Analysis
 of

 Discrete Time Queues

 Discrete Time Queues}
(Section 4.6)

Time axis divided into slots

- Arrivals can only occur at slot boundaries
- Service to a job can only start at a slot boundary
- Service duration is always an integral multiple of the slot duration
- Assume that the number of jobs that arrive in successive slots are independent, identically distributed (i.i.d.) random variables

Geo Arrival Process: Geometric (or Bernoulli) Arrival Process

Only one job can arrive in a slot with probability λ and that no jobs arrive in a slot with probability $1-\lambda$, ($0<\lambda<1$)

The inter-arrival time I is geometrically distributed with with mean $1 / \lambda$ and with probability-
$\mathrm{P}\{I=k$ slots $\}=\lambda(1-\lambda)^{-k} \quad$ for $k=1,2, \ldots \ldots$.

$$
\Lambda(z)=1-\lambda(1-z)\left\{\begin{array}{l}
\text { Generating Function of the } \\
\text { number of arrivals in a slot }
\end{array}\right.
$$

Geo ${ }^{[X]}$ Arrival Process Batch Geometric Arrival Process

$\Lambda=$ number of arrivals in a slot (iid random variables)
$\lambda(k)=\mathrm{P}\{\Lambda=k$ arrivals in a slot $\} \quad k=0,1,2, \ldots \ldots \ldots$.
$\Lambda(z)=\sum_{k=0}^{\infty} \lambda(k) z^{k}\left\{\begin{array}{l}\text { Generating Function of the } \\ \text { number of arrivals in a slot }\end{array}\right.$
The following definitions of means and factorial moments would be useful later

$$
\begin{aligned}
& \lambda=E\{\Lambda\}=\Lambda^{(1)}(1) \\
& \lambda^{(2)}=E\{\Lambda(\Lambda-1)\}=\Lambda^{(2)}(1) \\
& \lambda^{(i)}=E\{\Lambda(\Lambda-1) \ldots \ldots .(\Lambda-i+1)\}=\Lambda^{(i)}(1) \quad i=3,4, \ldots \ldots . .
\end{aligned}
$$

Choice of Arrival Models

Late Arrival Model

Arrivals come late in the slot, i.e. just before the slot boundary and before the service completions due to occur at the end of that slot

- Number left behind in the queue as seen by a departure will include the arrivals as shown above
- Time spent waiting in queue $=$ Number of slots spent waiting for service not including the slot in which the job arrives

> For example, waiting time is zero if a job arrives at the end of the $n^{\text {th }}$ slot and starts service from the beginning of the $(n+1)^{\text {th }}$ slot, i.e. the next slot after its arrival.

Early Arrival Model

Arrivals come early in the slot, i.e. just after the slot boundary.

Note that service completions occur just before the slot boundary as in the late arrival model

- Number left behind in the queue as seen by a departure will not include the arrivals as shown above
- Time spent waiting in queue $=$ Number of slots spent waiting for service including the slot in which the job arrives

For example, waiting time is zero if a job arrives at the beginning of the $(n+1)^{\text {th }}$ slot and starts service from that slot itself.

Important points to note -

- Queue size at service completion in the early arrival model will always be lower than in the corresponding late arrival model.
Lower by the number of jobs which actually arrive at that slot boundary
- The waiting time in queue will be the same regardless of the actual model (early/late) being used

Service Times

- Multiples of slot durations - starts and ends at the slot boundaries
- General IID Distribution for the number of slots (say random variable X) required to complete service to a job.
- Probability Distribution of Service Times (in terms of the number of slots required for service

Probability Distribution $\quad b(k)=P\{X=k\} \quad$ for $k=1,2, \ldots \ldots$.
Generating Function $\quad B(z)=\sum_{k=1}^{\infty} b(k) z^{k}$
Moments $\quad\left\{\begin{array}{l}b=E\{X\}=B^{(1)}(1) \\ b^{(2)}=E\left\{X^{2}\right\}=B^{(2)}(1)+B^{(1)}(1) \\ b^{(i)}=E\left\{X^{i}\right\} \quad i=3,4, \ldots \ldots . .\end{array}\right.$

The Geo/G/1 Queue (discrete time version of the M/G/l queиe)

$$
\text { Stability requires that the traffic offered } \rho=\lambda b<1
$$

The Geo/G/1 Queue (Late Arrival Model)

$n_{i}=$ number of jobs in the queue immediately after the service completion of the $i^{\text {th }}$ job
$a_{i}=$ number of jobs arriving during the service time of the $i^{\text {th }}$ job
The random variables $a_{i} i=1,2, \ldots . .$. are independent and identically distributed random variables with the generating function $A(z)$ and mean ρ.

Homogenous, Discrete- $\quad n_{i+1}=a_{i+1} \quad n_{i}=0$
Time Markov Chain $\quad=n_{i}+a_{i+1}-1 \quad n_{i} \geq 1$

At equilibrium, the steady-state distribution p_{k} of this Markov Chain may be found as -

$$
\begin{aligned}
& \quad p_{k}=\lim _{i \rightarrow \infty} P\left\{n_{i}=k\right\} \quad k=0,1,2, \ldots \ldots . \\
& \text { and } \quad P(z)=\sum_{k=0}^{\infty} p_{k} z^{k}
\end{aligned}
$$

Show that, using (4.91) under equilibrium conditions gives -

$$
P(z)=\frac{(1-\rho)(1-z) A(z)}{A(z)-z} \quad \text { with } \quad\left\{\begin{array}{l}
p_{0}=1-\rho \\
\rho=\lambda b
\end{array}\right.
$$

BASTA/GASTA: Bernoulli/Geometric Arrivals See Time Averages holds as the discrete time version of PASTA

Using $P(z)$ from (4.97), show that

Mean number in

$$
\begin{equation*}
N=\frac{\lambda^{2} b^{(2)}-\lambda \rho}{2(1-\rho)}+\rho \tag{4.98}
\end{equation*}
$$

system

The mean time W (in number of slots) spent by a job in the system may be found from (4.98) using Little's Result $N=\lambda W$

We can then use $W_{q}=W-b$ and $N_{q}=\lambda W_{q}$ to get the performance measures W_{q} and N_{q}

The distribution $G_{W}(z)$ (i.e. the generating function) of the number of slots for which a job stays in the system may also be obtained for a FCFS Geo/G/1 queue.

Using an approach similar to that followed for the M/G/1 queue, show that for the FCFS Geo/G/1 queue, we will have -

$$
P(z)=G_{W}(1-\lambda+\lambda z)
$$

which leads to $\quad G_{W}(z)=\frac{(1-\rho)(1-z) B(z)}{(1-z)-\lambda(1-B(z))}$
and

$$
\begin{equation*}
G_{W q}(z)=\frac{(1-\rho)(1-z)}{(1-z)-\lambda(1-B(z))} \tag{4.104}
\end{equation*}
$$

following usual independence argument between service time and time spent waiting in queue

The Geo/G/1 Queue (Early Arrival Model)

$n_{i}=$ number of jobs in the queue after the service completion of the $i^{t h}$ job and before the next possible arrival point
$a_{i}=$ number of jobs arriving during the service time of the $i^{\text {th }}$ job
$\tilde{a}_{i}=$ number of jobs arriving in the service time of the the $i^{\text {th }}$ job minus one slot
$\begin{array}{lrlr}\text { Homogenous, Discrete- } & n_{i+1} & =\tilde{a}_{i+1} & \\ \text { Time Markov Chain } & & =n_{i}=0 \\ & & a_{i+1}-1 & \\ n_{i} \geq 1\end{array}$

Generating Function $A(z)$ of a obtained as before

$$
A(z)=B(1-\lambda+\lambda z)
$$

Show that

$$
\tilde{A}(z)=\frac{B(1-\lambda+\lambda z)}{1-\lambda+\lambda z}
$$

From (4.106), show that

$$
\begin{aligned}
& P(z)=\frac{(1-\rho)[A(z)-z \tilde{A}(z)]}{(1-\lambda)[A(z)-z]} \\
& P(z)=\frac{(1-\rho)(1-z) B(1-\lambda+\lambda z)}{(1-\lambda+\lambda z)[B(1-\lambda+\lambda z)-z]}
\end{aligned}
$$

Show that, in this case

$$
P(z)=\frac{1}{(1-\lambda+\lambda z)} G_{W}(1-\lambda+\lambda z)
$$

which leads to

$$
G_{W}(z)=\frac{(1-\rho)(1-z) B(z)}{(1-z)-\lambda(1-B(z))}
$$

Note that even though $P(z)$ is different for the late/early arrival models, $G_{W}(z)$ is the same as claimed earlier

The Geo ${ }^{[\mathrm{X}] / \mathrm{G} / 1}$ Queue

Summary of results given here. Please see Sec. 4.6.2 for details
$\Lambda(z) \quad$ Generating Function of the number of jobs arriving in a slot
$B(z) \quad$ Generating Function of the number of slot required for service by a job

The Geo ${ }^{[\mathbf{x}]} / \mathbf{G} / 1$ Queue (Late Arrival Model)

$\left.\begin{array}{l}\text { Generating Fn. of the number in the } \\ \text { system just after a service completion }\end{array}\right\} P(z)=\frac{(1-\rho)[1-\Lambda(z)] B(\Lambda(z))}{\lambda[B(\Lambda(z))-z]}$
$\left.\begin{array}{l}\text { Generating Fn. of the number in the } \\ \text { system just after an arbitrary slot } \\ \text { boundary }\end{array}\right\} P^{*}(z)=\frac{(1-\rho)(1-z) B(\Lambda(z))}{B(\Lambda(z))-z}$ boundary

Generating Fn. of the number of slots spent by a job waiting in the queue, prior to service

$$
G_{W_{q}}(z)=\frac{(1-\rho)(1-z)[1-\Lambda(B(z))]}{\lambda[\Lambda(B(z))-z][1-B(z)]}
$$

$\left.\begin{array}{l}\text { Mean queueing delay (number } \\ \text { of slots) encountered by a job }\end{array}\right\} \quad W_{q}=\frac{\lambda^{2} b^{(2)}-\lambda \rho+\lambda^{(2)} b}{2(1-\rho)}, ~(1)$

The Geo ${ }^{[\mathbf{X}\}} / \mathbf{G} / 1$ Queue (Early Arrival Model)

$\left.\begin{array}{l}\text { Generating Fn. of the number in the } \\ \text { system just after a service completion }\end{array}\right\} P(z)=\frac{(1-\rho)[1-\Lambda(z)] B(\Lambda(z))}{\lambda \Lambda(z)[B(\Lambda(z))-z]}$
$\left.\begin{array}{l}\text { Generating Fn. of the number in the } \\ \text { system just after an arbitrary slot } \\ \text { boundary }\end{array}\right\} P^{*}(z)=\frac{(1-\rho)(1-z) B(\Lambda(z))}{B(\Lambda(z))-z}$

- Note that $P^{*}(z)$ and $G_{W q}(z)$ are the same as for the Late Arrival Model
- The queue performance parameters N, N_{q}, W, W_{q} will be the same as for the late arrival model

