

=
0j

jkjk ppp k=0,1,........,∞ (3)

Normalization
Condition

∑
∞

=

=
0

1
k

kp

Copyright 2002, Sanjay K. Bose 6

j

k

0 1

1

2

2

3

3

4

4

5 6 7
0

departures = 0 1 2 3 4

5

6

7

8

Allowable state
transitions ( j → k)
in the G/M/1 queue
between successive
imbeded points

The points shown are the ones for which the ( j → k) transitions can
occur. For all other points, the corresponding transitions cannot

occur.

The diagonal lines correspond to a constant number of departures
(0,1,2,……) between the corresponding ( j → k) transitions.
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Let αn = P{n departures in an inter-arrival time interval | server is 
always busy during this inter-arrival time}
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The αj’s may be found as the coefficient of z j

in the series expansion of LA(µ-µz)

Justification: Since the service times are exponentially distributed, the
number of departures in an inter-arrival time instant where the server is
always busy will have the Poisson distribution.
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The Balance Equations of (3) then become
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Solutions to these, satisfying the normalization condition are -

∞=−= ,.......,1,0)1( jp j
j σσ (6)

where σ  is a unique root of  σ =LA(µ -µσ)

It may be shown that if ρ <1, then there will always be a unique real
solution for σ =LA(µ -µσ ) which will be in the range 0<σ <1.



5

Copyright 2002, Sanjay K. Bose 9

The solution may be verified by direct substitution, as given below -
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• The state distribution {pj} j=0,1,….. is found under
equilibrium conditions at the time instants just before job
arrivals to the system.

• It is also valid for the departure instants (just after a job
leaves the system) as Kleinrock’s principle is applicable to
this system (i.e. the state changes are at most +1 or -1.

• It in not valid for arbitrary time instants (or ergodic, time-
average results) since PASTA will not be applicable to the
system (i.e. the arrival process is not Poisson).
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For a FCFS M/G/1 queue at equilibrium, the following queueing
delay results may be obtained.
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These may be derived
using the fact that the
service time distribution
is exponential and
hence memory less

Other parameters such as W and Nq and the distribution fW(t) may
also be obtained

The multi-server G/M/m queue may also be analyzed using a similar
approach
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The G/G/1 Queue

We cannot analyse this queue exactly but there are useful bounds
that have been developed for the waiting time in queue Wq. This can
then be used to find bounds on W, N and Nq in the usual fashion,
i.e.Little’s Result and XWW q +=

 ρ<1 for queue to be stable

 λ = Average arrival rate of jobs (general arrival process)

Let X  be the (random) service time with 222 }]{[}{
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If the mean and variance (or second moment) of the inter-arrival
times and the service times are known, then the following bounds
have been shown to hold for Wq, the waiting time in queue, of any
G/G/1 queue.
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Upper BoundLower Bound

The upper bound of (1) is quite useful. The lower bound is actually
not very useful as it often gives a negative result which is a trivial
conclusion.
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Another interesting (and very useful) bound for the
G/G/1 queue has been given for the special case
where the inter-arrival time T satisfies the following
property for all values of t.

λ
1

}|{ ≤>− tTtTE (2)for all t ≥ 0
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• Note that E{T}=1/λ. The condition of (2) is not very hard to
satisfy. If the inter-arrival time is known to be more than t, then
(2) requires that the expected length of the remaining inter-
arrival time should be less than or equal to the unconditioned
expected inter-arrival time 1/λ.

• For the special case when the arrival process is Poisson, the
inter-arrival times will be exponentially distributed and will
satisfy (2) as an equality.

• Note that many distributions (like say the uniform distribution)
will satisfy (2). An exception to this are hyper-exponential type
distributions
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If the arrival process is such that (2) is satisfied, then the following
bounds have been shown to hold
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where WqU is the upper bound of (1), i.e.
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To see the tightness of the bounds of (3), consider using it to find
the bounds on Nq, the mean number waiting in queue for a G/G/1
system.

We get

qUqqU WNW λ
ρ
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1
(4)

• The difference between the upper and the lower bounds is only
0.5(1+ρ).

• Note that ρ will be small anyway as 0<ρ<1 for a stable queue.

• In any case, the difference between the upper and the lower
bounds will be between 0.5 and 1. In percentage terms, as ρ→1,
i.e the traffic increases, this will get increasingly smaller
compared to Nq.
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Heavy Traffic Approximation for the G/G/1 Queue

As ρ→1, (i.e. when the offered traffic is high), the distribution of
the waiting time in a G/G/1 queue will be approximately an
exponentially distributed radom variable with mean given by
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Note that this results is an interesting one as it not only provides a
mean but also a distribution for the waiting time in queue under very
general conditions.
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The G/G/m Queue

Wq1 = Average waiting time in queue
for the equivalent G/G/1 queue.

m = Number of Servers
             = Offered TrafficXλρ =

Other notations same as for
the G/G/1 queue

The Equivalent G/G/1 Queue

Same arrival process of jobs as for the G/G/m queue

For the service times, use    and      as the mean and variance,
respectively.
Note that the server here works m times faster than a server in the
original G/G/m queue

m

X
2

2

m
Xσ
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The following bounds then hold for the G/G/m queue

• The value of Wq1 may be computed as a lower bound on Wq

• These bounds are rather loose and may not be very useful in
practice
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Heavy Traffic Approximation for the G/G/m Queue

For (ρ/m)→1 in a G/G/m queue, a heavy traffic approximation
result holds in a manner similar to that given for the G/G/1 case.

Specifically, for (ρ/m)→1 in a G/G/m queue, the waiting time in
queue at steady-state tends towards a random variable with an
exponential distribution which has a mean given by -
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The M/G/m/m Queue

• Even though the M/G/m queue is hard to analyze, the finite
capacity M/G/m/m queue (m server queue without waiting
positions) is surprisingly easy to analyze.  (See additional notes)

• Even more remarkably, its state probability distribution and
blocking probability results are identical to those obtained for the
corresponding M/M/m/m queue
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