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A method is reported here for calculating unsteady aerodynamics of

hovering and flapping airfoil for two- dimensional flow via the following

improved methodologies: (a) a correct formulation of the problem using

stream function (ψ) and vorticity (ω) as dependent variables; (b) calculat-

ing loads and moment by a new method to solve the governing pressure

Poisson equation (PPE) in a truncated part of the computational domain

on a non-staggered grid; (c) accurate solution using high accuracy com-

pact difference scheme for the vorticity transport equation (VTE) and (d)

accelerating the computations by using a high order filter after each time

step of integration. These have been used to solve Navier-Stokes equation

for flow past flapping and hovering NACA 0014 and 0015 airfoils at typical

Reynolds numbers relevant to the study of unsteady aerodynamics of micro

air vehicle (MAV) and insect/ bird flight.

Key Words: Stream function- vorticity formulation, Pressure Poisson equation, compact

schemes, Navier-Stokes equation, unsteady aerodynamics, flapping and hovering flight

0. INTRODUCTION

Computing unsteady flows at low to moderate Reynolds numbers continues to

be of significant interest due to its application in MAVs and its relevance to insect

and bird flights. Flapping and hovering flight of bird and insect are fine examples

of optimum motion of aerodynamic surfaces that simultaneously develop necessary

thrust for forward motion and sustained lift to keep it airborne. This is totally

different from aircraft motion where lift and thrust are created by different sub-

systems. Also, lift and thrust are created in aircraft by steady flow devices, while

natural fliers use unsteady aerodynamics to create the same by articulating same

surfaces. Comprehensive reviews of the subject can be found in [?]- [?]. While

biologists have focused attention on kinematics of motion for birds and insects (see

[?], [?] for example), bio-fluid-dynamicists have attempted to explain mechanisms

of flights based on simplified models in the limit of quasi-steady and unsteady op-

eration. Recent interest in engineering community on bird and insect flight is the

requirement of flying payload carrying flight vehicles that are very small in dimen-

sion and weight for their perceived mission requirements. With restriction on size

of such devices (around 15 cm or less) and speed regimes (of about 10 m/sec )- the

operating Reynolds numbers are in the range of 104 to 105. Such flows display mas-

sive boundary layer separation, flow transition and large vortical structures that

make theoretical and experimental studies a formidable task. At the same time,

birds and insects flying with similar parameters display extraordinary maneuver-

ability, agility and low-speed flying capability and even the ability to hover. To

mimic such modes of flight in man-made devices, it is essential to understand and

model such dynamics. In general, bird/ insect flight is due to complex combina-

tions of translational and angular motion of lifting surfaces. It is understood that
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the flow dynamics is viscous in nature at the relevant moderate Reynolds number.

Understanding complex phase relationships between wing kinematics and system

response is central to design any engineering devices delivering simultaneously high

aerodynamic and propulsive efficiencies. Experimental studies are difficult and ex-

isting state of art is discussed in [?]-, [?]. Of particular interest are the visual

signatures of wing kinematics recorded in e.g. Tobalske & Dial [?] and Nachti-

gall [?]. Freymuth [?] has experimentally investigated the motion of an airfoil in

combined harmonic plunging and pitching oscillatory motion with phase difference

to generate thrust in still air environment. The role of vortex street acting as a

jet stream in the wake is discussed in [?] as the mechanism for generating lift and

thrust. The author identified three generic cases of hover mode. Zero baseline an-

gle of attack of the airfoil with ninety degrees phase difference between horizontal

and pitch oscillation is termed as the first-hover or the water-treading mode. In

the second-hover or degenerate figure of eight mode, the baseline angle of attack

is ninety degrees and pitching oscillation has a phase lag of ninety degrees with

respect to translational oscillation. For the third- mode, also called the oblique

or dragonfly mode, the lifting surface is at an angle of attack nominally between

zero and ninety degrees while the phase difference between horizontal and pitch

oscillations is kept close to ninety degrees. In the present study, the second hover

mode case will be computed and analyzed.

It is now accepted that theoretical studies involving steady-state aerodynamics is

of limited value and some unsteady flow models have been studied. For example, in

[?] a flapping wing inviscid flow model has been proposed and Spedding [?] provides

an extensive review of early aerodynamic models of flapping flight. However, it is

essential that any unsteady flow model must include viscous effects involving sepa-

ration and transition in the presence of large vortices. This has been attempted by

using CFD techniques to study flapping flight, where the airfoil executes heaving

oscillations being placed in an uniform flow. In [?] a commercial software, based on

finite volume primitive variable formulation is used to solve Navier- Stokes equation

in Lagrangian- Eulerian framework. The authors remark that it is essential to sat-

isfy the conservation law, otherwise false mass is created leading to large errors. In

[?], three- dimensional incompressible Navier-Stokes equation in primitive variables

have been solved in strong conservation form using SIMPLEC and PISO methods.

Sun & Tang [?] have reported solving three- dimensional Navier- Stokes equation

using the artificial compressibility method of [?]. In [?], spatial discretization was

performed by third order upwind flux-difference splitting and time integration by

second order Adams- Bashforth technique. Relatively good agreement was reported

with experimental data. However, this time integration strategy displays spurious

computational mode with large error for unsteady flows (see [?] for details).

Ideally, three-dimensional computation around a deforming wing is desirable to

understand the fluid dynamics of flapping and hover modes of motion. The present

day situation remains the same as was noted earlier by Wang [?] that from a prac-

tical point of view, while it is possible to resolve two-dimensional flows at Reynolds

numbers relevant to insect flight, it remains to be seen whether one can do the

same for three-dimensional flows. This is due to problems of resolving length and

time scales involved in solution of unsteady Navier- Stokes equation while satisfying

mass conservation accurately in primitive variable formulations. This is avoided in
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computing two-dimensional flows given by Navier- Stokes equation using stream

function-vorticity (ψ − ω) formulation. This equation satisfies mass conservation

identically and allows taking larger number of grid points as the number of un-

knowns reduces from three to two. Gustafson & Leben [?] and Gustafson et al. [?]

have used this formulation to compute hovering flight of an elliptic cylinder. Un-

fortunately, the governing VTE written in the moving frame had an important

angular acceleration term omitted erroneously. This term is essential for hovering

flight, with the lifting surface executing pitching oscillations. In [?] same formu-

lation is used, but the considered heaving oscillation in an uniform flow does not

require this angular acceleration term. For the flapping motion vortex shedding

was investigated in [?] and an optimal flapping frequency based on time scales as-

sociated with shedding of leading and trailing edge vortices is reported. In solving

the problem a fourth-order compact finite difference scheme, developed in [?] is

used. In [?] - [?], the Navier- Stokes equation is solved for an elliptic airfoil and

results are qualitatively compared with the experiments of [?] that was performed

with an airfoil with rectangular cross section with rounded off edges of significantly

lower thickness ratio. Choice of elliptic airfoil allows creating orthogonal grid that

is known to yield accurate numerical solution of Navier- Stokes equation. However,

in [?] - [?] loads and moment are calculated by quadrature of the vorticity field -

a technique known for its limitation as discussed in [?] and [?] in details. In [?]

and [?], instead the solution of PPE is suggested to get accurate loads and moment

calculation- a procedure followed here.

Based on above discussions, a reformulation of the problem is necessary to study

general flapping and hover mode of motion in two-dimensions for an actual airfoil.

To account for an actual airfoil, one can construct orthogonal grids following the

method proposed in [?]. Here the PPE is solved using the orthogonal non-staggered

grid by a new method to calculate loads and moment. This is done by solving the

PPE in a sub-domain with exact boundary conditions on sub-domain boundaries.

This is a significant improvement over the method in [?] that was developed for

steady flow problems solved in Cartesian grids. Furthermore, a very high spectral

accuracy compact scheme is used here along with a high order filter applied to the

solution at the end of every time step. Both of these accelerate computations by

orders of magnitude (more than hundred-folds) in solving NS equation for flapping

and hovering airfoils at moderate Reynolds numbers. Ideas of [?] for calculating

PPE have also been used in [?] and [?] for further development.

In a combined experimental and computational investigation for flapping wing

aerodynamics, Jones et al. [?] reported results that included wind tunnel investi-

gation on finite aspect ratio wing to directly measure forces, time- accurate LDV

measurements and flow visualization for a NACA 0014 airfoil. Two- and three-

dimensional Navier- Stokes and Euler solutions were also obtained computationally

and compared with experimental results with limited success. The airfoil in the

experiments were made to execute only plunging oscillation given by,

y(t) = hcos(kt) (1)

A plunge amplitude of h = 0.4c was considered for a range of reduced frequencies,

k for different angles of attack. In the present work, this geometry and motion is
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considered to compute the flow field for Re = 20000 when the airfoil is set at zero

angle of attack and the reduced frequency is k = 0.4. In addition to this, the

second-hover mode case of [?] is computed for oscillating NACA 0015 airfoil in

the pitch plane with the rotating center at the mid-chord for Re = 27000. In [?]

the Reynolds number was chosen less than Re = 600, while the case computed in

[?] corresponds to Re = 1700 for a different geometry. According to the definition

of this mode of motion, the mean angle of attack is 90o with the pitching angle

oscillation amplitude was 5o in [?]. The airfoil executed horizontal oscillation with

an amplitude that is equal to the chord of the airfoil. In addition to these two

cases, a combined flapping-hover mode of motion is also computed here for which

no definitive results exist- but that seems to be closer to the actual case in the

natural world.

It is to be noted that the present problem has similarities with the unsteady

airfoil aerodynamics often studied for rotary wing devices. Some experimental and

numerical contribution in this field are recorded in [?]- [?] and other references

contained therein. However, we note that the Reynolds number ranges are much

higher for helicopter rotor blades and flow behavior is qualitatively different that

is encountered in rotary wings and that in insect and bird flights.

The paper is structured in the following manner. In the next section governing

equations are given in both the inertial and non-inertial frames for the kinematics,

kinetics and the governing PPE. In section 2, the numerical methods used for the

various solvers are detailed. In section 3, results for various cases considered for

the individual flapping, hover and a combined flapping- hover mode motion are

discussed. The paper closes with few concluding remarks in section 4.

1. GOVERNING EQUATIONS IN INERTIAL AND NON-INERTIAL

FRAMES

In the following, the equations are derived for both the inertial and the moving

frame of reference with variables/operators represented with a subscript I indicating

the quantities in the inertial frame and a subscript r indicating the corresponding

moving frame quantities. The Navier-Stokes equation written in inertial frame is

given by,

∂ ~VI
∂t
+ ~VI · ∇ ~VI = −

1

ρ
∇p+ ν∇2 ~VI (2)

The same equation can be written down for the moving frame of reference, whose

origin translates with a velocity ~VOI and rotates with an angular velocity ~Ω with

respect to the inertial frame, by the following

∂ ~Vr
∂t
+ 2(~Ω× ~Vr) + (~Ω× ~Ω× ~Rr) +

∂~Ω

∂t
× ~Rr + ~Vr · ∇ ~Vr = −

1

ρ
∇p+ ν∇2 ~Vr (3)

the local acceleration terms are obtained in the respective reference frames and ~Rr
represents the position vector of any field point with respect to the moving frame

of reference. The gradient and the Laplacian operators are the same for both the

reference frames. Corresponding vorticity transport equations (VTEs) for the two-
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dimensional flows are obtained by taking curl of Eqs. (2) and (3) and are given

respectively by,

∂ ~ωI
∂t
+ ( ~VI · ∇) ~ωI = ν∇2 ~ωI (4)

∂ ~ωr
∂t
+ ( ~Vr · ∇) ~ωr = ν∇2 ~ωr − 2

∂~Ω

∂t
(5)

where ωI is the out-of-plane component of vorticity defined by ωI = (∇×VI).k̂ and

hence the vortex stretching terms are absent for the considered two-dimensional

flow. In [?] and [?] the last term on the right hand side Eq. (5) was omitted. The

velocity is related to the stream function by VI = ∇ × ΨI , where ΨI = (0, 0, ψI).

Similarly one can relate the vorticity, velocity and stream function for the moving

frame of reference. The stream function is related to the corresponding vortic-

ity fields by the kinematic definitions expressed as the stream function equations

(SFEs) given by, ∇2ψI = −ωI and ∇
2ψr = −ωr. Also, the vorticity fields in the

inertial and moving frame of references are related by ωI = ωr + 2Ω. The stream

function for the inertial and moving frame of references are also related as,

ψI = ψr −
Ω

2
R2r + f(xr, yr) (6)

with f an unknown function that can be defined in terms of the velocity field.

However, one can define a new stream function, ψN by,

ψN = ψr −
Ω

2
(R2r −R

2
oI + uoIyI − voIxI) (7)

such that ψN satisfies the Poisson equation:∇
2ψN = −ωI . The motion of the origin

of the moving frame of reference is defined by the following relationships,

xoI = (xoI)m + axcos(kxt) (8)

yoI = (yoI)m + aycos(kyt) (9)

and the pitching motion of the airfoil is given by,

α = αm + αacos(kαt+ φ) (10)

In the above, quantities with subscript m signify mean quantities and φ is the

phase difference between the pitching and heaving/ horizontal oscillation executed

by the airfoil. It is, in general, possible to prescribe different reduced frequencies

for the translational and rotational motion of the airfoil.

The stream function- vorticity formulation avoids the problems of pressure- ve-

locity coupling and satisfaction of mass conservation everywhere in the flow field

as opposed to the primitive variable formulation. However, to calculate the load

accurately, one needs to solve a pressure Poisson equation instead. This can be per-

formed by taking the divergence of Eqs. (2) and (3) and after some simplification

yields the following,
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∇2(
p

ρ
+
V 2I
2
) = ∇ · ( ~VI × ~ωI) (11)

and

∇2(
p

ρ
+
V 2r
2
) = ~Vr · ∇

2 ~Vr + ω
2
r) + 2

~Ω · ~ωr (12)

The quantity in parenthesis, on the left hand side of above is the total pressure

(pt) and is a good measure of mechanical energy of the flow. To calculate the loads

and moment, it would be preferable to solve Eq. (11), as it involves calculating

fewer terms. Above equations are solved in appropriate non- dimensional forms

that are obtained by introducing relevant length (c) and velocity (Uo) scales. The

non-dimensional VTE that is solved is given by,

∂ ~ωr
∂t
+ ( ~Vr · ∇) ~ωr =

1

Re
∇2 ~ωr − 2

∂~Ω

∂t
(13)

where the Reynolds number is given by Re = Uoc
ν with c as the chord of the airfoil.

The vorticities, frequencies and angular rotation rates are non-dimensionalized by
Uo

c . For the flapping motion, the oncoming free-stream speed is chosen as the

velocity scale.

The velocity field for a given vorticity distribution is calculated by solving two

Poisson equations given by,

∇2ψI = −ωI (14)

∇2ψN = −ωI (15)

Having obtained the velocity and vorticity field, one solves the PPE given by

Eq. (11) to obtain the pressure field. Obtained pressure and vorticity fields are

integrated to calculate the pressure and viscous forces acting on the airfoil. Note

that the kinematic parameters of the airfoil motion given in Eqs. (8) to (10) retains

the same form when non-dimensionalized. For the pure hover mode of motion,

when the airfoil oscillates in pitch and in horizontal direction in the absence of

mean motion, the velocity scale is taken as kx

2π c.

2. NUMERICAL METHOD

The governing equations (11), (13)-(15) are solved in a body-fitted orthogonal

grid around the NACA 0014 airfoil for the flapping mode motion reported in [?].

Same airfoil is also used to study a combined flapping and hover mode motion.

However, for the second hover mode the flow is studied for a NACA 0015 airfoil-

the same thickness ratio used in [?] for an elliptic cylinder. For external flow

problems, one can follow the method of [?] to generate orthogonal grids. In Fig.

1, used grid for a NACA 0014 airfoil is shown where 257 points are taken in the

azimuthal direction (ξ), while 300 points are taken in the wall normal direction

(η). The outer boundary is located at 22.5 times the chord of the airfoil. A fourth
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order curve is fitted between 99.7% of chord and the trailing edge of the airfoil,

so that we have unique normal at every point on the airfoil surface. While fitting

this curve, the surface and the slope is treated as continuous at the junction and

passing through the trailing edge. The grid is clustered in the wall normal direction

toward the airfoil surface so that the points in this direction are distributed by the

parametric formula given by,

S(η) = H

[

1−
tanh[β(1− 2η)]

tanh[β]

]

(16)

with β = 1.55 chosen for appropriate clustering. Here the physical domain is

mapped in 0 ≤ η ≤ 0.5 when S(η) varied between 0 and H. The choice of this

analytic transformation is deliberate, as the corresponding metric displays three

spikes only in the spectral plane and thus would have very little or no aliasing

error. The points in the azimuthal direction are obtained by a cosine distribution

with points clustered near the leading and trailing edges. Grids shown in Fig. 1 also

show high concentration of points in the azimuthal direction originating from the

near vicinity of trailing edge as two dense bands. This type of grid shock restricts

the choice of large time steps. This issue is discussed further while talking about the

VTE solver. In the following, various solvers for different equations are described.

2.1. Stream function equation solver

Eqs. (14) and (15) can be written down in generalized curvilinear orthogonal

coordinate system as

∂

∂ξ

[

h2
h1

∂ψI
∂ξ

]

+
∂

∂η

[

h1
h2

∂ψI
∂η

]

= −h1h2ωI (17)

where h1 and h2 are the scale factors defined by

h21 =

(

∂x

∂ξ

)2

+

(

∂y

∂ξ

)2

and

h22 =

(

∂x

∂η

)2

+

(

∂y

∂η

)2

Similar representation can be written down for Eq. (15). To solve these two

Poisson equations, on the surface of the airfoil no-slip condition is used while at

the far-field the Neumann boundary conditions have been used: ∂ψI

∂η = Uo
∂y
∂η and

∂ψN

∂η = Uo
∂y
∂η . The Poisson equations for stream functions are solved by the Strongly

Implicit Procedure (SIP) as given in [?]. Instead of using the nine-point represen-

tation of [?], a five point finite difference formula is used here employing second

order central differencing.

2.2. VTE solver

The VTE written in the moving frame of reference in non-dimensional form

is given by Eq. (13). This is written for the generalized curvilinear orthogonal

coordinates as,
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h1h2
∂ωr
∂t
+h2u

∂ωr
∂ξ
+h1v

∂ωr
∂η

=
1

Re

[

∂

∂ξ

(

h2
h1

∂ωr
∂ξ

)

+
∂

∂η

(

h1
h2

∂ωr
∂η

]

−2Ω̇h1h2 (18)

The diffusion terms of this equation are discretized by standard second order

central differencing- as they appear in self-adjoint form. The associated linear al-

gebraic equations are then in positive definite form that converges easily. Despite

the linearity of these terms, computing the above equation at lower Reynolds num-

ber suffers from effects of aliasing error that does not create problems at higher

Reynolds number due to the division by the higher value of Re. Aliasing problem

can be avoided by creating smoothly varying grids that does not show grid-shocks.

Discussion about aliasing error of diffusion terms have been provided in details for

different grid types in [?]. In solving VTE, we distinguish between two types of

problems when Dirichlet boundary conditions are prescribed- in the first type, the

vorticity and its derivatives are periodic (as in the ξ direction) and for the other

type where the vorticity is non-periodic. In choosing very high spectral accuracy

compact schemes to evaluate first derivatives (indicated by primed quantities be-

low), a general recursion relation of the following form is used,

bj−1u
′
j−1 + bju

′
j + bj+1u

′
j+1 =

1

h

2
∑

k=−2

aj+kuj+k (19)

In the periodic direction, the discretization error is minimized if one chooses

the following coefficients in the above equation [?]: bj±1 = 0.3793894912; bj =

1;aj±1 = ±0.7877868; aj±2 = ±0.0458012 and aj = 0. One solves the periodic

tridiagonal system to evaluate the required first derivatives in this direction. While

this scheme is formally second order accurate, the spectral accuracy obtained by

this is one of highest among all known compact schemes.

In the non-periodic direction, one needs stable boundary closure schemes and the

ones used here for the first and second node are [?], [?],

u′1 =
(−3u1 + 4u2 − u3)

2h
(20)

u′2 = [(
2β

3
−
1

3
)u1 − (

8β

3
+
1

2
)u2 + (4β + 1)u3 − (

8β

3
+
1

6
)u4 +

2β

3
u5]/h (21)

with β as a parameter chosen to ensure accuracy and stability. Similar set of

closure relations are employed for the other end (at j = N and N − 1) of the

non-periodic direction. For the optimum performance, we have used β = −0.025

for j = 2 and β = 0.09 for j = N − 1. Here, one solves a tridiagonal system to

obtain the derivatives with respect to η for the vorticity employing this method.

To numerically stabilize computations, an explicit fourth-order dissipation term is

added to the calculated first derivatives.

Four stage Runge- Kutta scheme is used to time advance the above equation.

For the grids shown in Fig. 1, when the flapping motion case was computed, it was

noticed that only a very small time step is allowed for the solution of Navier- Stokes

equation. This stiff time-step restriction can be significantly relaxed by filtering
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the vorticity values in the azimuthal direction after each step of time integration of

VTE. As this direction is periodic, the eighth order filter of [?] (given by Eq. (15)

of the reference with the coefficients provided in Table IV) with αf = 0.49 is used

for filtering the time- integrated vorticity values. The filtering allows to increase

the time-step by two orders of magnitude to 1.0E − 05.

To solve the VTE, the required condition at the outer boundary is obtained by

taking the vorticity equal to −2Ω. On the airfoil surface vorticity is continually

created due to the requirement of no-slip condition. From Eq. (17), one can

calculate the wall vorticity as

ωr|body = −
1

h22

∂2ψr
∂η2

|body (22)

After obtaining the velocity field by solving Eq. (17), new wall vorticity is cal-

culated from Eq. (22) that is used as the boundary condition for integrating the

VTE given by Eq. (18). At the cut- originating from the trailing edge of the airfoil-

periodic boundary condition is applied for the vorticity.

2.3. Pressure solver

For the orthogonal curvilinear co-ordinate system the governing PPE given by

Eq. (11) can be rewritten as,

∂

∂ξ
(
h2
h1

∂PI
∂ξ
) +

∂

∂η
(
h1
h2

∂PI
∂η
) =

∂

∂ξ
(h2vIωI)−

∂

∂η
(h1uIωI) (23)

where PI =
p
ρ +

V 2

I

2 , uI =
1
h2

∂ψI

∂η and vI = −
1
h1

∂ψI

∂ξ .

Equation (23) is solved subject to the boundary condition derived from the nor-

mal momentum equation as applied on the airfoil and the outer boundary. These

are obtained from the normal (η) momentum equation given by,

h1
h2

∂PI
∂η

= −h1uIωI +
1

Re

∂ωI
∂ξ

− h1
∂vI
∂t

(24)

Unlike other boundary conditions used in CFD over truncated domain, this

boundary condition is exact. For this reason, it is possible to truncate the do-

main to obtain the pressure field and also to calculate loads separately for multiply

connected domains. In doing so the accuracy of the load calculated is not com-

promised if a consistent differencing of the equation and boundary conditions are

used. This is discussed next, where we extend the procedure of [?] to the more

general case solved here. In Abdallah [?] only the steady state boundary condition

was considered in a Cartesian frame with uniform non-staggered grid system for a

driven cavity problem. Presented formulation for the PPE is one major develop-

ment reported here. The case considered here, does not require that the Neumann

boundary condition to be steady at the far-field boundary. Also the problem solved

here is in a curvilinear orthogonal clustered grid system.

Abdallah [?] has shown that the existence of solution for PPE requires the satis-

faction of a compatibility condition that relates the source terms with the Neumann

boundary condition- a consequence of applying the Green’s theorem for the PPE.

This condition is not satisfied automatically in a non-staggered grid system and
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solution drifts without convergence. This is explained for the Poisson equation:

∇2P = σ in a two-dimensional plane. Existence of the solution to this with Neu-

mann boundary condition requires upon application of divergence theorem,

∫∫

Area

σdA =

∮

∂P

∂η
dl (25)

It has been shown in [?] that satisfying (25) is equivalent to the following iden-

tities:

LHM = RHM = 0 (26)

Where the LHM and RHM are the finite difference analog of the left and right

hand side respectively for Eqs. (23) and (24) summed over all the nodes in the

computing domain. To ensure that this is indeed true, specific stencils are to be

chosen for the discretization. For example, Eq. (23) is discretized as,

1

∆ξ2

(

h2
h1
|(i+1/2,j)PI(i+1,j) +

h2
h1
|(i−1/2,j)PI(i−1,j)

)

−

(

1

∆ξ2
[
h2
h1
|(i+1/2,j) +

h2
h1
|(i−1/2,j)] +

1

∆η2
[
h1
h2
|(i,j+1/2) +

h1
h2
|(i,j−1/2)]

)

PI(i,j) +

1

∆η2

(

h1
h2
|(i,j+1/2)PI(i,j+1) +

h1
h2
|(i,j−1/2)PI(i,j−1)

)

=
(h2vω)(i+1/2,j) − (h2vω)(i−1/2,j)

∆ξ
−
(h1uω)(i,j+1/2) − (h1uω)(i,j−1/2)

∆η
(27)

for (2 ≤ i ≤ n) and (2 ≤ j ≤ m), where the subscript i denotes constant ξ− lines

and the subscript j denotes constant η -lines. The half-node quantities are taken

as the arithmetic average of adjacent cell values. The right hand side quantities of

Eq. (27) are discretized in the following manner,

(h2vω)(i+1/2,j) =
1

8
{h2|(i,j) + h2|(i+1,j)}{v(i,j) + v(i+1,j)}{ω(i,j) + ω(i+1,j)}

(h2vω)(i−1/2,j) =
1

8
{h2|(i,j) + h2|(i−1,j)}{v(i,j) + v(i−1,j)}{ω(i,j) + ω(i−1,j)}

(h1uω)(i,j+1/2) =
1

8
{h1|(i,j) + h1|(i,j+1)}{ω(i,j) + ω(i,j+1)}{u(i,j) + u(i,j+1)}

(h1uω)(i,j−1/2) =
1

8
{h1|(i,j) + h1|(i,j−1)}{ω(i,j) + ω(i,j−1)}{u(i,j) + u(i,j−1)}

Neumann boundary condition (24) on the airfoil surface is discretized as follows,

PI(i,2) − PI(i,1)

∆η
=
1

Re

(

h2
h1

∂ω

∂ξ

)

(i,3/2)

− (h2uω)(i,3/2) −

[

h2
∂v

∂t

]

(i,3/2)

(28)
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To make LHM equal to zero, the above equation has been multiplied by 1
∆η [

h1

h2

](i,3/2)
on both sides. Individual terms are discretized as indicated above. The last term

of the right hand side is represented as,

[

h1
∂v

∂t

]

(i,3/2)

= −
∂

∂t

(

∂ψI
∂ξ

)

(i,3/2)

The right hand side quantities are obtained as central averages with individual

quantities discretized using second order central difference scheme. Similarly, the

Neumann boundary condition at the outer boundary is written as

PI(i,m−1) − PI(i,m)

∆η
=
1

Re

(

h2
h1

∂ω

∂ξ

)

(i,m−1/2)

− (h2uω)(i,m−1/2) −

[

h2
∂v

∂t

]

(i,m−1/2)

(29)

This equation is multiplied by 1
∆η

[

h1

h2

]

(i,m−1/2)

to make LHM equal to zero.

The discretization procedure is similar to that adopted for the Neumann boundary

condition applied on the airfoil surface. Discretized equations are then solved using

the conjugate-gradient algorithm of [?]. The above formulation of the PPE with the

boundary condition of (24) is solved following the discretization as indicated above

and it can also be solved by taking a smaller domain as compared to the domain used

for solving SFEs and the VTE. This is due to the fact that the boundary condition

used here are exact up to the accuracy by which the velocity and vorticity fields

are numerically calculated.

2.4. Validation studies

To substantiate the methods and procedures followed in the present study, it

is necessary that some unsteady flow cases be computed for which experimental

results exist. Here we consider the unsteady accelerated flow past a NACA 0015

airfoil, for which results are available in [?] and [?]. In [?], the airfoil is set at

30o angles of attack and the flow is computed for Re = 35000, with the oncoming

free-stream speed varied as Uo = U∞tanht/τ . The Reynolds number is calculated

based on the chord of the airfoil and the final free-stream speed, as indicated at the

top of Fig. 2. In the computation, the flow start-up is implemented through the

Neumann boundary condition applied at the outflow for Eq. (17).

In Fig. 2, the computed streamline contours are compared with flow visualization

picture of [?]. The final steady mean flow velocity is 64 cm/sec in dimensional units

and τ is the characterstic acceleration time given by 50 ms- that is equal to 0.60

in the nondimensional unit used in the present formulation. The mean flow creates

a non-uniform acceleration for a time upto 100 ms, beyond which the mean flow

remains steady- but the unsteady effects persist much longer. The computed and

experimental results shown in Fig. 2, corresponds to t = 2.903- a nondimensional

time. It is noted that the computed flow field matches with all essential details of

the experimental visualization data, in terms of size, shape and orientations of the

primary, secondary and tertiary vortices.

Another case is considered here for validation studies, reported in [?], for NACA

0015 airfoil held at 30o angle of attack, for which the flow is accelerated uniformly
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from rest. The Reynolds number, which is based on the airfoil chord of 80 mm and

the steady post-acceleration flow velocity of 100 mm/s, is 8000. Here the flow is

accelerated from zero to the final flow velocity in 2 s duration by a constant amount

for the case for which the acceleration rate is 50mm/s2. In the experiments, cross-

correlation digital PIV results were measured. In Fig. 3, experimental results

are compared with present computed ones. The displayed times in the figures

correspond to the units used for the computations in nondimensional form. Once

again the computed results match the details shown in the experimental results.

The results of Figs. 2 and 3, shows the ability of the present method in computing

unsteady flows.

The efficiency of the present method in computing the pressure field is assessed

next by solving Eq. (23) in different truncated domains. In Fig. 4, comparison

is made between solutions for the case of the flapping NACA 0014 airfoil (details

in next section) for Re = 20000 using two different domains. While 300 points

have been taken in the η- direction for computing the SFEs and the VTE, the

PPE is solved with m = 100 and 150 points in the η- direction. Displayed contour

values indicate the results as identical for the two domains. The computed lift

and drag coefficients are shown below the contour plots for a short interval of

time after t = 80. One can see that the integrated surface pressure and shear

stress contributions to these coefficients yield exactly identical results. The number

of points needed in the η− direction to solve PPE depends upon the accuracy

with which derivatives in the boundary conditions can be estimated at the outer

boundary. Thus, (ψ − ω) formulation can be used with structured orthogonal grid

while using fewer unknowns and the loads and moment can be calculated either on-

or off-line using the velocity and vorticity solutions. The choice of 100 points in the

η- direction is made based on some preliminary calculations made with different

grids using different number of points in this direction. It is seen that increasing the

number of points beyond 100 does not alter the results up to fourth decimal place

and thus, these many points were considered to be adequate for solving the PPE.

It appears that locating outer boundary below 100 points, numerically calculated

derivatives in Eq. (24) are not accurate enough- this determines the dimension of

the truncated domain for PPE.

It is important to highlight some aspects of various solvers used in this study, in

association with their boundary conditions. Firstly, for unsteady flows, it is essential

to tighten the convergence criterion for the solution of Eq. (17). Secondly, it was

found that solution converges only in one out of two possible ways of implementing

the accelerated start cases in the validation studies, when the Reynolds number is

kept fixed to its final value and the velocity boundary conditions at the outflow

is increased from zero to its final steady state value. The other possibility does

not work for which the instantaneous velocity is taken as the scale and that imply

fixing the velocity at the outer boundary, while the Reynolds number is changed

progressively for VTE from zero to its final value. This manifests itself in non-

convergence of solution for the SFE. For the VTE, the major source of numerical

problem is the diffusion terms in Eq. (18) that is divided by the Reynolds number.

For the range of Reynolds number chosen in the present study, this parameter is

moderate, as compared to cases of aeronautical interests with Reynolds numbers

varying in the range of 105 to 107. The reason for this problem is due to aliasing
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error committed during the evaluation of the products of h2

h1

and ∂ωr

∂ξ for the first

term and a similar product for the other diffusion term. Despite the fact that this

is a linear term, the product appears due to grid transformation and the actual

quantum of aliasing error depends sensitively on the used grids. In [?] a detailed

account of this type of error is provided and not repeated here.

3. RESULTS AND DISCUSSION

Here Navier-Stokes equation is solved to explore the unsteady aerodynamics of

flight at moderate Reynolds number when the airfoil under investigation executes

complex oscillations in horizontal, vertical and pitch planes. Here, we report some

results for the cases of (a) flapping motion by pure heaving oscillation- as in [?];

(b) hover motion created by pitching oscillation in combination to oscillation in the

horizontal plane- the type of motion considered in [?] and [?] and (c) a combined

flapping- hover mode motion of NACA 0014 airfoil at Re = 20000 to show the

ability of the used numerical methods in computing highly unsteady aerodynamics.

The aim of the present study is mainly to propose a consistent formulation of the

problem and its high accuracy solution methods that can be used to study MAV

and bird/insect flights. Presented results are typical of these flights and provide

an initial set of results for complete viscous solution. The developed methodologies

can be used to enhance understanding of the unsteady aerodynamics of such flows

and are discussed below.

3.1. Flapping motion of an airfoil

In this mode, a case is considered that corresponds to that given in [?] for NACA

0014 airfoil at Re = 20000. Here, the airfoil executes pure heaving oscillation for

zero angle of attack setting. The heaving oscillation amplitude is equal to 0.40c

producing large perturbations to the oncoming flow. The reduced frequency of

oscillation is given by k = 0.4. In Fig. 5, lift, drag and pitching moment (about

mid-chord) coefficients are shown as a time series. The period of heaving oscillation

is 16 and the presented results are for about five cycles. Corresponding pressure

and vorticity contour plots are shown in Figs. 6 and 7 respectively. Pressure

is calculated over a truncated domain whose rationale is already discussed with

respect to Fig. 4. High values of lift is associated with downward stroke of the foil,

while it is negative during the upstroke. In all the vorticity contour plots, negative

contours are shown by dashed lines. The heaving motion of the foil causes the

vortices to be ejected from the trailing edge and the jet-like eruptions explain the

lift and thrust generation by the flapping of the airfoil. Present results show that

a pure flapping motion is incapable of producing sustained thrust.

3.2. Second-hover mode of motion

In this mode, the airfoil executes combined oscillations in the horizontal and the

pitch plane in a quiescent ambience- and is termed as the mode-2 hovering in [?]

and [?]. Freymuth [?] also called this as the degenerate figure of eight mode or

the normal hovering mode. For this case the mean angle of attack of the airfoil

is held at ninety degrees with respect to the horizontal oscillation. In this case,

the airfoil oscillates in still air and the reduced frequency of both the translating

and pitching oscillation is taken the same. To define the Reynolds number for this



FLOW PAST FLAPPING AND HOVERING AIRFOILS 15

mode, a velocity scale is constructed with the help of the amplitude of horizontal

oscillation. This is given by, Re = kxaxc/ν, where the parameters have been defined

in Eq. (8). The translational oscillation amplitude is taken for this case as equal

to the chord of the airfoil. In [?], a 15% thick elliptic cylinder was considered

to study various modes of hovering using only a (65 × 65) grid. Here, a NACA

0015 airfoil is considered instead using a much finer (257 × 300) orthogonal grid

generated following the method of [?]. The airfoil pitches about the mid-chord with

a phase difference of 90o with respect to the translational oscillation. The pitch

oscillation amplitude is 5o about the mean angle of attack. The reduced frequencies

of translational-pitching oscillation are taken as kx = kα = 1. The computed case

is for a Reynolds number of Re = 27000, as compared to 600 in the experiments of

[?]. For the chosen reduced frequencies a single period of oscillation corresponds to

unity.

In Fig. 8, time variation of lift, drag and pitching moment (about rotating center)

coefficients are shown for this case. The displayed time interval in these figures

covers ten cycles. Perturbations introduced by the large amplitude oscillations

cause the lift and drag coefficients to have large excursions. It has been explained

in [?] that in the absence of mean convection, with the combined translational and

pitching oscillation, an inclined vortex-jet is established that produces large lift

for the purpose of hover. For such motion, the streamline contours in the moving

frame of reference is shown in Fig. 9 from t = 7.50 to 8.40. It is seen that a flow is

established from below to the top of the airfoil, along with puff of vortices released

from the leading and the trailing edge of the airfoil. Asymmetry of the foil causes

the strength of these vortices to be dissimilar. This may suggest that for pure

unsteady applications, one must use a geometry that retains a fore-aft symmetry

as opposed to conventional aerofoils with sharp trailing edge that ensures steady

flow. For this mode of motion, clearly thrust is generated over significant duration

of the airfoil motion in each cycle. Pressure and vorticity contours plots for this

case are shown in Figs. 10 and 11. Large values of the load coefficients are needed

for this mode of motion- as the dynamic pressure levels are very low, for the choice

of the velocity scale in the absence of mean motion.

3.3. Combined flapping-hover mode of motion

From the results of previous sub-sections, it is seen that pure flapping and hover

motion can create significant amount of lift- but pure flapping cannot create sus-

tained thrust. In [?], it is conjectured that flapping mode of motion experiences

lesser drag than the non-articulated stationary airfoil set at the mean angle of at-

tack. However, our results do not show this for significant period of time. Pure

hover mode considered in the previous subsection can create large amount of un-

steady lift. However, to explain sustained non-accelerated level flights of insect

and birds, more complex motion of the wing needs to be considered. For example,

high values of lift is created during the clap-fling mechanism of Weis-Fogh exhibit

simultaneous flapping and rotation of the insect wing. This specifically affects the

phase (or time) lag between the attainment of instantaneous lift and the shed vor-

ticity in the wake. While this requires systematic optimal search of such motion,

we report a computed case where an airfoil executes simultaneous oscillation in

heaving, pitching and horizontal motion. Once again, NACA 0014 airfoil is consid-
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ered for flow at Re = 20000 with the mean angle of attack set at zero incidence.

In Eqs. (8)-(10) the following parameters have been considered: ax = ay = 0.5c;

kx = ky = kα = 2π; αa = 5
o and φ1 = φ2 = 0. It is to be emphasized that these

parameters are chosen to compute a case that is tough computationally due to very

high unsteadiness of the flow field.

Fig. 12 shows the trajectory of the airfoil motion and the resultant loads and

pitching moment experienced by the foil. The motion of the airfoil is shown para-

metrically on the top frame. Displayed trajectory of the foil is due to a combined

flapping and hovering motion with large amplitudes and frequencies. Such large

amplitude motions are not usually seen in natural flyers. Below the trajectory- lift,

drag and pitching moment (about the rotation center) coefficients are shown as a

function of time. For the choice of reduced frequency of oscillations the time period

is close to unity and the shown results are for about ten cycles. It is seen that the

loads follow two predominant time scales and to understand the sequence of events,

one full cycle has been identified in Fig. 12 between t = 7.25 to 8.25. The point-A

in the trajectory corresponds to when the foil is retreating and coming down to its

extreme position at B. Around this extreme position- the lift fluctuates- however,

the level remains around the secondary maximum at B. During this phase, the

drag experienced by the foil comes down and eventually becomes a suction force,

while the pitching moment about the rotation center progressively becomes nose-

up. During the early phase of upswing motion of the foil the lift decreases and the

drag reduces at a rapid rate to its global minimum. The pitching moment increases

during this stage. In the next phase of motion Cl increases to its global maximum

while Cd and Cm decreases to their global minimum. During the upstroke, the lift

value remains at around its global maximum.

In Fig. 13, streamline contours for ψr are plotted in the moving frame of refer-

ence to understand the physical events responsible for the extrema of load values

indicated in Fig. 12. During the early phase, the front stagnation point is at mid-

chord on the lower surface of the foil and a dynamic stall vortex (DSV) is seen to

grow on the top surface. This attached vortex continues to grow to its maximum

position at t = 7.516. Large amplitude flapping and hover motion are responsible

for the creation of massive strength DSV. For pure pitch oscillation of dynamic

stall event or during accelerated start of flow, DSVs are also seen that are weaker

in strength. At t = 7.516, one notes the formation of a saddle point upstream of

the airfoil- marked in the frame as A. Appearance of the singular point is followed

by a rapid clockwise rotation of the flow field between t = 7.516 and 7.616, that is

also observed in [?] during the creation of large lift when a jet of fluid is ejected

downward. This is also noted during the same time as the motion of a vortex-

doublet (identified as B and C in the frames). Also, at t = 7.616, one notices the

formation of a bubble on the lower surface near the trailing edge.

The vorticity contours for this case are shown in Fig. 14- during the same time

interval of Fig. 13. Very strong coherent vortices are created due to the combined

flapping and hover mode of motion. These are seen whenever the DSV is formed

near the leading edge on top surface (during t = 7.316 to 7.616) and when attached

bubbles are formed on lower surface (during t = 7.716 and 7.816) near the trailing

edge.
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Pressure around the foil is calculated by solving the PPE in the truncated domain-

as before, for this case and the contour plots are shown in Fig. 15, with the negative

contours shown by dotted lines.

4. SUMMARY

An improved formulation and numerical method is reported here for calculating

highly unsteady aerodynamics for hovering and flapping airfoil in two- dimensional

flows. A correct formulation is solved by using high accuracy compact scheme for

the VTE. A new method is used here to solve the governing pressure Poisson equa-

tion using a non-staggered grid in a truncated part of the computational domain

that is used to solve the SFE and VTE. The developed methods are further speeded

up significantly by using a high order filter after each time step of integration. The

numerical methodology is validated with experimental results for two cases of flow

past NACA 0015 airfoil at large angle of attack, for which the oncoming flow has

been established with different types acceleration for Reynolds numbers of 8000

and 35000.

This method is then used to compute flow past NACA 0014 and 0015 airfoils

executing flapping and hovering mode of motion, at typical Reynolds numbers to

study unsteady aerodynamics relevant to MAV and insect/ bird flight. While the

flapping and hovering mode of motion is studied that indicates the creation of high

unsteady lift and thrust, a combined flapping-hover mode motion has also been

computed here for very large amplitude motion of the airfoil to show the efficacy

of the developed method for solving the viscous flow.
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Fig. 1. Orthogonal (257x300)-grid generated by thehyperbolic grid generation method of [20]. Only the
grids near theaerofoil surfaceareshown.
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Fig. 4. Solution of PPE using two different values of m. (a) to (c) are for m=100 and (d) to (f) are for m=150.
In (a) and (d) the pressure contours are shown; (b) and (e) show the lift variation with time and (c) and (f)
show the variation of drag coefficient with time.



24 SENGUPTA ET AL.

t

C
l

20 40 60 80-12

-10

-8

-6

-4

-2

0

2

4

6

8(a)

t

C
d

20 40 60 80

0

0.5

1

1.5

2

2.5(b)

t

C
m

ro
t

20 40 60 80

-1.5

-1

-0.5

0

0.5

1

1.5

2(c)

Fig.5. Loads vs time for flapping airfoil. Shown are (a) Cl vs time; (b) Cd vs time and (c) Cmrot vs time
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Fig.6. Pressure contours at indicated times for flapping airfoil. Dashed lines are negative contours.
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Fig.7. Vorticity contours at indicated times for flapping airfoil. Dashed lines are negative contours.
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Fig.8. Loads vs time for hover mode motion. Shown are (a) Cl vs time; (b) Cd vs time and (c) Cmrot vs time
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Fig.9. Streamlines in moving body-fixed frameat indicated times for hover modemotion.
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Fig.10. Pressurecontours in moving body-fixed frameat indicated times for hover modemotion.
Dashed lines are for negativecontours.
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Fig.11. Vorticity contours in moving body-fixed frameat indicated times for hover modemotion.
Dashed lines are for negativecontours.
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Fig.12. Trajectory and loads vs time for combined flapping and hover mode motion. Shown are
(a) the trajectory of the airfoil motion; (b) Cl vs time; (c) Cd vs time and (d) Cmrot vs time
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Fig.13. Streamlines in themoving body-fixed frameat indicated times for combined flapping and hover mode
motion.
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Fig.14. Vorticity contours in themoving body-fixed frameat indicated times for combined flapping and hover
modemotion. Dashed lines are for negativecontours.
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Fig. 15. Pressurecontours in themoving body-fixed frameat indicated times for combined flapping and hover
modemotion. Dashed lines are for negativecontours.


