

,
,
)

M/G/1/ \sim Queue:Single server, Infinite number of waiting
positionsService discipline assumed to be FCFS unless otherwise specified.
Mean results same regardless of the service disciplineArrival Process:Poisson with average arrival rate I
Inter-arrival times exponentially
distributed with mean 1/IService Times:Generally distributed with pdf b(t), cdf
B(t) and L.T. $[b(t)]=L_B(s)$

Copyright 2002, Sanjay K. Bose

VI	
can change at most by	For systems where the system state
by an arriving custom	r will be the same as that seen by a
departing customer	a will be the same as that seen by a
State Distribution at th	e Arrival Instants will be the same as
the State Distribution a	t the Departure Instants
PASTA: Poisso	n Arrival See Time Averages
State Distributions at	ia Moments seen by an arriving
cusiomer will de ine sa	ne as inose observea ai an arburariiy

6

$$n_{i+1} = a_{i+1} \qquad for \quad n_i = 0 \qquad (3.11)$$

= $n_i - 1 + a_{i+1} \qquad for \quad n_i = 1, 2, 3....$
or
 $n_{i+1} = n_i - U(n_i) + a_{i+1} \qquad for \quad n_i = 0, 1, 2, 3, ...$ (3.12)

$$P(z) = A(z)E\{z^{n-U(n)}\} = A(z)\sum_{k=0}^{\infty} z^{k-U(k)}P\{n=k\}$$

= $A(z)\left[z^{0}p_{0} + \sum_{k=1}^{\infty} z^{k-1}p_{k}\right] = A(z)\left[p_{0} + \frac{1}{z}\sum_{k=0}^{\infty} z^{k}p_{k} - \frac{1}{z}p_{0}\right]$
= $A(z)\left[\frac{1}{z}P(z) - \frac{1}{z}p_{0}(1-z)\right]$
$$P(z) = \frac{(1-r)(1-z)A(z)}{A(z)-z}$$

= $\frac{(1-r)(1-z)L_{B}(1-1z)}{L_{B}(1-1z)-z}$
P-K
Transform (3.14)
Equation

Substituting $s = (\mathbf{l} - \mathbf{l}z)$ $L_T(s) = \frac{s(1 - \mathbf{r})L_B(s)}{s - \mathbf{l} + \mathbf{l}L_B(s)}$ (3.15) Substituting $T = Q + X, Q^A X$ and $L_B(s) = E\{e^{-sX}\}$	
$L_{\mathcal{Q}}(s) = \frac{L_T(s)}{L_B(s)} = \frac{s(1-\mathbf{r})}{s-\mathbf{l}+\mathbf{l}L_B(s)} $ (3.16)	
$L_T(s)$ and $L_Q(s)$ are the L.1.s of the pdfs of the total delay and the queueing delay as seen by an arrival in a FCFS M/G/1 queue.	
An alternate approach for deriving $L_T(s)$ and $L_Q(s)$ may be found in Section 3.7	
Copyright 2002, Sanjay K. Bose 24	

For the case
where the
arrival A
comes to a
non-empty
queue
$$E\{e^{-sD_1}\} = \int_{y=0}^{\infty} E\{e^{-sD_1} | D_0 = y\} f_{D_0}(y) dy$$
$$= \int_{y=0}^{\infty} [\exp[-y\{I - IL_{BP}(s)\}] f_{D_0}(y) dy$$
$$= L_{D_0}(I - IL_{BP}(s))$$
Using (3.21), we then get
$$E\{e^{-sD_1}\} = \frac{1 - L_B(I - IL_{BP}(s))}{\overline{X}(I - IL_{BP}(s))}$$
(3.22)
Copyright 2002, Sanjay K. Bose

Therefore, considering both the cases where Customer A finds
the queue empty and non-empty -
$$\mathcal{L}_{Q}(s) = (1-r) + r \frac{1-\mathcal{L}_{BP}(s)}{(s+l-l\mathcal{L}_{BP}(s))\overline{X}} \qquad (3.24)$$
and
$$\mathcal{L}_{T}(s) = \mathcal{L}_{Q}(s)\mathcal{L}_{B}(s) \qquad (3.25)$$
L₁(s) and L_Q(s) are the L.T.s of the pdfs of the total delay and the queueing
delay as seen by an arrival in a LCFS M/G/1 queue.
The results obtained for the M/G/1 queue may be used to obtain the delay
distributions for the M/D/1 queue as well. This is given in Section 3.6.

For both Cases (a) & (b), the pdf of the *elapsed service time x for the job currently in service* when the system is examined will be give by $[1 - B(x)]/\overline{X}$ using residual life arguments.

We can also show that

$$\begin{split}
&\sum_{k=1}^{\infty} A_k = I\overline{X} = r \\
&A_k = \sum_{j=k} a_j = \sum_{j=k}^{\infty} \int_0^{\infty} \frac{(Ix)^j}{j!} e^{-Ix} b(x) dx \\
& \qquad \text{for} \\
&= \int_0^{\infty} \frac{(Ix)^{k-1}}{(k-1)!} e^{-Ix} [1-B(x)]I dx
\end{split}$$

