Equilibrium Analysis
of
the M/G/1 Queue

Copyright 2002, Sanjay K. Bose

1. Mean Analysis using Residual Life Arguments
(Section 3.1)

2. Analysis using an Imbedded Markov Chain Approach
(Section 3.2)

3. Method of Supplementary Variables (done later!)
(http://home.iitk.ac.in/~skb/gbook/MG1_SupVar.PDF)

Method of Stages or other exact/approximate analytical methods may
also be used
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Why isthe M/M/1 queue so easy to anayze while the analysis of the
M/G/1 queue is substantially more difficult ?

e State description for M/M/1 is simple as one needs just one
number (i.e. the number in the system) to denote the system state.

* Thisis possible because the exponential service time distribution is
memoryless and service aready provided to the customer currently
in service need not be considered in the state description.

* Thisis not true for the M/G/1 queue. Its general state description
would require specification of both the number currently in the
system and the amount of service aready provided to the customer
currently being served.
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M/G/1/¥ Queue: Single server, Infinite number of waiting
positions

Service discipline assumed to be FCFS unless otherwise specified.
Mean results same regardless of the service discipline

Arrival Process: Poisson with average arrival rate |
Inter-arrival times exponentially
distributed with mean 1/1

Service Times: Generadlly distributed with pdf b(t), cdf

B(t) and L.T.[b(t)]=Le(9)
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Residual Life Approach for Ahels e

Analyzing the M/G/1 Queue L» EDG =
(Section 3.1) :I:DO_l

Deprtures

Note that this approach can only give the mean results for the
performance parameters - state distributions cannot be found

We will tacitly assume a FCFS queue. However, since only the mean
results are being obtained, these will be the same for queues with
other service disciplines, such as LCFS S RO etc..
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Consider a particular arrival of interest entering the M/G/1 queue

Let r = (random) residua service time of the customer (if any)
currently in service

R=E{r} Mean Residua Service Time

Then W, = N,E{ X} + R=I W,E{X} +R
_ R
@)
where r:IE{X}:Iizl—
m

We still need to find R to find W, . However, once W, is known, the
results N, N and W may be found directly from that.
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r(t) R may be found as the time

X
X

Residua Service Timer(t) asaFunction of t

average of r(t) usng a
graphical approach, as shown

R=limgy R where

M® 1

S X t R = OV(t)dt@:l'a X2

IM@p) 1 "M X2
2t mpd2”
For t® |, i<
1 —_—
M) o R:? T o
1105 _
Xi ® X 2 .
M@ G2 W, = I X PollaczekcKhinchine (3 )
21-r) OorPK Formula
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| Y2
W. =
R For the M/M/1 quede
| X2 E{X}=1Um
W=W._ +E X} = + _
A HEX 2(1- 1) E{X?}=2/n?
12x2
No =IWo = 21- 1) Substituting these
lead to the same
— results as obtained
Ciwe X directly for the
2 ) " M/M/1 queue
earlier

Copyright 2002, Sanjay K. Bose




P{server isbusy}=r=I E .
PE server not b?g/} =(L-r §X} = R= (1-r)E{r | system found empty on arrl\{al}
(See page 59 for justification) +r E{r | system found not empty on arrival}

Note that the counter-intuitive nature of the aboveresult, i.e. that it is

1 s 0 1. . .
ng +71ra¢her than EX illustrates the Paradox of Residual Life
o

Arrival to a non-empty queue samples an ongoing service time but
would tend to select longer service times more than shorter ones.

Copyright 2002, Sanjay K. Bose 9

System examined at arbitrary timeinstant t

Some Residual Life Results

7% e Y e

Eft, -t,.,}=X 2 — —>
b _:>V:E>T+ESTX Time
E{(t; - t.)%=X? 2 2 X
where X isalifetimeand Y isthen !
referred to asthe residual lifetime Arrivals coming at timeinstantst; i=1,2,...............
_ Xy (%) o —
fe(¥)= < where X isthe pdf of the selected lifetime
For the distribution of Y, we have the following results
1
fy(y)dy:P{y£Y£y+dy}:7[l- Fx (y)ldy (37
@ 17 0 1-L,(s)
L, (8)=LTE=- =)« (ydyT=—2> 3.8
v (9) gx XOOX(Y) yE x (3.8)
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The Imbedded Markov Chain Approach (M/G/1 Queue)
(Section 3.2)

* Choose imbedded time instants t; i=1, 2, 3.....¥ as the instants
just after the departure of jobs from the system (after completing
service)

* At these time instants, we can describe the system state by the
number in the system, i.e.

n; = Number left behind in the queue by the it departure

* We can easily see (shown subsequently) that the sequence n
forms a Markov Chain, which can be solved to obtain the
equilibrium state distribution at these specially chosen time
instants (“the departure instants”)
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Useful Results Applicable to the M/G/1 Queue

Kleinrock's Result: For systems where the system state
can change at most by +1 or -1, the system distribution as seen
by an arriving customer will be the same as that seen by a
departing customer

State Distribution at the Arrival | nstants will be the same as
the State Distribution at the Departure | nstants

PASTA: Poisson Arrival See Time Averages

State Distributions and Moments seen by an arriving
customer will be the same as those observed at an arbitrarily
chosen timeinstant under equilibrium conditions
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i departure leaves -
non-empty system (i+1)" departure
n>0 Me1= N-1+a,,

(i+ l)th servicetime

Q.1 arrivalsin
(i+1)" servicetime

Departure L eaves System Non-empty

n,=n-1+a,, =12, ...
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i"™ departure leaves
empty system (i+1)" departure
n=0 Miv1= 3sq

(i+ l)th servicetime

First Arrival to 8.1 arrivalsin
the system after it (i+2)" service time
becomes empty

Departure Leaves System Empty

Na=a, =12
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(3.11)

Mg =84 for n=0
=n-1+a, for n =123.....
or
for n=0123,..... 312

Ny=n-U(n)+a,

15

Copyright 2002, Sanjay K. Bose

Taking expectations of LHS and RHS of :> E{U(n)}=E{a, .}

(3.11) or (3.12)

E{U(n)}=1- p

¥

Since
E{a.}= dl t)b(t)dt =1 X=r
0

Therefore Po=1-r P{ System Empty}
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P(2) Generating Function for the Number in the System

3 . " .
P(2)=E{z"} = é_ Z“P{n, =k} P..(2) = E{Z" V" E{ 21}
k=0
P.(2 =E{z"*} = g ZP{n,,, =K} Solve for Transient Solution
k=0

For Equilibrium State Distribution
1. Drop subscript “ i ” since equilibrium conditions are considered
2.UseA@)=Lg(l -12) (3.13)
3. Use the following results -
A€2)=-1L¢( -120 AE)=-1LgO)=IX=r
AZ)=12L@l -12) A%D)=12L0)=12X?
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P(2) = ARE[Z "} = A4 2V ®P(n=k)
k=0

é, § . U € 14 1 U
=AD&z pota 2 Pu=ADer - a Z Pe- < Poll
é k=L Q &  Zx=o Z 0

= A P(@)- 2 ol 2

_@-r)d- 9A(2

P(2) =
Al2)- z P-K
- - - Transform (3.149)
_ @- r)@- L0 -12 Equation
Lg(l -12)-2
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Under equilibrium conditions, P(z) was derived at the customer
departure instants. However -

« It will hold at the customer arrival instants (Kleinrock’s Result)

« It will also hold for the time averages or at an arbitrary time
instant under equilibrium conditions

¥
Expressing P(2) = é_ a, z (Taylor Series Expansion)

i=0

We can obtain a; = P{i customersin the system} under equilibrium
conditions
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Moments of the system parameters (e.g. number in the system, may be
computed directly from P(2)

Forthis useA()=1 A®)=IX=r  A€)=12X?2

P(l) =lim P(Z) =lim (1' r)[(l' Z)qu) - A(Z)] - (1' r) =1
®1 ®1 qu)_ 1 r-1

Thisresult, i.e. P(1) must be unity could have been used to obtain p,
directly, instead of obtaining it as done earlier

| 2X?2
2(1-r1)

Mean number in system

Similarly N =p¢)=r +

Knowing N, the other parameters N,,W, and W, may be calculated
as before
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_ 1 x2
ST 21 )
12x2 o Ix?
N=r + b W, =W- X =
2(1- 1) < ’ 21-r)
x2
97 2- 1)
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Delay Distribution in a FCFS M/G/1 Queue

T Total time spent in system (r.v.) by an arrival
Q Total waiting time (r.v.) before service begins for an
arrival
T=Q+X X

v

L () =E{e 7'} = Lo (s)Lg(9)

‘ Lg(s) isknown if the distribution of the servicetime X isgiven
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Consider aparticular job arrival and its departure (say the nth one) in
aFCFS M/G/1 queue

The number of customers %gﬁg?ﬁfg’f
that the n user will see 3 T A
left behind in the queue "
when it departs will bethe| —— X — P
number of arrivals that Qﬂ?ﬁ o Time
A ] R vice starts ror

occurred while it was in . the ri ar rival
the system. n" arrival
Therefore L (I - 12)=P(2)
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substituting s= (I -12) ) LT(s):SSfll'i—?LLB((SS)) (3.15)
B

Substituting T=Q+ X, @*Xand L,(s)=E{e ¥}

Li(s)_ s{@-r) (3.16)
Lg(s) s-I +1Lg(s)

Lo (9=

L+(s) and L(s) are the L.T.s of the pdfs of the total delay and the queueing
delay as seen by an arrival in a FCFS M/G/1 queue.

An dternate approach for deriving L+(s) and L(s) may be found in
Section 3.7
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Busy Period Analysis of a M/G/1 Queue (Section 3.4)

N U(t)=0 during Idle Period
U()>0 during Busy Period
" oo ® g Busy
A Cycle consists of the
combination of successive
» Idle and Busy periods
e
Period -
Busy Period "Time

Unfinished Work U(t) in aM/G/1 Queue
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Idle Period

Exponentially distributed with mean 1/I
fe®=nme™ t30

I
s+

Lip(s) =

Thiswill have the same distribution as an inter-arrival time
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Busy Period

Consider abusy period that starts with the arrival of customer A,.
Let X, bethe servicetimefor A,.

Let there be n* arrivals (Ayy..coveveeenenee. , A1) that arrive during the
sarvice time Xy, in the sequence A,............. s A

Note that the busy period BP will consist of the sum of X, and n*
sub-busy periods.

Each of the sub-busy periods arei.i.d. random variables with the
same distribution as that of the busy period BP (to be found)

BP =X, +BP, +.......... +BP...  BP"BR, BPAX, ",k
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E{e sP | X, =xn*=k} =¢ SX[LBP(S)]k

BP $ (1" k
Bl ™) X, = =e = § "= Hlen(9)]
k=0 :
=g sxe- | xel XLgp ()
= @ X(sH -1 Lep(S)
¥
Lep (5) = E{e ®} = cp " 1 terOp(x)ix

x=0

Lep(9) =Lg(s+1 - 1 Lgp(9) (319)

Solve (3.19) to obtain Lg(s)

The moments of BP may be obtained directly from (3.19) using the
moment generating properties of the L.T. Lgp(S). See Section 3.4
for the mean and some higher moments of BP.
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Delay Distribution in aLCFS M/G/1 Queue

En(jj o;] Customer A's Customer A
Residu: i d
Sidus service starts eparts
Service Time v

Do D:

T >
Customer A Queuing Delay Ser\fn ceAume
arrivestoa  for Customer A or
non-empty

queue

Customer arrival/departure instants and delaysin a
LCFS M/G/1 Queue
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Queueing Delay Q= Dy+D; waiting time in queue before service

D, = Residual service time of job during whose service A arrives

D,=0 if Aarrivesto an empty queue (probability = 1-r )

fo, 0 =2 (3:20)
Lo, (9) = %_B(S) (321)

D, will consist of sub busy periods, one associated with each of the
customer arrivalsin D,

Note that D, and D, are not independent of each other
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Lo(s) = E{e'SQ}= (A-r)+r E{e'SQ|arrivaI tonon - empty queue}

=@-r)+r E{exp(- s(D, + Dl))|arrival tonon- empty queue}

E{e ™ 1D, =y, N, =nf=[Leo (9"

For the case -0y - oy n
i Ele 1D, =y, Ny =nf=e ¥ [Lgs (5]
i) which leadsto
comesto a
non-empty N -0 (5 L n
queue E{e | Do -y}-:':}oTe YLep (9" =exp[- Y1 - 1 Lep(9)}]
Efe @ 1D, =y} =expl- ¥is+1 - I Lgp(s)}]
Copyright 2002, Sanjay K. Bose 31
¥
Efe o} (‘JE{e' 1D, = y}fDO (y)dy
y=0
¥
Cor the coce :ygexp[-y{l 1 Lep (}]fo, (Y)dly
where the
arrival A =Lp, (I - LBP(S))
comesto a
TEAE 28 Using (3.21), we then get
queue
1- Lg(l -1 Lge(s
E{e’ le}: _B( ge () 3.22)
X(I' - I'Lgp(s))
Copyright 2002, Sanjay K. Bose 32
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Similarly

For the case
where the
arrival A
comesto a
non-empty
queue

.

el @)= ole 2o = o,

y=0

= Jexpl- ¥is+1 - 1 Lgp (9)}fo, (Y)dly

y=0
=Lp, (S+| -1 LBP(S))

Using (3.21), we then get

E{e-sQ}:l'_LB(S"'l - 1 Lgp(9)
X(s+!| - I Lgp(9)
- 1-Lee(®)
T X(s+1 - 1 Lge(9)

(3.23)
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Therefore, considering both the cases where Customer A finds
the queue empty and non-empty -

M. 1- Lge(9)
Lol = O L (9% (329
and
Ly (8) =Lg(s)Lg(9) (3.25)

L+(s) and L(s) are the L.T.s of the pdfs of the total delay and the queueing
delay as seen by an arrival in a LCFS M/G/1 queue.

The results obtained for the M/G/1 queue may be used to obtain the delay
distributions for the M/D/1 queue aswell. Thisis given in Section 3.6.
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An Elapsed Time Approach for the M/G/1 Queue

Allows us to show that the state distribution at the customer
departure instants will be the same as the equilibrium state
distribution without using either Kleinrock’s Principle or

PASTA
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rt)

X, X, X3 X t

Imbedded Points at the Job Departure
Instants of the M/G/1 Queue

Fori=0,12.......¥

0= P{i jobsleftin system as seen
by a departing job}

p; = P{i jobsin system as seen at
an arbitrarily time instant
between successive imbedded

points}

Note that -

*p,i=0,1,2.......¥ istheequlibrium state distribution of the system

* Wewant to provethat p=¢ i=0,1,2.......¥ without using either

Kleinrock’s Principle or PASTA
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Arrival Process: Poisson with rate|

Service Time: pdf b(t), odf B(t), L.T. La(9)=LT[b(0)]
Mean E{X} =X = %n

NN

a, = P{karrivasinaservicetime} = OTe"Xb(x)dx k=01.....¥

x=0

¥
with generating function  A(2)=§ a,z" =Lg(l - 12)
k=0

We now focus on the Markov Chain at only the imbedded points
corresponding to departures from the system
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For thisimbedded chain, we had obtained the generating function
earlier (asP(2) in Eq. (3.14)).

We write this again as Q(2)
¥
i _@-na-29A2 o
Q(z):é_q.zJ == 7 r=1X
o A2 - z
By expanding this, we can get
Qo =1-r
1
o, =—[ao(1- a,)] k=1
a0
1€ 51 y
Ok =— &1 - A Gj@kj - Uodi1U k=2,...... ¥
a0 g =1 a
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Alternatively, we may note that this imbedded Markov Chain has
the following state transition probabilities -

Qi =ay j=0
=y j=12,....... ¥

Its equilibrium state probabilities { ¢} may be obtained by solving

¥
G =Q ;4 K=0L...,¥

i=0

¥
along with the normalization condition  § q, =1
k=0

This solution method, which is used to directly obtain Q(z), has been
given in more detail in the notes.
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D = Mean time interval between successive embedded points
1 — _
D= %(l_ +X)+(1- go)X

:x"'%l

Using this, p, (of the equilibrium state distribution) may also be obtained
as the fraction of time the system staysidle, in thetimeinterval between
successive imbedded points

1
Qo .
O I S Y Same as obtained from
>7+q0|1 O+ earlier analysis
Copyright 2002, Sanjay K. Bose 40
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The other equilibrium state probabilities p,, k¥ 1 are obtained as the
<«——probability of the event of examining the system at an arbitrary time
instant and finding k jobs in the system, where k3 1.

(Since k=0 is not being considered, this arbitrarily chosen time instant
will not be one where the system is empty. So if the system became
empty at the last imbedded point, the time instant chosen will have to
fall after the arrival of the first customer coming subsequent to the
imbedded point where the system became empty.)

Case(a) Timeinstant fallsin aservicetimefollowing an
imbedded point where the system became empty.

Case(b) Timeinstant fallsin aservicetime following an
imbedded point where the system was not empty
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- . QO)?
The probability of occurrence of Case (a) will be —
X+0qy—
|
- . ;X
The probability of occurrence of Case (b) will be — 1
X+~
|

when the system state at the earlier imbedded point (seen left
behind by the departing customer) isj for j=1,2,.....K
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For both Cases (a) & (b), the pdf of the elapsed service time x for
the job currently in service when the system is examined will be
giveby [1- B(x)] / X using residual life arguments.

Case (a)
Therefore

Case (b)

0 <+
BX  Th(10F 1 BO) 4

1-Jk- 1 X
|

0
& aX 0N 1 B o
j=1§)?+qoiio (k' J)I X

|
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Let

A= P{kor morejob arrivalsin aservicetime}  k=0,1,2,.....¥

A =1
3
From definition A =aay k=01.....¥
of A, k
&
ag=A - An k=01....... ¥
Copyright 2002, Sanjay K. Bose 44
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We can also show that

¥
aA=IX=r
k=1
y ¥ i
_2 . _8 X" i
A —a_ a; —a_ Oj—!e b(x)dx
i=k =0 for
¥ k-1 k=12,.....¥
(I X ) 1o
SRV 'X[1- B(X)] dx
(k - D!
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Applying these to the expression for p, given earlier, we get
® q, & & a0 u
pkzg 0 BAta JEAk-j+1l,J
Qo+ T &8 i=8U0 g f
é K a8 0 u
= PoA + é. &l FAcjal for
CENER-C ] @ k=1.2,.....¥
¢  famo, U
=QoéAta JEAk-jﬂl,J
e =é%g @
46
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e gao U
(:EA‘K +é g_JZAk—j+ll;l:q_k
@ j=1 qOﬂ g qO

we then get the desired result

P= i
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fork=12,......¥
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