Departure Process from a M/M/m/¥ Queue

Ip Ip Knowledge of the nature

—’D:JID"D:D:DT: of the departure process

oL ;2 o from a queue would be

| useful as we can then use

"[DID" 1p it to analyze simple cases

ad ') of queueing networks as
lgﬂﬂ]l)—» shown.

The key result here is that the departure process from a M/M/nv¥
queue is also Poisson with the same rate as the arrival rate entering the
queue.

It should also be noted that the result of randomly splitting or
combining independent Poisson processes a so yields a Poisson process
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The result on the departure process of a M/M/m/¥ queue follows
from Burke's Theorem. This theorem states that -

[A] The departure process from a M/M/m/lL queue is Poisson in
nature.

[B] For aM/M/m/u queue, at each timet, the number of customers
in the system is independent of the sequence of departure times
prior tot.

[C] For a M/IM/m/u FCFS queue, given a customer departure at

time t, the arrival time of this customer is independent of the
departure process prior to t.
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Time Reversibility Property of Irreducible, Aperiodic Markov
Chains

Consider adiscrete time, irreducible, aperiodic Markov Chain X;, X,,
...... s Kooty Koy Xieqs -eeeeeee TOr which the transition probabilities are
givento be{p;}.

Now consider the same chain backwards in time, i.e. the chain
...... Koerr Koy weeeens Xgy Xy, Xq. This would also be a Markov Chain
since we can show that

P{X,, = | Xy =1 X g Zhigeeseeas X =i}
_PUX = 5 Xt T X T X g =i}
P{X 1 =y X g Zigreeeees X ey =i}
_ P{X = 0 Xt TP X g Zieeons X =1 [ X = 0 Xt =1}
P{X 1y =IFP{X g Zgseerees X =iy | X g =1}

=——L=p, | State Transition Probability of the Reverse Chain
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The Markov Chain is considered to be time reversible for the
specia case where p;"'=p; " i, ].

The reverse chain will have the following properties -

e Thereversed chain is also irreducible and aperiodic like the
forward chain

¢ The reversed chain has the same stationary state distribution as
the forward chain

e The chainistime reversible only if the detailed balance equation
pp; = p,p; holdsfor ™ i, O
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How can we handle queues where the service time distribution is

not exponential ?

[A] If we can express the actua service time as combinations of
exponentialy distributed time intervals, then the Method of
Sages may be used. (Section 2.9)

[B] The M/G/1 queue and its variations may be anayzed.

(Chapters 3 and

4)

[C] Approximation methods may be used if the mean and
variance of the service time are given. (GI/G/m approximation

of Section 6.2)
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Method of Stages

Sage 1
Um

Um

Consider a M/-/1/¥ example where
Sage 2 L the actual service time is the sum of
two random variables, each of which

is exponentially distributed.

State of the system represented as (n, j) where n is the total humber of
customers in the system where the customer currently being served is at

Stage j, n=0,1,......,

¥,j=1,2

State (0,0) represents the state when the system is empty
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State Transition
Diagram of the
System




Balance Equations for
the System

I Poo = My P

(I +m)py =1 P + M Py

(I +my)py, =mpy (2.38)
(I +m)py =1 py + Mpy

(I +m) Py =1pp +Mpy

These Balance Equations may be solved along with the appropriate
Normalization Condition to obtain the state probabilities of the

system.

Once these are known, performance parameters of the queue may

be appropriately evaluated.
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The method illustrated for the M/-/1/¥ example may be extended for the

following types systems.

1. Have k stages of service times - more rows in the state transition

diagram

2. Finite Number of Waiting Positionsin the Queue - make the arrival
rate a function of the number in the system and make it go to zero
once all the waiting positions have been filled

3. Multiple Servers - approximeate this by allowing more than one job

to enter service at atime

4, More General Service Time Distributions - see next slide
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For more general service time distributions, the Method of Stages
may be used if the Laplace Transform of the pdf of the service time
may be represented as a rational function of s, Lg(s)=N(s)/D(s), with

simpleroots. \
AL A e Thisleadsto -
l-a; 1-a, |
Y A4 V »
. . . . l > Lg(9=b, +Q b
With multiple stages like this, the L.T. T s+m

of the service time pdf will be of the
form -

L() (1 )+° (1 )O
S)=(-a A a; -a;
B 1 a]. 1 j-1 j i:1S+

J
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Given a service time pdf as Lg(s)=N(s)/D(s) with smple roots -

1. Obtain the multiple stage representation in the form shown
earlier

2. Draw the corresponding state transition diagram and identify
the flows between the various states

3. Write and solve the flow balance equations along with the
normalization condition to obtain the state probabilities

4. Use the state probabilities to obtain the required perfromance
parameters
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Some Examples of Service Time Distributions

| — Sti/g; 1 00,5' ailg;z
A 4
Service Facility
2
Lo(s)= 0.55(m +m,) + mm, L, (= 05m, 05m i
8 (s+m)(s+m,) s+m (s+m
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Queueswith Bulk (or Batch) Arrivals (Section 2.10)
MXI Poisson Batch Arrival Process

»
»

* Batches arriving as a Poisson process with exponentially
distributed inter-arrival times between batches

* Batch size = Number of jobsin a batch (random variable)

| = Average Batch Arriva b, =P{rjobsinabatch} r=1.2,...
Rate $ ;
b(z)=g b,z
B é‘r:l
b=arb,

I
=LY

r
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The MXI/M/1 Queue

' Po =Py for k=0 Balance
k-1 )
(I +mp, =mpy, + é Ib.ip for k31 Equatlons

i=0
Though these may be solved in the standard fashion,
we will consider a solution approach for directly
obtaining P(2), the Generating Function for the P(2)= a P,z"
number in the system. For this, we would need to n=0
multiply the kit equation above by Z and sum from
k=1tok=p.

K-

é. | pibk-izk

1i=0

[uy

Qox

(I +m)a. pkz —_a pk+1z i+

k=1 kl

=
1l
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Simplifying, weget (1 +MIP@)- P]=CIP(2)- P~ P +I P2D(2)

m,(1- 2)
ml- 2)- 141- b(2)]

. b .
Define r = as the offered traffic

P(2) =

Note that, P(1)=1 is effectively the same as the Normalization
Condition. Using this, we get p, =1- r

-__mi-r)d-2z 2.42
Therefore P(2) - 2)- 121 b (2] (242)
We can invert P(2) or expand it as a power seriesin Z i=0,1,... to
get the state probability distribution. The mean number N in the
system may be directly calculated from P(2) as -

NodP@|  _r(B+b?) (2.43)
dz |,., 2@-r)
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The MX/-/-/K Queue Batch Arrival Queue with Finite Capacity

For operating queues of this type, one must also specify the batch
acceptance strategy to be followed if a batch of size k or more arrrivesin
a system where the number of waiting positions available is less than k.

Partial Batch
Acceptance Strategy
(PBAS)

Whole Batch
Acceptance Strategy
(WBAYS)

Randomly choose as Accept the batch only if
many jobs from the batch all itsjobs may be
as may be accommodated accommodated;
in the buffer otherwise, reject al jobs
of the batch
Copyright 2002, Sanjay K. Bose 15

MIX}/M/-/- types of queues may be operated and
analyzed under either the PBAS or the WBAS strategy

See Section 2.10 where this analysisis done for a
MIX}/M/s/s queue. The state distribution for this
gueue are given by

|k

p,=—a pf .; i=12..,s (2.46)
Jmi_

¥
where f, =8 b, i=12...

k=i
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