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Equilibrium Analysis

of

the M/G/1 Queue
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1. Mean Analysis using Residual Life Arguments

    (Section 3.1)

2. Analysis using an Imbedded Markov Chain Approach

    (Section 3.2)

3. Method of Supplementary Variables  (done later!)

    (http://home.iitk.ac.in/~skb/qbook/MG1_SupVar.PDF)

Method of Stages or other exact/approximate analytical methods may
also be used
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Why is the M/M/1 queue so easy to analyze while the analysis of the
M/G/1 queue is substantially more difficult ?

• State description for M/M/1 is simple as one needs just one
number (i.e. the number in the system) to denote the system state.

• This is possible because the exponential service time distribution is
memoryless and service already provided to the customer currently
in service need not be considered in the state description.

• This is not true for the M/G/1 queue. Its general state description
would require specification of both the number currently in the
system and the amount of service already provided to the customer
currently being served.
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M/G/1/∞ Queue: Single server, Infinite number of waiting
              positions

Service discipline assumed to be FCFS unless otherwise specified.
Mean results same regardless of the service discipline

Arrival Process:               Poisson with average arrival rate λ
                                           Inter-arrival times exponentially

              distributed with mean 1/λ

Service Times: Generally distributed with pdf b(t), cdf
                                            B(t) and L.T.[b(t)]=LB(s)
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Residual Life Approach for
Analyzing the M/G/1 Queue
(Section 3.1)

Arrivals
M/G/1λ

E{X}=1/µ

Departures

Note that this approach can only give the mean results for the
performance parameters - state distributions cannot be found

We will tacitly assume a FCFS queue. However, since only the mean
results are being obtained, these will be the same for queues with

other service disciplines, such as LCFS, SIRO etc..
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Consider a particular arrival of interest entering the M/G/1 queue

Let r = (random) residual service time of the customer (if any)
currently in service

R=E{r}     Mean Residual Service Time

RXEWRXENW qqq +=+= }{}{ λ

)1( ρ−
=

R
Wq

Then

where
µ
λ

λλρ === XXE }{

We still need to find R to find Wq . However, once Wq is known, the
results Nq, N and W may be found directly from that.
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r(τ)

τ

X1

X1 X2

X2

X3 X4

X4

Residual Service Time r(τ) as a Function of τ

R may be found as the time
average of r(τ) using a
graphical approach, as shown
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Pollaczek-Khinchine
or P-K Formula

(3.2)

(3.1)
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For the M/M/1 queue

E{X}=1/µ,

E{X2}=2/µ2

Substituting these
lead to the same
results as obtained
directly for the
M/M/1 queue
earlier
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R = (1-ρ)E{r | system found empty on arrival}
      + ρE{r | system found not empty on arrival}

P{server is busy}=ρ=λE{X}
P{server not busy}=(1-ρ)
(See page 59 for justification)
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Note that the counter-intuitive nature of the above result, i.e. that it is
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1
illustrates the Paradox of Residual Life

Arrival to a non-empty queue samples an ongoing service time but
would tend to select longer service times more than shorter ones.
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Some Residual Life Results

Time

tk-1 tk tk+1

t

Y

Arrivals coming at time instants ti i=1,2,...............

System examined at arbitrary time instant t
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where X is a lifetime and Y is then
referred to as the residual lifetime
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The Imbedded Markov Chain Approach (M/G/1 Queue)
(Section 3.2)

• Choose imbedded time instants ti i=1, 2, 3…...∞ as the instants
just after the departure of  jobs from the system (after completing
service)

• At these time instants, we can describe the system state by the
number in the system, i.e.

ni = Number left behind in the queue by the ith departure

• We can easily see (shown subsequently) that the sequence ni

forms a Markov Chain, which can be solved to obtain the
equilibrium state distribution at these specially chosen time
instants (“the departure instants”)
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Kleinrock's Result: For systems where the system state
can change at most by +1 or -1, the system distribution as seen
by an arriving customer will be the same as that seen by a
departing customer
State Distribution at the Arrival Instants will be the same as
the State Distribution at the Departure Instants

PASTA: Poisson Arrival See Time Averages
State Distributions and Moments seen by an arriving
customer will be the same as those observed at an arbitrarily
chosen time instant under equilibrium conditions

Useful Results Applicable to the M/G/1 Queue
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ith departure leaves
non-empty system

ni > 0
(i+1)th departure

ni+1 = ni-1+ai+1

ai+1 arrivals in
(i+1)th service time

(i+1)th service time

Departure Leaves System Non-empty

ni+1 = ni  - 1 + ai+1       ni =1,2,………….
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ith departure leaves
empty system

ni = 0
(i+1)th departure

ni+1 = ai+1

ai+1 arrivals in
(i+1)th service time

(i+1)th service time

First Arrival to
the system after it
becomes empty

Departure Leaves System Empty

ni+1 = ai+1       ni =1,2,………….
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Taking expectations of LHS and RHS of
(3.11) or (3.12)

E{U(ni)}=E{ai+1}
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Therefore    p0 =1-ρ              P{System Empty}



9

Copyright 2002, Sanjay K. Bose 17

∑

∑
∞

=
+

+
+

∞

=

===

===

0
1

1
1

0

}{}{)(

}{}{)(

k
i

kin
i

k
i

kin
i

knPzzEzP

knPzzEzP }{}{)( 1)(
1

+−
+ = iainUin

i zEzEzP

Solve for Transient Solution

For Equilibrium State Distribution

1. Drop subscript “ i ” since equilibrium conditions are considered

2. Use A(z)=LB (λ - λz)           (3.13)

3. Use the following results -
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P(z) Generating Function for the Number in the System
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Under equilibrium conditions, P(z) was derived at the customer
departure instants. However -

• It will hold at the customer arrival instants (Kleinrock’s Result)

• It will also hold for the time averages or at an arbitrary time
instant under equilibrium conditions

∑
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i

i
i zzP αExpressing (Taylor Series Expansion)

We can obtain αi = P{i customers in the system} under equilibrium
conditions
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Moments of the system parameters (e.g. number in the system, may be
computed directly from P(z)

For this, use A(1)=1 ρλ ==′ XA )1( 22)1( XA λ=′′
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This result, i.e. P(1) must be unity could have been used to obtain p0

directly, instead of obtaining it as done earlier
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Knowing N, the other parameters Nq,W, and Wq  may be calculated
as before
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Delay Distribution in a FCFS M/G/1 Queue

T Total time spent in system (r.v.) by an arrival

Q Total waiting time (r.v.) before service begins for an
arrival

XQXQT ⊥+=

)()(}{)( sLsLeEsL BQ
sT

T == −

LB(s) is known if the distribution of the service time X  is given
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Consider a particular job arrival and its departure (say the nth one) in
a FCFS M/G/1 queue

Time

Xn

Tn

Qn

nth arrival

Service starts for
the nth arrival

Service ends for
the nth arrival

The number of customers
that the nth user will see
left behind in the queue
when it departs will be the
number of arrivals that
occurred while it was in
the system.

)()( zPzLT =− λλTherefore
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Substituting   s = (λ - λz)
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LT(s) and LQ(s) are the L.T.s of the pdfs of the total delay and the queueing
delay as seen by an arrival in a FCFS M/G/1 queue.

An alternate approach for deriving LT(s) and LQ(s) may be found in
Section 3.7
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Busy Period Analysis of a M/G/1 Queue  (Section 3.4)

Time

U(t) Cycle

Busy Period

Idle
Period

Unfinished Work U(t) in a M/G/1 Queue

U(t)=0   during Idle Period

U(t)>0 during Busy Period

A Cycle consists of the
combination of successive
Idle and Busy periods
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Idle Period

Exponentially distributed with mean 1/λ

λ
λ
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This will have the same distribution as an inter-arrival time
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Busy Period

Consider a busy period that starts with the arrival of customer A1.

Let X1 be the service time for A1.

Let there be n* arrivals (A2,................., An*+1) that arrive during the
service time X1, in the sequence A2,............., An*+1.

Note that the busy period BP will consist of the sum of X1 and n*
sub-busy periods.

Each of the sub-busy periods are i.i.d. random variables with the
same distribution as that of the busy period BP (to be found)

1*21 .......... ++++= nBPBPXBP
kj BPBP ⊥ 1XBPj ⊥ kj,∀
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Solve (3.19) to obtain LBP(s)

The moments of BP may be obtained directly from (3.19) using the
moment generating properties of the L.T. LBP(s). See Section 3.4
for the mean and some higher moments of BP.
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Delay Distribution in a LCFS M/G/1 Queue

Customer A
arrives to a
non-empty

queue

Customer A
departs

Customer A's
service starts

End of
Residual

Service Time

D0 D1

X
Service time

for A

Q
Queuing Delay
for Customer A

Customer arrival/departure instants and delays in a
LCFS M/G/1 Queue
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D0 = Residual service time of job during whose service A arrives

        D0=0  if A arrives to an empty queue   (probability = 1-ρ )

D1 will consist of sub busy periods, one associated with each of the
customer arrivals in D0

Note that D0 and D1 are not independent of each other
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(3.20)

(3.21)

Queueing Delay Q= D0+D1   waiting time in queue before service
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For the case
where the
arrival A

comes to a
non-empty

queue
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Using (3.21), we then get

(3.22)
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For the case
where the
arrival A

comes to a
non-empty

queue
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Using (3.21), we then get

(3.23)

Similarly
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Therefore, considering both the cases where Customer A finds
the queue empty and non-empty -

XsLs
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and

)()()( sLsLsL BQT =   (3.25)

LT(s) and LQ(s) are the L.T.s of the pdfs of the total delay and the queueing
delay as seen by an arrival in a LCFS M/G/1 queue.

The results obtained for the M/G/1 queue may be used to obtain the delay
distributions for the M/D/1 queue as well. This is given in Section 3.6.



18

Copyright 2002, Sanjay K. Bose 35

An Elapsed Time Approach for the M/G/1 Queue

Allows us to show that the state distribution at the customer
departure instants will be the same as the equilibrium state
distribution without using either Kleinrock’s Principle or
PASTA
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r(τ)

τ

X1

X1 X2

X2

X3 X4

X4

Imbedded Points at the Job Departure
Instants of the M/G/1 Queue

For i=0,1,2……..∞

qi= P{i jobs left in system as seen
         by a departing job}

pi = P{i jobs in system as seen at
         an arbitrarily time instant
         between successive imbedded
         points}

Note that -

• pi, i=0,1,2……..∞  is the equlibrium state distribution of the system

• We want to prove that  pi=qi i=0,1,2……..∞  without using either
Kleinrock’s Principle or PASTA
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Arrival Process: Poisson with rate λ

Service Time: pdf b(t), cdf B(t), L.T. LB(s)=LT[b(t)]

Mean µ
1}{ == XXE
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We now focus on the Markov Chain at only the imbedded points
corresponding to departures from the system
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For this imbedded chain, we had obtained the generating function
earlier (as P(z) in Eq. (3.14)).

We write this again as Q(z)
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Alternatively, we may note that this imbedded Markov Chain has
the following state transition probabilities -
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Its equilibrium state probabilities {qj} may be obtained by solving
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This solution method, which is used to directly obtain Q(z), has been
given in more detail in the notes.
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D = Mean time interval between successive embedded points
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Using this,  p0 (of the equilibrium state distribution) may also be obtained
as the fraction of time the system stays idle, in the time interval between
successive imbedded points
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earlier analysis
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The other equilibrium state probabilities pk, k≥1 are obtained as the
probability of the event of examining the system at an arbitrary time
instant and finding k jobs in the system, where k≥1.

(Since k=0 is not being considered, this arbitrarily chosen time instant
will not be one where the system is empty. So if the system became
empty at the last imbedded point, the time instant chosen will have to
fall after the arrival of the first customer coming subsequent to the
imbedded point where the system became empty.)

Case (a)   Time instant falls in a service time following an
imbedded point where the system became empty.

Case (b)   Time instant falls in a service time following an
imbedded point where the system was not empty
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The probability of occurrence of Case (a) will be

λ
1

0

0

qX

Xq

+

The probability of occurrence of Case (b) will be

λ
1

0qX

Xq j

+

when the system state at the earlier imbedded point (seen left
behind by the departing customer) is j for  j=1,2,…..,k
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For both Cases (a) & (b), the pdf of the elapsed service time x for
the job currently in service when the system is examined will be
give by                           using residual life arguments.XxB )](1[ −
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Case (a)

Case (b)
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Let

Ak = P{k or more job arrivals in a service time}     k=0,1,2,…..,∞
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We can also show that
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Applying these to the expression for pk given earlier, we get
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for k=1,2,......,∞
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Using

we then get the desired result

           pk=qk for k=1,2,......,∞


