Equilibrium Analysis

of the M/G/1 Queue

1. Mean Analysis using Residual Life Arguments
(Section 3.1)
2. Analysis using an Imbedded Markov Chain Approach (Section 3.2)
3. Method of Supplementary Variables (done later!)
(http://home.iitk.ac.in/~skb/qbook/MG1_SupVar.PDF)

Method of Stages or other exact/approximate analytical methods may also be used

Why is the $M / M / 1$ queue so easy to analyze while the analysis of the M/G/1 queue is substantially more difficult ?

- State description for $M / M / 1$ is simple as one needs just one number (i.e. the number in the system) to denote the system state.
- This is possible because the exponential service time distribution is memoryless and service already provided to the customer currently in service need not be considered in the state description.
- This is not true for the $\mathrm{M} / \mathrm{G} / 1$ queue. Its general state description would require specification of both the number currently in the system and the amount of service already provided to the customer currently being served.

M/G/1/ Queue: \quad Single server, Infinite number of waiting positions

Service discipline assumed to be FCFS unless otherwise specified.
Mean results same regardless of the service discipline

Arrival Process: \quad Poisson with average arrival rate λ
Inter-arrival times exponentially distributed with mean $1 / \lambda$

Service Times: Generally distributed with pdf $b(t)$, cdf $B(t)$ and L.T. $[b(t)]=L_{B}(s)$

Residual Life Approach for Analyzing the M/G/1 Queue

(Section 3.1)

Note that this approach can only give the mean results for the performance parameters - state distributions cannot be found

We will tacitly assume a FCFS queue. However, since only the mean results are being obtained, these will be the same for queues with other service disciplines, such as LCFS, SIRO etc..

Consider a particular arrival of interest entering the M/G/1 queue
Let $r=$ (random) residual service time of the customer (if any) currently in service
$R=E\{r\} \quad$ Mean Residual Service Time
Then $\quad W_{q}=N_{q} E\{X\}+R=\lambda W_{q} E\{X\}+R$

$$
W_{q}=\frac{R}{(1-\rho)}
$$

where

$$
\rho=\lambda E\{X\}=\lambda \bar{X}=\frac{\lambda}{\mu}
$$

We still need to find R to find W_{q}. However, once W_{q} is known, the results N_{q}, N and W may be found directly from that.

Residual Service Time $r(\tau)$ as a Function of τ

For $t \rightarrow \infty$,
$\frac{M(t)}{t} \rightarrow \lambda$
$\frac{1}{M(t)} \sum_{i=1}^{M(t)} \frac{1}{2} X_{i}^{2} \rightarrow \overline{X^{2}}$

$$
R=\frac{1}{2} \lambda \overline{X^{2}}
$$

R may be found as the time average of $r(\tau)$ using a graphical approach, as shown

$$
R=\lim _{t \rightarrow \infty} R_{t} \quad \text { where }
$$

$$
R_{t}=\frac{1}{t} \int_{0}^{t} r(\tau) d \tau \cong \frac{1}{t} \sum_{i=1}^{M(t)} \frac{1}{2} X_{i}^{2}
$$

$$
=\frac{1}{2} \frac{M(t)}{t} \frac{1}{M(t)} \sum_{i=1}^{M(t)} \frac{1}{2} X_{i}^{2}
$$

$$
W_{q}=\frac{\lambda \overline{X^{2}}}{2(1-\rho)} \quad \begin{align*}
& \text { Pollaczek-Khinchine } \tag{3.1}\\
& \text { or } P \text {-K Formula }
\end{align*}
$$

$$
\begin{aligned}
& W_{q}=\frac{\lambda \overline{X^{2}}}{2(1-\rho)} \\
& W=W_{q}+E\{X\}=\frac{\lambda \overline{X^{2}}}{2(1-\rho)}+\bar{X} \\
& N_{q}=\lambda W_{q}=\frac{\lambda^{2} \overline{X^{2}}}{2(1-\rho)} \\
& N=\lambda W=\frac{\lambda^{2} \overline{X^{2}}}{2(1-\rho)}+\rho
\end{aligned}
$$

For the M/M/1 queue
$E\{X\}=1 / \mu$,
$E\left\{X^{2}\right\}=2 / \mu^{2}$

Substituting these lead to the same results as obtained directly for the M/M/1 queue earlier

$\mathrm{E}\{r \mid$ system found not empty on arrival $\}=\frac{R}{\rho}=\frac{\overline{X^{2}}}{2 \bar{X}}=\frac{1}{2}\left(\bar{X}+\frac{\sigma_{X}^{2}}{\bar{X}}\right)$
Note that the counter-intuitive nature of the above result, i.e. that it is
$\frac{1}{2}\left(\bar{X}+\frac{\sigma_{X}^{2}}{\bar{X}}\right)$ rather than $\frac{1}{2} \bar{X}$ illustrates the Paradox of Residual Life
Arrival to a non-empty queue samples an ongoing service time but would tend to select longer service times more than shorter ones.

Some Residual Life Results

$f_{\hat{X}}(x)=\frac{x f_{X}(x)}{\bar{X}} \quad$ where \hat{X} is the pdf of the selected lifetime

For the distribution of Y, we have the following results

$$
\begin{align*}
& f_{Y}(y) d y=P\{y \leq Y \leq y+d y\}=\frac{1}{\bar{X}}\left[1-F_{X}(y)\right] d y \tag{3.7}\\
& L_{Y}(s)=L \cdot T .\left(\frac{1}{\bar{X}}-\frac{1}{\bar{X}} \int_{0}^{y} f_{X}(y) d y\right)=\frac{1-L_{X}(s)}{s \bar{X}} \tag{3.8}
\end{align*}
$$

The Imbedded Markov Chain Approach (M/G/1 Queue)

 (Section 3.2)- Choose imbedded time instants $t_{i} i=1,2,3 \ldots . . . \infty$ as the instants just after the departure of jobs from the system (after completing service)
- At these time instants, we can describe the system state by the number in the system, i.e.

$$
n_{i}=\text { Number left behind in the queue by the } i^{\text {th }} \text { departure }
$$

- We can easily see (shown subsequently) that the sequence n_{i} forms a Markov Chain, which can be solved to obtain the equilibrium state distribution at these specially chosen time instants ("the departure instants")

Useful Results Applicable to the M/G/1 Queue

> | Kleinrock's Result: For systems where the system state |
| :--- |
| can change at most by +1 or -1 , the system distribution as seen |
| by an arriving customer will be the same as that seen by a |
| departing customer |
| State Distribution at the Arrival Instants will be the same as |
| the State Distribution at the Departure Instants |

> PASTA: Poisson Arrival See Time Averages
> State Distributions and Moments seen by an arriving customer will be the same as those observed at an arbitrarily chosen time instant under equilibrium conditions

Departure Leaves System Non-empty

$$
n_{i+1}=n_{i}-1+a_{i+1} \quad n_{i}=1,2, \ldots \ldots \ldots \ldots \ldots
$$

Departure Leaves System Empty

$$
n_{i+1}=a_{i+1} \quad n_{i}=1,2, \ldots \ldots \ldots \ldots
$$

$$
\begin{align*}
n_{i+1} & =a_{i+1} & \text { for } & n_{i}=0 \tag{3.11}\\
& =n_{i}-1+a_{i+1} & \text { for } & n_{i}=1,2,3 \ldots \ldots \ldots
\end{align*}
$$

Taking expectations of LHS and RHS of (3.11) or (3.12)

Therefore $\quad p_{0}=1-\rho \quad \mathrm{P}\{$ System Empty $\}$
$P(z)$ Generating Function for the Number in the System
$P_{i}(z)=E\left\{z^{n_{i}}\right\}=\sum_{k=0}^{\infty} z^{k} P\left\{n_{i}=k\right\} \quad \quad P_{i+1}(z)=E\left\{z^{n_{i}-U\left(n_{i}\right)}\right\} E\left\{z^{a_{i+1}}\right\}$
$P_{i+1}(z)=E\left\{z^{n_{i+1}}\right\}=\sum_{k=0}^{\infty} z^{k} P\left\{n_{i+1}=k\right\} \quad$ Solve for Transient Solution

For Equilibrium State Distribution

1. Drop subscript " i " since equilibrium conditions are considered
2. Use $A(z)=L_{B}(\lambda-\lambda z)$
3. Use the following results -

$$
\begin{array}{ll}
A^{\prime}(z)=-\lambda L_{B}^{\prime}(\lambda-\lambda z) & A^{\prime}(1)=-\lambda L_{B}^{\prime}(0)=\lambda \bar{X}=\rho \\
A^{\prime \prime}(z)=\lambda^{2} L_{B}^{\prime \prime}(\lambda-\lambda z) & A^{\prime \prime}(1)=\lambda^{2} L_{B}^{\prime \prime}(0)=\lambda^{2} \overline{X^{2}}
\end{array}
$$

$$
\begin{aligned}
P(z) & =A(z) E\left\{z^{n-U(n)}\right\}=A(z) \sum_{k=0}^{\infty} z^{k-U(k)} P\{n=k\} \\
& =A(z)\left[z^{0} p_{0}+\sum_{k=1}^{\infty} z^{k-1} p_{k}\right]=A(z)\left[p_{0}+\frac{1}{z} \sum_{k=0}^{\infty} z^{k} p_{k}-\frac{1}{z} p_{0}\right] \\
& =A(z)\left[\frac{1}{z} P(z)-\frac{1}{z} p_{0}(1-z)\right]
\end{aligned}
$$

$$
\left.\begin{array}{rl}
P(z) & =\frac{(1-\rho)(1-z) A(z)}{A(z)-z} \\
& =\frac{(1-\rho)(1-z) L_{B}(\lambda-\lambda z)}{L_{B}(\lambda-\lambda z)-z}
\end{array}\right\} \quad \begin{aligned}
& \text { P-K } \tag{3.14}\\
& \text { Transform } \\
& \text { Equation }
\end{aligned}
$$

Under equilibrium conditions, $P(z)$ was derived at the customer departure instants. However -

- It will hold at the customer arrival instants (Kleinrock's Result)
- It will also hold for the time averages or at an arbitrary time instant under equilibrium conditions

Expressing $\quad P(z)=\sum_{i=0}^{\infty} \alpha_{i} z^{i} \quad$ (Taylor Series Expansion)

We can obtain $\alpha_{i}=\mathrm{P}\{i$ customers in the system $\}$ under equilibrium conditions

Moments of the system parameters (e.g. number in the system, may be computed directly from $P(z)$
For this, use $A(1)=1 \quad A^{\prime}(1)=\lambda \bar{X}=\rho \quad A^{\prime \prime}(1)=\lambda^{2} \overline{X^{2}}$
$P(1)=\lim _{z \rightarrow 1} P(z)=\lim _{z \rightarrow 1} \frac{(1-\rho)\left[(1-z) A^{\prime}(z)-A(z)\right]}{A^{\prime}(z)-1}=-\frac{(1-\rho)}{\rho-1}=1$
This result, i.e. $P(1)$ must be unity could have been used to obtain p_{0} directly, instead of obtaining it as done earlier

Similarly $N=P^{\prime}(1)=\rho+\frac{\lambda^{2} \overline{X^{2}}}{2(1-\rho)} \quad$ Mean number in system
Knowing N, the other parameters N_{q}, W, and W_{q} may be calculated as before

$$
N=\rho+\frac{\lambda^{2} \overline{X^{2}}}{2(1-\rho)} \Rightarrow\left\{\begin{array}{l}
W=\bar{X}+\frac{\lambda \overline{X^{2}}}{2(1-\rho)} \\
W_{q}=W-\bar{X}=\frac{\lambda \overline{X^{2}}}{2(1-\rho)} \\
N_{q}=\frac{\overline{X^{2}}}{2(1-\rho)}
\end{array}\right.
$$

Delay Distribution in a FCFS M/G/1 Queue

$T \quad$ Total time spent in system (r.v.) by an arrival
$Q \quad$ Total waiting time (r.v.) before service begins for an arrival

$L_{B}(s)$ is known if the distribution of the service time X is given

Consider a particular job arrival and its departure (say the $n^{\text {th }}$ one) in a FCFS M/G/1 queue

The number of customers that the $n^{\text {th }}$ user will see left behind in the queue when it departs will be the number of arrivals that occurred while it was in the system.

Therefore

$$
L_{T}(\lambda-\lambda z)=P(z)
$$

Substituting $s=(\lambda-\lambda z) \quad \square L_{T}(s)=\frac{s(1-\rho) L_{B}(s)}{s-\lambda+\lambda L_{B}(s)}$
Substituting $T=Q+X, Q \perp X$ and $L_{B}(s)=E\left\{e^{-s X}\right\}$

$$
\begin{equation*}
L_{Q}(s)=\frac{L_{T}(s)}{L_{B}(s)}=\frac{s(1-\rho)}{s-\lambda+\lambda L_{B}(s)} \tag{3.16}
\end{equation*}
$$

$L_{T}(s)$ and $L_{Q}(s)$ are the L.T.s of the pdfs of the total delay and the queueing delay as seen by an arrival in a FCFS M/G/1 queue.

An alternate approach for deriving $L_{T}(s)$ and $L_{Q}(s)$ may be found in Section 3.7

Busy Period Analysis of a M/G/1 Queue (Section 3.4)

Unfinished Work $U(t)$ in a M/G/1 Queue

Idle Period

Exponentially distributed with mean 1λ

$$
\begin{aligned}
& f_{I P}(t)=\mu e^{-\mu t} \quad t \geq 0 \\
& L_{I P}(s)=\frac{\lambda}{s+\lambda}
\end{aligned}
$$

This will have the same distribution as an inter-arrival time

Busy Period

Consider a busy period that starts with the arrival of customer A_{1}.
Let X_{l} be the service time for A_{1}.
Let there be n^{*} arrivals $\left(A_{2}, \ldots \ldots, A_{\mathrm{n}^{*}+1}\right)$ that arrive during the service time X_{1}, in the sequence $A_{2}, \ldots \ldots, A_{\mathrm{n}^{*}+1}$.

Note that the busy period BP will consist of the sum of X_{1} and n^{*} sub-busy periods.

Each of the sub-busy periods are i.i.d. random variables with the same distribution as that of the busy period BP (to be found)

$$
B P=X_{1}+B P_{2}+\ldots \ldots \ldots . .+B P_{n^{*}+1} \quad B P_{j} \perp B P_{k} \quad B P_{j} \perp X_{1} \quad \forall j, k
$$

$$
\begin{align*}
& E\left\{e^{-s(B P)} \mid X_{1}=x, n^{*}=k\right\}=e^{-s x}\left[L_{B P}(s)\right]^{k} \\
& \begin{array}{c}
E\left\{e^{-s(B P)} \mid X_{1}=x\right\}=e^{-s x} \sum_{k=0}^{\infty} e^{-\lambda x} \frac{(\lambda x)^{k}}{k!}\left[L_{B P}(s)\right]^{k} \\
=e^{-s x} e^{-\lambda x} e^{\lambda x L_{B P}(s)} \\
=e^{-x\left(s+\lambda-\lambda L_{B P}(s)\right)}
\end{array} \\
& L_{B P}(s)=E\left\{e^{-s(B P)}\right\}=\int_{x=0}^{\infty} e^{-x\left[s+\lambda-\lambda L_{B P}(s)\right.} b(x) d x
\end{aligned} \begin{aligned}
& L_{B P}(s)=L_{B}\left(s+\lambda-\lambda L_{B P}(s)\right)
\end{align*}
$$

Solve (3.19) to obtain $L_{B P}(s)$
The moments of BP may be obtained directly from (3.19) using the moment generating properties of the L.T. $L_{B P}(s)$. See Section 3.4 for the mean and some higher moments of $B P$.

Delay Distribution in a LCFS M/G/1 Queue

Customer arrival/departure instants and delays in a LCFS M/G/1 Queue

Queueing Delay $Q=D_{0}+D_{1}$ waiting time in queue before service
$D_{0}=$ Residual service time of job during whose service A arrives
$D_{0}=0$ if A arrives to an empty queue (probability $\left.=1-\rho\right)$

$$
\begin{align*}
& f_{D_{0}}(t)=\frac{1-B(t)}{\bar{X}} \tag{3.20}\\
& L_{D_{0}}(s)=\frac{1-L_{B}(s)}{s \bar{X}} \tag{3.21}
\end{align*}
$$

D_{l} will consist of sub busy periods, one associated with each of the customer arrivals in D_{0}

Note that D_{0} and D_{1} are not independent of each other

$$
\begin{aligned}
L_{Q}(s) & =E\left\{e^{-s Q}\right\}=(1-\rho)+\rho E\left\{e^{-s Q} \mid \text { arrival to non }- \text { empty queue }\right\} \\
& =(1-\rho)+\rho E\left\{\exp \left(-s\left(D_{0}+D_{1}\right)\right) \mid \text { arrival to non }- \text { empty queue }\right\}
\end{aligned}
$$

For the case where the arrival A comes to a non-empty qиеие	$\begin{aligned} E\left\{e^{-s D_{1}}\right\} & =\int_{y=0}^{\infty} E\left\{e^{-s D_{1}} \mid D_{0}=y\right\} f_{D_{0}}(y) d y \\ & =\int_{y=0}^{\infty}\left[\exp \left[-y\left\{\lambda-\lambda L_{B P}(s)\right\}\right] f_{D_{0}}(y) d y\right. \\ & =L_{D_{0}}\left(\lambda-\lambda L_{B P}(s)\right) \end{aligned}$ Using (3.21), we then get $\begin{equation*} E\left\{e^{-s D_{1}}\right\}=\frac{1-L_{B}\left(\lambda-\lambda L_{B P}(s)\right)}{\bar{X}\left(\lambda-\lambda L_{B P}(s)\right)} \tag{3.22} \end{equation*}$	
	Copyright 2002, Sanjay K. Bose	32

$$
\begin{align*}
& \text { Similarly } \\
& \hline \begin{array}{c}
\text { For the case } \\
\text { where the } \\
\text { arrival } A \\
\text { comes to a } \\
\text { non-empty } \\
\text { queue }
\end{array}
\end{aligned}\left\{\begin{aligned}
& E\left\{e^{-s Q}\right\}=\int_{y=0}^{\infty} E\left\{e^{-s Q} \mid D_{0}=y\right\} f_{D_{0}}(y) d y \\
&=\int_{y=0}^{\infty}\left[\exp \left[-y\left\{s+\lambda-\lambda L_{B P}(s)\right\}\right] f_{D_{0}}(y) d y\right. \\
&=L_{D_{0}}\left(s+\lambda-\lambda L_{B P}(s)\right) \\
& \begin{array}{rl}
\text { Using (3.21), we then get }
\end{array} \\
& E\left\{e^{-s Q}\right\}=\frac{1-L_{B}\left(s+\lambda-\lambda L_{B P}(s)\right)}{\bar{X}\left(s+\lambda-\lambda L_{B P}(s)\right)} \\
&=\frac{1-L_{B P}(s)}{\bar{X}\left(s+\lambda-\lambda L_{B P}(s)\right)}
\end{align*}\right.
$$

Therefore, considering both the cases where Customer A finds the queue empty and non-empty -

$$
\begin{equation*}
L_{Q}(s)=(1-\rho)+\rho \frac{1-L_{B P}(s)}{\left(s+\lambda-\lambda L_{B P}(s)\right) \bar{X}} \tag{3.24}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{T}(s)=L_{Q}(s) L_{B}(s) \tag{3.25}
\end{equation*}
$$

$L_{T}(s)$ and $L_{Q}(s)$ are the L.T.s of the pdfs of the total delay and the queueing delay as seen by an arrival in a LCFS M/G/1 queue.

The results obtained for the M/G/l queue may be used to obtain the delay distributions for the M/D/l queue as well. This is given in Section 3.6.

An Elapsed Time Approach for the M/G/1 Queue

Allows us to show that the state distribution at the customer departure instants will be the same as the equilibrium state distribution without using either Kleinrock's Principle or PASTA

Note that -

- $p_{i}, i=0,1,2 \ldots \ldots \ldots \infty$ is the equlibrium state distribution of the system
- We want to prove that $p_{i}=q_{i} i=0,1,2 \ldots \ldots \ldots \infty$ without using either Kleinrock's Principle or PASTA

Arrival Process: Poisson with rate λ

Service Time: $\quad \operatorname{pdf} b(t), \operatorname{cdf} B(t)$, L.T. $L_{B}(s)=\mathrm{LT}[b(t)]$
Mean $E\{X\}=\bar{X}=1 / \mu$
$\alpha_{k}=\mathrm{P}\{k$ arrivals in a service time $\}=\int_{x=0}^{\infty} \frac{(\lambda x)^{k}}{k!} e^{-\lambda x} b(x) d x \quad k=0,1, \ldots \ldots \ldots$
with generating function $\quad A(z)=\sum_{k=0}^{\infty} \alpha_{k} z^{k}=L_{B}(\lambda-\lambda z)$

We now focus on the Markov Chain at only the imbedded points corresponding to departures from the system

For this imbedded chain, we had obtained the generating function earlier (as $P(z)$ in Eq. (3.14)).

We write this again as $Q(z)$

$$
Q(z)=\sum_{j=0}^{\infty} q_{j} z^{j}=\frac{(1-\rho)(1-z) A(z)}{A(z)-z} \quad \rho=\lambda \bar{X}
$$

By expanding this, we can get

$$
\begin{array}{ll}
q_{0}=1-\rho & \\
q_{1}=\frac{1}{\alpha_{0}}\left[q_{0}\left(1-\alpha_{0}\right)\right] & k=1 \\
q_{k}=\frac{1}{\alpha_{0}}\left[q_{k-1}-\sum_{j=1}^{k-1} q_{j} \alpha_{k-j}-q_{0} \alpha_{k-1}\right] & k=2, \ldots . ., \infty
\end{array}
$$

Alternatively, we may note that this imbedded Markov Chain has the following state transition probabilities -

$$
\begin{aligned}
q_{j k} & =\alpha_{k} & & j=0 \\
& =\alpha_{k-j+1} & & j=1,2, \ldots \ldots ., \infty
\end{aligned}
$$

Its equilibrium state probabilities $\left\{q_{j}\right\}$ may be obtained by solving

$$
q_{k}=\sum_{j=0}^{\infty} q_{j} q_{j k} \quad k=0,1, \ldots \ldots \ldots, \infty
$$

along with the normalization condition $\sum_{k=0}^{\infty} q_{k}=1$

This solution method, which is used to directly obtain $Q(z)$, has been given in more detail in the notes.
$D=$ Mean time interval between successive embedded points

$$
\begin{aligned}
D & =q_{0}\left(\frac{1}{\lambda}+\bar{X}\right)+\left(1-q_{0}\right) \bar{X} \\
& =\bar{X}+q_{0} \frac{1}{\lambda}
\end{aligned}
$$

Using this, p_{0} (of the equilibrium state distribution) may also be obtained as the fraction of time the system stays idle, in the time interval between successive imbedded points

$$
\left.p_{0}=\frac{q_{0} \frac{1}{\lambda}}{\bar{X}+q_{0} \frac{1}{\lambda}}=\frac{q_{0}}{q_{0}+\rho}=1-\rho\right\} \begin{aligned}
& \text { Same as obtained from } \\
& \text { earlier analysis }
\end{aligned}
$$

The other equilibrium state probabilities $p_{k}, k \geq 1$ are obtained as the \longleftarrow probability of the event of examining the system at an arbitrary time instant and finding k jobs in the system, where $k \geq 1$.
(Since $k=0$ is not being considered, this arbitrarily chosen time instant will not be one where the system is empty. So if the system became empty at the last imbedded point, the time instant chosen will have to fall after the arrival of the first customer coming subsequent to the imbedded point where the system became empty.)

The probability of occurrence of Case (a) will be $\frac{q_{0} \bar{X}}{\bar{X}+q_{0} \frac{1}{\lambda}}$

The probability of occurrence of Case (b) will be $\frac{q_{j} \bar{X}}{\bar{X}+q_{0} \frac{1}{\lambda}}$
when the system state at the earlier imbedded point (seen left behind by the departing customer) is j for $j=1,2, \ldots \ldots, k$

For both Cases (a) \& (b), the pdf of the elapsed service time x for the job currently in service when the system is examined will be give by $[1-B(x)] / \bar{X}$ using residual life arguments.

Therefore
Case (a)

$$
\begin{aligned}
p_{k}= & \left(\frac{q_{0} \bar{X}}{\bar{X}+q_{0} \frac{1}{\lambda}} \int_{0}^{\infty} \frac{(\lambda x)^{k-1}}{(k-1)!} e^{-\lambda x} \frac{1-B(x)}{\bar{X}} d x \quad \text { Case }(b)\right. \\
& \sum_{j=1}^{k}\left(\frac{q_{j} \bar{X}}{\bar{X}+q_{0} \frac{1}{\lambda}} \int_{0}^{\infty} \frac{(\lambda x)^{k-j}}{(k-j)!} e^{-\lambda x} \frac{1-B(x)}{\bar{X}} d x \quad k=1, \ldots . . ., \infty\right.
\end{aligned}
$$

Let
$A_{k}=\mathrm{P}\{k$ or more job arrivals in a service time $\} \quad k=0,1,2, \ldots \ldots, \infty$

$$
\underset{\text { From definition }}{\text { of } A_{k}}\left\{\left\{\begin{array}{cc}
A_{0}=1 \\
A_{k}=\sum_{k}^{\infty} \alpha_{k} & k=0,1, \ldots \ldots \ldots \infty \\
\& & \\
\alpha_{k}=A_{k}-A_{k+1} & k=0,1, \ldots \ldots . \infty
\end{array}\right.\right.
$$

We can also show that

$$
\begin{aligned}
& \sum_{k=1}^{\infty} A_{k}=\lambda \bar{X}=\rho \\
& \begin{aligned}
A_{k} & =\sum_{j=k} \alpha_{j}=\sum_{j=k}^{\infty} \int_{0}^{\infty} \frac{(\lambda x)^{j}}{j!} e^{-\lambda x} b(x) d x \\
& =\int_{0}^{\infty} \frac{(\lambda x)^{k-1}}{(k-1)!} e^{-\lambda x}[1-B(x)] \lambda d x
\end{aligned}
\end{aligned}
$$

for
$k=1,2, \ldots \ldots, \infty$

Applying these to the expression for p_{k} given earlier, we get

$$
\begin{aligned}
p_{k} & =\left(\frac{q_{0}}{q_{0}+\rho}\left[A_{k}+\sum_{j=1}^{k}\left(\frac{q_{j}}{q_{0}}\right) A_{k-j+1}\right]\right. & & \\
& =p_{0}\left[A_{k}+\sum_{j=1}^{k}\left(\frac{q_{j}}{q_{0}}\right) A_{k-j+1}\right] & & \text { for } \\
& =q_{0}\left[A_{k}+\sum_{j=1}^{k}\left(\frac{q_{j}}{q_{0}}\right) A_{k-j+1}\right] & &
\end{aligned}
$$

Using

$$
\left[A_{k}+\sum_{j=1}^{k}\left(\frac{q_{j}}{q_{0}}\right) A_{k-j+1}\right]=\frac{q_{k}}{q_{0}} \quad \text { for } k=1,2, \ldots \ldots, \infty
$$

we then get the desired result

$$
p_{k}=q_{k} \quad \text { for } k=1,2, \ldots \ldots, \infty
$$

