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Analyzing the M/G/1 Queue

using

The Method of Supplementary Variables
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N(t) Number of jobs in system at time t

X0(t) Elapsed service time for job currently in service at time t

(X0(t)=0 if N(t)=0 at the time instant t)

As noted earlier, N(t) would not form a Markov Chain for the
M/G/1 queue.

However, the joint process [N(t), X0(t)] would be a Continuous
Time Markov Process.

The Method of Supplementary Variables focusses on solving the
joint process [N(t), X0(t)] under equilibrium conditions as t→∞.
Eliminating the variable X0(t) by averaging over its distribution
gives the required state probabilities
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Road Map of Approach to be Followed
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Consider a job which requires a service of duration X with pdf b(x)
and cdf B(x).

Let bc(x) be the pdf of the service time X given that X>x, such that
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Equating flows between state k and state (k-1) at equilibrium, t→∞
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Note that for k≥1, there cannot be a transition in ∆x from the state
{N(t)=k+1, X0(t)=x} to the state {N(t+ ∆x)=k, X0(t)=x+ ∆x}.
This is because a departure here would make it impossible for the
new job starting service to have an elapsed service time of x+ ∆x
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For k=1,......,∞, Eq. (6) leads to
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using the definition of pk for k=1,…..,∞

The boundary conditions are obtained by noting that fk(0) is the flow rate
at which the system enters state k when sevice to a job has just started, i.e.
when the elapsed service time is zero, x=0
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We can obtain fk(x) k=1,….,∞  using (8) along with the initial conditions
of (9).
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Initial condition
using (9)
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F(z,x) may be solved using (11) and (12)

A convenient approach for this (refer to notes) is to define a new
variable G(z,x) as
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Using (16) and F(z,0)=G(z,0) and fk(0)=gk(0) for k=0,1,.....,∞ in (12)
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Solving, we
get
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From (18) and the definition of G(z,x) given earlier, we get -
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(20)

as the solution for F(z,x).

This may be inverted or expanded in terms of zk to get fk(x)
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∞

=

=
0

),()(
x

kk dxxtftP

and the corresponding equilibrium
state probabilities pk as ∫

∞

∞→
==

0

)()(lim dxxftPp kk
t

k

Defining F(z) as we can then observe that
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(24)Evaluating F(z)
at z=1,we will
get F(1)=(1-p0)
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This leads to our final result, the generating function P(z) of the
system state probabilities at equilibrium, as
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Note that, as expected, this is the same as the P-K Transform
Equation obtained for the M/G/1 queue using the imbedded

Markov Chain approach.


