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In this paper, we show how a fixed-point-based boundary layer analysis can be used to understand phases
and phase transitions in asymmetric simple exclusion processes �ASEPs� with open boundaries. In order to
illustrate this method, we choose a two-species ASEP which has interesting phase transitions not seen in the
one-species case. We also apply this method to the single-species problem where the analysis is simple but
nevertheless quite insightful.
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Asymmetric simple exclusion process �ASEP� �1� in its
simplest form involves particles moving on a one-
dimensional �1D� lattice with a bias in one specific direction.
Due to the mutual exclusion rule, the occupancy of a site by
more than one particle is ruled out. The biased motion of
particles is responsible for a particle current which is a typi-
cal indication of the system being away from the thermody-
namic equilibrium. With open boundaries, the system needs
to be coupled to particle reservoirs, which maintain constant
densities at the boundaries. All these nonequilibrium systems
after sufficiently long time settle in a steady state where
properties such as the average density of particles, current,
etc. are independent of time. A striking feature of the open
system is the boundary-induced phase transition where the
tuning parameters are the boundary densities �2�. Various
bulk phases characterized through distinct current or particle-
density profiles are usually represented in a phase diagram in
the space of the boundary densities.

Unlike equilibrium systems which carry no current, for
ASEP, the information about the change in the boundary
condition �BC� is mediated up to the bulk by the particle
current. Therefore, the issue as how the BCs affect the
boundary layers holds the key to understand the boundary-
induced phase transitions in ASEP. Recent studies �3–5� have
shown that the boundary layer analysis is a very general
approach to probe different models of ASEP. In this ap-
proach, starting with the steady-state hydrodynamic equa-
tion, a uniform approximation for the density valid both in
the bulk and in the boundary region is developed. For par-
ticle nonconserving ASEP, this method shows that the forma-
tion of a discontinuity in the bulk-density profile �or a local-
ized shock� is due to a deconfinement of a boundary layer
from the boundary. This deconfinement is shown to be asso-
ciated with the divergence of the width of the boundary layer
�3�.

In this paper, we show how a fixed-point description of
the boundary layers and the phase-plane trajectories connect-
ing the fixed points can be used to map the bulk phase dia-
gram and identify the phase transitions. As an example, this
method is applied to a particle-number-conserving ASEP that
involves two species of particles �6�. In addition, we also
consider the single-species system, where the analysis is es-
pecially simple.

In the two-species model considered in this paper, par-
ticles, denoted by A and B, move in opposite directions on a
1D lattice of length L with N lattice points obeying the fol-

lowing hopping rules: A0→0A with rate 1, 0B→B0 with
rate 1, and AB→BA with rate 2. Here 0 denotes an empty
lattice site. While A-type particles are injected �withdrawn�
at the left �right� boundary, the reverse happens for B-type
particles at these boundaries. We assume that these injection
and withdrawal rates effectively correspond to boundary res-
ervoirs with fixed particle densities, which are the BCs for
our problem. Two-species models with specific boundary
rates are known for spontaneous symmetry breaking between
the two species even when their dynamics is completely
symmetric �7�. While systems specified through boundary
rates show spontaneous symmetry breaking, this is not seen
in systems specified through boundary reservoir densities
�8�. Our analysis is valid for arbitrary boundary densities.
Domain-wall-based studies with boundary densities �8� pre-
dict two first-order transitions taking the system from a low-
to a high-density jammed phase via an intermediate phase
which is not seen in single-species systems. �See also Ref.
�9�.� In the steady state, the particle number conservation
leads to a flat density profile in the bulk. Domain-wall argu-
ments show that unlike the high- or low-density phase
where, as in the single-species case, the bulk densities are
same as one of the boundary densities, the intermediate
phase has bulk density not directly related to the boundary
densities. Thus, it is important understand what basic mecha-
nism can be responsible for the existence of an intermediate
phase and how the value of the bulk density in this phase is
selected. The fixed-point description presented here unveils
these issues.

The hydrodynamic formulation begins with the statistical
averaging of the master equation that describes the time evo-
lution of the probabilities of a given site occupied by either
one of the two types of particles. A continuum limit, as the
lattice spacing, a→0 and N→� with L=Na remaining fi-
nite, is then taken for the resulting equation. The differential
equations, thus obtained, involve the average particle densi-
ties ��x , t� and ��x , t� for A- and B-type particles with x and
t as continuous variables representing position and time and
the corresponding current densities j� and j� as functions of
� and �. In the first order in �=a /2, the continuum equations
are
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The stationary state of the model on a ring is given by a
product measure and the exact stationary fluxes j� and j� are
j�=��1−�+�� and j�=−��1−�+��.

The diffusionlike terms in Eqs. �1� and �2� are small in the
�→0 limit. However, these terms are crucial for generating
uniform approximations of the solutions. The stationary bulk
densities ��b and �b� of constant values satisfy the differen-
tial equations trivially. These constant solutions cannot sat-
isfy the BCs at both the ends. In order to satisfy the BCs,
boundary layers are formed over narrow regions near one or
both the boundaries �12�. To focus on this narrow region, we
need to scale the position variable x as x̃= �x−x0� /�, where x0
specifies the location of the boundary layer, and express the
stationary equations in terms of this new variable. Here, x0
=0�1� for left �right� boundary layer which merges to the
bulk particle-density profile asymptotically as x̃→ +� �−��.
A little algebraic manipulation and integrations of the sta-
tionary versions of Eqs. �1� and �2� lead to

p��x̃� = c + q�1 − p� ,

�1 + p�q��x̃� = d + p + q�c − pq� , �3�

where p=�+� and q=�−� with values lying within the
ranges �0,1� and �−1,1�, respectively. Here, prime denotes a
derivative with respect to x̃ and c and d are the integration
constants. The saturation of the boundary layers located, for
example, near x=L, to bulk as x̃→−�, requires c=−qb�1
− pb� and d=qb

2− pb, where pb and qb are the bulk values of p
and q, respectively. Since the bulk profile is flat, same c and
d are applicable in case of boundary layers appearing near
both the boundaries. For particle nonconserving systems,
where the bulk profile is x dependent, pb and qb are the
values of p and q at the point where the boundary layer
merges the bulk. Although this approach is applicable to par-
ticle nonconserving systems, we restrict to the conserved
case to avoid algebraic complications. Because of same c
and d and the translational invariance, the same phase por-
trait is applicable to both the boundaries.

To understand the origin of the three phases, it is useful to
study the stability properties of the fixed points of equations
in Eq. �3�. A combined single first-order differential equation
involving dp

dq leads to the solution p�q� as a function of q, for
a given BC at x=1 or 0. These solutions are the phase-plane
trajectories flowing to the appropriate fixed points. The
boundary layers are these trajectories seen as functions of x̃.
Since these flows approach the fixed points in x̃→ ��, the
bulk densities correspond to one fixed point. Also, by the
choice of the constants c and d, the equations are guaranteed
to have a fixed point that corresponds to the bulk densities.
There exists three fixed points �p� ,q��, which are the solu-
tions of the equations

p� = �c + q��/q�, �q��3 − �d + 1�q� − c = 0. �4�

Although the physically acceptable range of both c and d is
�−1,1�, there is only a narrow window in this c-d space �see
the striped region in Fig. 1�, where the fixed points can rep-

resent a meaningful density profile �within the physical do-
main, i.e., the values of p and q lie in the ranges �0,1� and
�−1,1�, respectively, and 0�� ,��1�.

Outside this window, the fixed points are either imaginary
or do not have a single member that can represent the bulk. A
stability analysis shows that out of the three fixed points, one
is unstable, one is saddle, and one is stable. Based on their
locations on the p-q plane, we call the stable and unstable
fixed points as right �R� or left �L�. The saddle fixed point is
always denoted as S.

There exist the following possibilities:
�1� L is unstable and lies within the physical domain and

R is stable with complex conjugate eigenvalues having nega-
tive real parts �spirally inward flow�. R remains outside the
physical domain and the bulk is, therefore, given by the L
fixed-point values. The bulk in this case is also the same as
the left BC. The right BC is satisfied by a boundary layer
which is a part of the trajectory on the p-q plane starting
from L and reaching the stable fixed point R. R is outside the
physical range of p so that any physical BC is satisfied by the
right boundary layer. Trajectories corresponding to different
BCs at x=1 are shown in Fig. 2�A�.

�2� R is stable and lies within the physical domain and L
is unstable with complex conjugate eigenvalues �spirally out-
ward flow� having positive real parts. By the above argu-
ment, here the bulk satisfies the right BC with a boundary
layer at x=0 satisfying the left BC. The L fixed point must
lie outside the physical domain. The trajectories in this case
are shown in Fig. 2�B�.

�3� There exists another situation where the saddle fixed
point and either one of R or L is in the physical domain but
the latter is different from the BC. In this case, the boundary
layers should be described by the separatrices such that the
bulk densities can acquire the saddle fixed-point values. BCs
at both the boundaries are satisfied by boundary layers which

FIG. 1. Nature of the fixed points in the physically acceptable
range of the c-d plane. On the bold solid line and the dashed line
the discriminant of Eq. �4� is zero. Fixed points are imaginary in the
region outside these two lines. In the striped region enclosed by
these lines and the lines d=c and d=−c, there are physically accept-
able fixed points. In the rest of the space, not a single fixed point in
the set of three has any physically acceptable value.
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are parts of the separatrices joining L with S, and R with S.
This phase where the bulk values of � and � are given by the
saddle fixed-point values is the intermediate phase.

A general inspection regarding the stability of the fixed
points in the allowed range of the c-d plane confirms these
rules as the only possibilities. It also indicates that, for c
�0 �c	0�, the system remains either in L �R� or in the
intermediate phase. In general, the intermediate phase ap-
pears when S is the only fixed point that lies in the domain
specified by the BC.

The three rules mentioned above completely decide the
phases and the phase boundaries. Suppose, we are in the left
phase where the bulk densities are same as the left BCs. This
allows us to calculate c and d, and thereby, the explicit val-
ues of all the three fixed points. The fixed point correspond-
ing to the bulk-density values is an unstable one and the
boundary layer solutions approach these values as x̃→−�
while approaching the stable fixed point, which lies beyond
the physical region, as x̃→�. The boundary layers, which
are part of the trajectories in Fig. 2, appear as in Fig. 3 in the
�-x or �-x plane. The trajectories deviate because of the
proximity of the saddle fixed point and this deviation appears

as the tendency of the boundary layer to saturate to an inter-
mediate value.

As the right BC is changed further keeping the left one
unchanged, the solutions still appear like those of Fig. 2 or
Fig. 3 with same bulk densities until a cusp appears in the
trajectory. At this right BC, the trajectory is just the separa-
trix joining the unstable and the saddle fixed points on one
side and the saddle and the stable fixed points on the other
side. Since the flow now meets the saddle fixed point, the
bulk densities are given by the saddle fixed-point values.
This requires formation of a new boundary layer near x=0
with the height �u

�−�s
�, where �u

� and �s
� are the values of � at

the unstable and the saddle fixed points, respectively. At this
point, the system enters the intermediate phase. Since the
values of the fixed points depend only on c and d or on the
bulk density in the L phase, the height of the newly formed
boundary layer is only dependent on the bulk density �or on
c and d� of the L phase. The variation of the height of these
new boundary layers with d for a given c is shown in Fig. 4.

The formation of a new boundary layer with a finite
height and a discontinuous change in the value of the bulk
density are indications of a first-order phase transition. This
basic principle of the bulk densities acquiring the saddle
fixed-point values continues to hold good inside the interme-

FIG. 2. Flow trajectories to the stable fixed point �R� with the BCs as specified in figure. Arrows indicate the direction of increasing x.
�A� c=0.05 and d=−0.65 with BCs specified at x=1. �B� c=−0.07 and d=−0.41 with BCs at x=0. The rectangular boxes enclose portions
of the trajectories with the BCs p�0.21�=0.95 for �A� and p�−0.34�=0.86 for �B�. The length of the box is fixed by the fixed point in the
physical domain and the BC of the specific trajectory it encloses. The vertical width of the box is chosen in such a way that it encloses the
relevant part of the trajectory of interest. These parts of the trajectories in �A� ��B�� are seen as the right �left� boundary layers in �-x and �-x
planes.

FIG. 3. Numerical solutions for the boundary layers in the L
phase near x=1 for c=0.05 and d=−0.65. The boundary layers of �
and � profiles merge to the bulk values of 0.2 and 0.7, respectively.
The solutions tend to saturate to the saddle fixed point given by
�q , p�= �−0.153,0.673�.
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FIG. 4. Heights of the newly formed boundary layers at x=0 in
the � and � profiles are plotted with d for c=0.05. These boundary
layers are formed at the phase boundary between the L and the
intermediate phases.
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diate phase. In this phase, as the right BC is changed, the
bulk values pb and qb change with boundary layers appearing
at both the boundaries. The two boundary layers are the two
separatrices joining the saddle fixed point to the stable and
unstable fixed points. The bulk densities or the values of c
and d are such that the right and left BCs lie exactly on these
two separatrices.

Next, we apply this method to ASEP with only one kind
of particles moving rightward on a 1D lattice obeying mutual
exclusion. In the steady state, there are three phases depend-
ing on the left and right boundary densities 
 and 1−� �10�,
with the bulk particle density �b being �b=1−�, for 
��
and �	1 /2, �b=
, for ��
 and 
	1 /2, and �b=1 /2, for

�1 /2 and ��1 /2. The approach to these phases can be
understood well through the motion of the domain walls �11�
which separate possible steady states of the system.

The equation that describes the boundary layer in this
case is

�1/2����x̃� = ��1 − �� + c , �5�

where the constant c is chosen as c=−�b�1−�b� to assure
saturation of the boundary layer to the bulk as x̃→� or −�.
This equation has two fixed points ��=�b ,1−�b. A stability
analysis around these fixed points shows that �i� �b is stable
for �b�1 /2 and �ii� 1−�b is stable if �b	1 /2.

In case of �b�1 /2, if a boundary layer has to saturate to
�b �the stable fixed point�, its location should be at x=0. As
x̃→−�, this boundary layer saturates to the unstable fixed
point 1−�b. The right BC is satisfied if �b=1−�. Two con-
ditions naturally follow from this: �i� 1−��1 /2 or �
	1 /2 and �ii� 
�1−�b or 
��, so that any boundary layer
at x=0 satisfies the BC before saturating to the fixed point
1−�b. Similarly, in case of �b	1 /2, the boundary layer satu-
rates to 1−�b as x̃→� or �b as x→−�. A boundary layer of
this nature should be located at x=1 with the conditions �i�

	1 /2 and �ii� 1−�b�1−� or 
	�. As we see here, the
location of the boundary layer is completely determined by
the limit in which the bulk fixed point is approached by the

solution. In both �b�1 /2 and �b	1 /2 cases, while the
boundary layers continue to be in the same position, their
slopes change across the line 
=1−�. These boundary lay-
ers correspond to a different set of solutions of Eq. �5� and
they approach the bulk fixed points at the same limits of x̃ as
before with opposite slopes. In general, the boundary layers
saturating to two different densities are like localized domain
walls of Ref. �11� separating two possible steady states. For
�b=1 /2, the two fixed points merge and it is easy to see that
the boundary layers from both sides of the system are able to
approach the bulk density in a power-law fashion as � 1

�x̃�
either as x̃→� or as x̃→−�. Thus, in this case, there are
boundary layers at both the boundaries. From a stability-
analysislike approach, it is easy to see that both the boundary
layers have negative slopes. This implies that such a phase is
possible when 
�1 /2 and ��1 /2. These three possibilities
cover the entire 
-� parameter space.

In this paper, we show how a phase-plane analysis of the
differential equations for the boundary layers can be used to
predict boundary-induced phase transitions in ASEP. This
method is applied to single-species as well as two-species
processes. We arrive at a general prediction that for flat bulk
profiles, the bulk densities in different phases are given by
various fixed-point values of the differential equations de-
scribing the boundary layers. For two-species case, we find
out the bulk density of the intermediate phase which has no
one-species analog. The fixed-point analysis determines the
nature of the transitions, the location of the boundary layers,
and how the boundary layers merge to the bulk densities. For
nonconstant bulk density, the fixed point of the boundary
layer should match with the bulk-density value near their
merging. In addition, we believe that this method can be
applied to more complicated systems, such as those with
more than two species of particles and the number of phase
transitions can be predicted from the locations of the fixed
points on the phase plane. The generality of the method sug-
gests its wider applicability to various other systems where
boundary-induced transitions can be seen.
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