Artificial Cavity for Enzymatic Reactions

Enzymes, nature’s creation of catalysts, encapsulate multiple functionalities within
their cavity where the catalytic conversion takes place, and can be extremely active and
selective for a range of chemical conversions. Therefore, in recent years, species with well-
defined inner void spaces able to accommodate guests, also defined as molecular containers,
have been extensively studied. The interest in such systems is driven in part by their potential
utility in areas as diverse as catalysis, recognition, separation, and transport. Generally, the
inner cavity of the molecular container offers an isolated microenvironment wherein
encapsulated guests are exposed to a reduced number of interactions compared to the bulk
solution. Whereas bound guests may interact only with the host or other co-encapsulated
guests, in the bulk guests display a high number of interactions with solvent molecules or
other guests. As a consequence, the properties of the bound guests are usually altered leading
to applications for the resulting encapsulation complexes in different areas of chemical
research. In this regard, the design of molecular container incorporating covalently linked
bisporphyrins has enticed a great deal of attention recently, because of the cofacial
arrangement through rigid/flexible linkers, which can act as molecular clefts for the binding
and activation of a variety of substrates. Of particular interest to us is the design of
bisporphyrins appropriate for applications involving efficient molecular recognition and
catalysis. Bisporphyrin cavities of different shapes and sizes can recognize the substrates for
various practical applications, whereas the presence of metal centers would facilitate further

scope.



A Tunable Cyclic Container
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Cyclic Bisporphyrin Based Flexible Molecular Containers:
Controlling Guest Ammangements and Supramolecular
Catalysis by Tuning Cavity Size
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Proposed Mechanism of the Catalysis:
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Molecular Cleft for Selective Binding
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< Encapsulation of Guest: guest-to-host energy transfer
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< Encapsulation of Guest: host-to-guest electron transfer
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