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1 A Quick Introduction to PDE

A multi-index α = (α1, . . . , αn) is a n-tuple where αi, for each 1 ≤ i ≤
n, is a non-negative integer. Let |α| := α1 + . . . + αn. If α and β are
two multi-indices, then α ≤ β means αi ≤ βi, for all 1 ≤ i ≤ n, and
α ± β = (α1 ± β1, . . . , αn ± βn). Also, α! = α1! . . . αn! and, for any x ∈ Rn,
xα = xα1

1 . . . xαn
n . The multi-index notation, introduced by L. Schwartz, is

quite handy in representing multi-variable equations in a concise form. For
instance, a k-degree polynomial in n-variables can be written as∑

|α|≤k

aαx
α.

The partial differential operator of order α is denoted as

Dα =
∂α1

∂x1
α1
. . .

∂αn

∂xnαn
=

∂|α|

∂x1
α1 . . . ∂xnαn

.
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One adopts the convention that between same components of α the order
in which differentiation is performed is irrelevant. This is not a restrictive
convention because the independence of order of differentiation is valid for
smooth1 functions. For each k ∈ N, Dk := {Dα | |α| = k}.

Definition 1.1. Let Ω be an open subset of Rn. A k-th order partial differ-
ential equation of an unknown function u : Ω→ R is of the form

F
(
Dku(x), Dk−1u(x), . . . Du(x), u(x), x

)
= 0, (1.1)

for each x ∈ Ω, where F : Rnk ×Rnk−1 × . . .Rn×R×Ω→ R is a given map.

A general first order PDE has the form F (Du(x), u(x), x) = 0 and a
general second order PDE has the form F (D2u(x), Du(x), u(x), x) = 0.

Definition 1.2. (i) A PDE is linear if F in (1.1) has the form∑
|α|≤k

aα(x)Dαu(x) = f(x)

for given functions f and aα’s. In addition, if f ≡ 0 then the PDE is
linear and homogeneous.

(ii) A PDE is semilinear if F is linear only in the highest order, i.e., F has
the form∑

|α|=k

aα(x)Dαu(x) + a0(Dk−1u(x), . . . , Du(x), u(x), x) = 0.

(iii) A PDE is quasilinear if F has the form∑
|α|=k

aα(Dk−1u(x), . . . , u(x), x)Dαu+ a0(Dk−1u(x), . . . , u(x), x) = 0,

i.e., coefficient of the highest order derivative depends on u and its
derivative only upto the previous orders.

(iv) A PDE is fully nonlinear if it depends nonlinearly on the highest order
derivatives.

1smooth, usually, refers to as much differentiability as required
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Observe that, for a semilinear PDE, a0 is never linear in u, otherwise it
reduces to being linear. For a quasilinear PDE, aα (with |α| = k), cannot be
independent of u or its derivatives, otherwise it reduces to being semilinear
or linear.

Definition 1.3. We say u : Ω → R is a classical solution to the k-th order
PDE (1.1),

• if u ∈ Ck(Ω), i.e., u is k-times differentiable with the continuous k-th
derivative

• and u satisfies the equation (1.1).

2 Classification of Second Order PDE

A general second order PDE is of the form F (D2u(x), Du(x), u(x), x) = 0,
for each x ∈ Ω ⊂ Rn and u : Ω → R is the unknown. Consider the general
second order semilinear PDE with n independent variable

F (x, u,Du,D2u) := A(x) ·D2u−D(∇u, u, x), (2.1)

where A = Aij is an n × n matrix with entries Aij(x, u,∇u), D2u is the
Hessian matrix. The dot product in LHS is in Rn2

, i.e,

A(x) ·D2u =
n∑

i,j=1

aij(x)uxixj(x).

Since we demand the solution to be in C2, the mixed derivatives are equal and
we can assume, without loss of generality that, A is symmetric. In fact if A
is not symmetric, we can replace A with As := 1

2
(A+At), which is symmetric

since A ·D2u = As ·D2u. Since A(x) is a real symmetric matrix, it is diag-
onalisable. There is a coordinate transformation T (x) such that the matrix
T (x)A(x)T t(x) is diagonal with diagonal entries, say λ1(x), λ2(x), . . . , λn(x),
for each x ∈ Ω. Thus, we classify a PDE, at x ∈ Ω, based on the eigenvalues
of the matrix A(x). Let P denote the number of strictly positive eigenvalues
and Z denote the number of zero eigenvalues.

Definition 2.1. We say a PDE is hyperbolic at a point x ∈ Ω, if Z = 0
and either P = 1 or P = n− 1. We say it is parabolic if Z > 0. We say it
is elliptic, if Z = 0 and either P = n or P = 0. If Z = 0 and 1 < P < n− 1
then the PDE is said to be ultra hyperbolic.
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One may, equivalently, define a linear second order PDE to be elliptic at
x if

n∑
i,j=1

Aij(x)ξiξj 6= 0 ∀ξ ∈ Rn \ {0}.

If A(x) is a constant matrix (independent of x) then with a suitable trans-
formation T one can rewrite

n∑
i,j=1

aijuxixj(x) = ∆v(x)

where v(x) := u(Tx).

3 Linear Second Order Elliptic Operators

The elliptic operators come in two forms, divergence and non-divergence
form, and we shall see that a notion of weak solution can be defined for
elliptic operator in divergence form.

Let Ω be an open subset of Rn. Let A = A(x) = (aij(x)) be any given
n × n matrix of functions, for 1 ≤ i, j ≤ n. Let b = b(x) = (bi(x)) be any
given n-tuple of functions and let c = c(x) be any given function.

Definition 3.1. A second order operator L is said to be in divergence form,
if L acting on some u has the form

Lu := −div(A(x)∇u) + b(x) · ∇u+ c(x)u.

On the other hand, a second order operator L is said to be in non-divergence
form, if L acting some u has the form

Lu := −
n∑

i,j=1

aij(x)
∂2u

∂xixj
+ b(x) · ∇u+ c(x)u.

Observe that the operator L makes sense, in the divergence form, only if
aij(x) ∈ C1(Ω). Thus, if aij(x) ∈ C1, then a divergence form equation can
be rewritten in to a non-divergence form because

∇ · (A(x)∇u) =
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

(
n∑
j=1

∂aij
∂xj

)
i

· ∇u.

4



Now, by setting b̃i(x) = bi(x)−
∑n

j=1
∂aij
∂xj

, we have written a divergence L in

non-divergence form.

Definition 3.2. We say a second order operator L is elliptic or coercive if
there is a positive constant α > 0 such that

α|ξ|2 ≤ A(x)ξ.ξ a.e. in x, ∀ξ = (ξi) ∈ Rn.

The second order operator L is said to be degenerate elliptic if

0 ≤ A(x)ξ.ξ a.e. in x, ∀ξ = (ξi) ∈ Rn.

We remark that for the integrals in the defintion of weak solution to make
sense, the minimum hypotheses on A(x), b and c is that aij, bi, c ∈ L∞(Ω).

Definition 3.3. Let aij, bi, c ∈ L∞(Ω) and let f ∈ H−1(Ω), we say u ∈
H1

0 (Ω) is a weak solution of the homogeneous Dirichlet problem{
−div(A(x)∇u) + b(x) · ∇u+ c(x)u = f in Ω

u = 0 on ∂Ω
(3.1)

whenever, for all v ∈ H1
0 (Ω),∫

Ω

A∇u · ∇v dx+

∫
Ω

(b · ∇u)v dx+

∫
Ω

cuv dx = 〈f, v〉H−1(Ω),H1
0 (Ω) . (3.2)

We define the map a(·, ·) : H1
0 (Ω)×H1

0 (Ω)→ R as

a(v, w) :=

∫
Ω

A∇v · ∇w dx+

∫
Ω

(b · ∇v)w dx+

∫
Ω

cvw dx.

It is easy to see that a(·, ·) is bilinear.

Lemma 3.4. If aij, bi, c ∈ L∞(Ω) then the bilinear map a(·, ·) is continuous
on H1

0 (Ω)×H1
0 (Ω), i.e., there is a constant c1 > 0 such that

|a(v, w)| ≤ c1‖v‖H1
0 (Ω)‖w‖H1

0 (Ω).

Also, in addition, if Ω is bounded and L is elliptic, then there are constants
c2 > 0 and c3 ≥ 0 such that

c2‖v‖2
H1

0 (Ω) ≤ a(v, v) + c3‖v‖2
2.
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Proof. Consider,

|a(v, w)| ≤
∫

Ω

|A(x)∇v(x) · ∇w(x)| dx+

∫
Ω

|(b(x) · ∇v(x))w(x)| dx

+

∫
Ω

|c(x)v(x)w(x)| dx

≤ max
i,j
‖aij‖∞‖∇v‖2‖∇w‖2 + max

i
‖bi‖∞‖∇v‖2‖w‖2

+‖c‖∞‖v‖2‖w‖2

≤ m‖∇v‖2(‖∇w‖2 + ‖w‖2) +m‖v‖2‖w‖2,

where m = max

(
max
i,j
‖aij‖∞,max

i
‖bi‖∞, ‖c‖∞

)
≤ c1‖v‖H1

0 (Ω)‖w‖H1
0 (Ω).

Since L is elliptic, we have

α‖∇v‖2
2 ≤

∫
Ω

A(x)∇v · ∇v dx

= a(v, v)−
∫

Ω

(b · ∇v)v dx−
∫

Ω

cv2 dx

≤ a(v, v) + max
i
‖bi‖∞‖∇v‖2‖v‖2 + ‖c‖∞‖v‖2

2.

If b = 0, then we have the result with c2 = α and c3 = ‖c‖∞. If b 6= 0, we
choose a γ > 0 such that

γ <
2α

maxi ‖bi‖∞
.

Then, we have

α‖∇v‖2
2 ≤ a(v, v) + max

i
‖bi‖∞‖∇v‖2‖v‖2 + ‖c‖∞‖v‖2

2

= a(v, v) + max
i
‖bi‖∞γ1/2‖∇v‖2

‖v‖2

γ1/2

+‖c‖∞‖v‖2
2

≤ a(v, v) +
maxi ‖bi‖∞

2

(
γ‖∇v‖2

2 +
‖v‖2

2

γ

)
+‖c‖∞‖v‖2

2 (using ab ≤ a2/2 + b2/2)(
α− γ

2
max
i
‖bi‖∞

)
‖∇v‖2

2 ≤ a(v, v) +

(
1

2γ
max
i
‖bi‖∞ + ‖c‖∞

)
‖v‖2

2.
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By Poincaré inequality there is a constant C > 0 such that 1/C‖v‖2
H1

0 (Ω)
≤

‖∇v‖2
2. Thus, we have

c2‖v‖2
H1

0 (Ω) ≤ a(v, v) + c3‖v‖2
2.

Theorem 3.5 (Lax-Milgram). Let H be a Hilbert space. Let a(·, ·) be a
coercive bilinear form on H and f ∈ H?. Then there exists a unique solution
x? ∈ H such that a(x?, y) = 〈f, y〉H?,H for all y ∈ H.

Theorem 3.6. Let Ω be a bounded open subset of Rn, aij, c ∈ L∞(Ω), b = 0,
c(x) ≥ 0 a.e. in Ω and f ∈ H−1(Ω). Also, let A satisfy ellipticity condition.
Then there is a unique weak solution u ∈ H1

0 (Ω) satisfying∫
Ω

A∇u · ∇v dx+

∫
Ω

cuv dx = 〈f, v〉H−1(Ω),H1
0 (Ω) , ∀v ∈ H1

0 (Ω).

Further, if A is symmetric then u minimizes the functional J : H1
0 (Ω) → R

defined as,

J(v) :=
1

2

∫
Ω

A∇v · ∇v dx+
1

2

∫
Ω

cv2 dx− 〈f, v〉H−1(Ω),H1
0 (Ω)

in H1
0 (Ω).

Proof. We define the bilinear form as

a(v, w) :=

∫
Ω

A∇v · ∇w dx+

∫
Ω

cvw dx.

It follows from Lemma 3.4 that a is a continuous. Now ,consider

α‖∇v‖2
2 ≤

∫
Ω

A(x)∇v · ∇v dx

≤
∫

Ω

A(x)∇v · ∇v dx+

∫
Ω

cv2 dx (since c(x) ≥ 0)

= a(v, v).

Thus, a is coercive in H1
0 (Ω), by Poincaré inequality. Hence, by Lax Milgram

theorem (cf. Theorem 3.5), u ∈ H1
0 (Ω) exists. Also, if A is symmetric, then

u minimizes the functional J on H1
0 (Ω).
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Theorem 3.7. Let 〈X, Y 〉 be a dual system and S : X → X, T : Y → Y be
compact adjoint operators. Then

dim(N(I − S)) = dim(N(I − T )) <∞.

Theorem 3.8. Let 〈X, Y 〉 be a dual system and S : X → X, T : Y → Y be
compact adjoint operators. Then

R(I − S) = {x ∈ X | 〈x, y〉 = 0,∀y ∈ N(I − T )}

and
R(I − T ) = {y ∈ Y | 〈x, y〉 = 0, ∀x ∈ N(I − S)}.

Theorem 3.9. Let Ω be a bounded open subset of Rn, aij, bi, c ∈ L∞(Ω) and
f ∈ L2(Ω). Also, let A satisfy ellipticity condition. Consider L as in (3.1).
The space of solutions {u ∈ H1

0 (Ω) | Lu = 0} is finite dimensional. For
non-zero f ∈ L2(Ω), there exists a finite dimensional subspace S ⊂ L2(Ω)
such that (3.1) has solution iff f ∈ S⊥, the orthogonal complement of S.

Proof. It is already noted in Lemma 3.4 that one can find a c3 > 0 such
that a(v, v) + c3‖v‖2

2 is coercive in H1
0 (Ω). Thus, by Theorem 3.6, there is a

unique u ∈ H1
0 (Ω) such that

a(u, v) + c3

∫
Ω

uv dx =

∫
Ω

fv dx ∀v ∈ H1
0 (Ω).

Set the map T : L2(Ω) → H1
0 (Ω) as Tf = u. The map T is a compact op-

erator on L2(Ω) because it maps u into H1
0 (Ω) which is compactly contained

in L2(Ω). Note that (3.1) is equivalent to u = T (f + c3u). Set v := f + c3u.
Then v−c3Tv = f . Recall that T is compact and c3 > 0. Thus, I−c3T is in-
vertible except when c−1

3 is an eigenvalue of T . If c−1
3 is not an eigenvalue then

there is a unique solution v for all f ∈ L2(Ω). If c−1
3 is an eigenvalue then it

has finite geometric multiplicity (T being compact). Therefore, by Fredhölm
alternative (cf. Theorems 3.7 and 3.8), solution exists iff f ∈ N(I − c3T

∗)⊥

and the dimension of S := N(I − c3T
∗) is same as N(I − c3T ).

Theorem 3.10 (Regularity of Weak Solution). Let Ω be an open subset of
class C2. Let aij, bi, c ∈ L∞(Ω) and f ∈ L2(Ω). Let u ∈ H1

0 (Ω) be such that
it satisfies (3.2). If aij ∈ C1(Ω), bi ∈ C(Ω) and f ∈ L2(Ω) then u ∈ H2(Ω).
More generally, for m ≥ 1, if aij ∈ Cm+1(Ω), bi ∈ Cm(Ω) and f ∈ Hm(Ω)
then u ∈ Hm+2(Ω).
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Theorem 3.11 (Weak Maximum Principle). Let Ω be a bounded open subset
of Rn with sufficient smooth boundary ∂Ω. Let aij, c ∈ L∞(Ω), c(x) ≥ 0 and
f ∈ L2(Ω). Let u ∈ H1(Ω) ∩ C(Ω) be such that it satisfies (3.2) with b ≡ 0.
Then the following are true:

(i) If f ≥ 0 on Ω and u ≥ 0 on ∂Ω then u ≥ 0 in Ω.

(ii) If c ≡ 0 and f ≥ 0 then u(x) ≥ infy∈∂Ω u(y) for all x ∈ Ω.

(iii) If c ≡ 0 and f ≡ 0 then infy∈∂Ω u(y) ≤ u(x) ≤ supy∈∂Ω u(y) for all
x ∈ Ω.

Proof. Recall that if u ∈ H1(Ω) then |u|, u+ and u− are also in H1(Ω).

(i) If u ≥ 0 on ∂Ω then u = |u| on ∂Ω. Hence, u− ∈ H1
0 (Ω). Thus, using

v = u− in (3.2), we get

−
∫

Ω

A∇u− · ∇u− dx−
∫

Ω

c(x)(u−)2 dx =

∫
Ω

f(x)u−(x) dx

because u+ and u− intersect on {u = 0} and, on this set, u+ = u− = 0
and ∇u+ = ∇u− = 0 a.e. Note that RHS is non-negative because both
f and u− are non-negative. Therefore,

0 ≥
∫

Ω

A∇u− · ∇u− dx+

∫
Ω

c(x)(u−)2 dx ≥ α‖∇u−‖2
2.

Thus, ‖∇u−‖2 = 0 and, by Poincarè inequality, ‖u−‖2 = 0. This implies
u− = 0 a.e and, hence, u = u+ a.e. on Ω.

(ii) Let m = infy∈∂Ω u(y). Then u −m ≥ 0 on ∂Ω. Further, c ≡ 0 implies
that u−m satisfies (3.2) with b = 0. By previous case, u−m ≥ 0 on
Ω.

(iii) If f ≡ 0 then −u satisfies (3.2) with b = 0. By previous case, we have
the result.

Definition 3.12. Let H be a Hilbert space with scalar product 〈·, ·〉. A linear
continuous operator T : H → H is said to be:

(i) positive if, for all x ∈ H, 〈Tx, x〉 ≥ 0.
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(ii) self-adjoint if, for all x, y ∈ H, 〈Tx, y〉 = 〈x, Ty〉.

(iii) compact if the image of any bounded set in H is relatively compact (i.e.
has compact closure) in H.

Theorem 3.13. Let H be a separable Hilbert space of infinite dimension
and T : H → H is a self-adjoint, compact and positive operator. Then, there
exists a sequence of real positive eigenvalues {µm}, for m ≥ 1, converging to
0 and a sequence of eigenvectors {xm}, for m ≥ 1, forming a basis of H such
that, for all m ≥ 1, Txm = µmxm.

Theorem 3.14 (Dirichlet Spectral Decomposition). Let A be a symmetric
matrix, i.e., aij(x) = aji(x), and c(x) ≥ 0. There exists a sequence of positive
real eigenvalues {λm} and corresponding orthonormal basis {φm} ⊂ C∞(Ω)
of L2(Ω), with m ∈ N, such that{

−div[A(x)∇φm(x)] + c(x)φm(x) = λmφm(x) in Ω
φm = 0 on ∂Ω

(3.3)

and 0 < λ1 ≤ λ2 ≤ . . . diverges.

Proof. Let T : L2(Ω)→ H1
0 (Ω) defined as Tf = u where u is the solution of{

−div[A(x)∇u(x)] + c(x)u(x) = f(x) in Ω
φm = 0 on ∂Ω.

Thus,∫
Ω

A(x)∇(Tf) · ∇v(x) dx+

∫
Ω

c(x)(Tf)(x)v(x) dx =

∫
Ω

f(x)v(x) dx.

Note that T is a compact operator on L2(Ω) and T is self-adjoint because,
for every g ∈ L2(Ω),∫

Ω

(Tf)(x)g(x) dx =

∫
Ω

A(x)∇(Tg) · ∇(Tf) dx

+

∫
Ω

c(x)(Tg)(x)(Tf)(x) dx

=

∫
Ω

(Tg)(x)f(x) dx.
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Further, T is positive definite because, for f 6≡ 0,∫
Ω

(Tf)(x)f(x) dx =

∫
Ω

A(x)∇(Tf) · ∇(Tf) dx+

∫
Ω

c(x)(Tf)2(x) dx

≥ α‖∇Tf‖2
2 > 0.

Thus, there exists an orthonormal basis of eigenfunctions {φm} in L2(Ω) and
a sequence of positive eigenvalues µm decreasing to zero such that Tφm =
µmφm. Set λm = µ−1

m . Then φm = λmTφm = T (λmφm). Thus, φm ∈ H1
0 (Ω)

because range of T is H1
0 (Ω). Hence, φm satisfies (3.3). It now only remains

to show that φm ∈ C∞(Ω). For any x ∈ Ω, choose Br(x) ⊂ Ω. Since
φm ∈ L2(Br(x)) and solves the eigen value problem, by interior regularity
(cf. Theorem 3.10), φm ∈ H2(Br(x)). Arguing similarly, we obtain φm ∈
Hk(Br(x)) for all k. Thus, by Sobolev imbedding results, φm ∈ C∞(Br(x)).
Since x ∈ Ω is arbitrary, φm ∈ C∞(Ω).

Remark 3.15. Observe that if H1
0 (Ω) is equipped with the inner product∫

Ω
∇u·∇v dx, then λ

−1/2
m φm is an orthonormal basis forH1

0 (Ω) where (λm, φm)
is the eigen pair corresponding to A(x) = I and c ≡ 0. With the usual inner
product ∫

Ω

uv dx+

∫
Ω

∇u · ∇v dx

in H1
0 (Ω), (λm + 1)−1/2φm forms an orthonormal basis of H1

0 (Ω). The set
{φm} is dense in H1

0 (Ω) w.r.t both the norms mentioned above. Suppose
f ∈ H1

0 (Ω) is such that 〈f, φm〉 = 0 in H1
0 (Ω), for all m. Then, from the

eigenvalue problem, we get λm
∫

Ω
φmf dx = 0. Since φm is a basis for L2(Ω),

f = 0.

Theorem 3.16 (Krein-Rutman). Let X be a Banach space and C be a closed
convex cone in X with vertex at O, Int(C) 6= ∅ and satisfying C ∩ (−C) =
{O}. Let T : E → E be a compact operator such that T (C \ {O}) ⊂ Int(C).
Then the greatest eigenvalue of T is simple, and the corresponding eigenvector
is in Int(C) (or in −Int(C)).

Theorem 3.17. Let Ω be a regular connected open set. Then the first eigen-
value λ1(Ω) is simple and the first eigenfunction φ1 has a constant sign on
Ω. Usually, we choose it to be positive on Ω.

Proof. In the Krein-Rutman theorem, let X = C(Ω), T = L−1 and C =
{v ∈ C(Ω) | v(x) ≥ 0}. Then, by strong maximum principle, T satisfies
T (C \ {O}) ⊂ Int(C).
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Theorem 3.18 (Neumann Spectral Decomposition). Let Ω be a bounded
open subset of Rn with Lipschitz boundary. Let A be such that aij(x) = aji(x),
i.e., is a symmetric matrix and c(x) ≥ 0. There exists a sequence of posi-

tive real eigenvalues {λ(N)
m } and corresponding orthonormal basis {φ(N)

m } ⊂
C∞(Ω) of L2(Ω), with m ∈ N, such that{

−div[A(x)∇φ(N)
m (x)] + c(x)φ

(N)
m (x) = λ

(N)
m φ

(N)
m (x) in Ω

A(x)∇φ(N)
m · ν = 0 on ∂Ω

(3.4)

and 0 ≤ λ
(N)
1 ≤ λ

(N)
2 ≤ . . . diverges.

Remark 3.19. The case when c(x) ≡ 0, the first eigenvalue λ
(N)
1 = 0 and

φ
(N)
1 is a non-zero constant on a connected component of Ω. The Lipschitz

condition on Ω is required for the compactness of H1(Ω) imbedding in L2(Ω).

Definition 3.20. The Rayleigh quotient map R : H1
0 (Ω) \ {0} → [0,∞) is

defined as

R(v) =

∫
Ω
A(x)∇v · ∇v dx+

∫
Ω
c(x)v2(x) dx

‖v‖2
2,Ω

.

Remark 3.21 (Min-Max Principle). The eigenvalues satisfy the formula

λm = min
Wm⊂H1

0 (Ω)
max
v∈Wm
v 6=0

R(v)

and
λ(N)
m = min

Wm⊂H1(Ω)
max
v∈Wm
v 6=0

R(v)

where Wm is a m-dimensional subspace. The minimum is achieved for the
subspace Wm spanned by the first m eigenfunctions.

4 Periodic Boundary Conditions

Let Y = [0, 1)n be the unit cell of Rn and let, for each i, j = 1, 2, . . . , n,
aij : Y → R and A(y) = (aij). For any given f : Y → R, extended Y -
periodically to Rn, we want to solve the problem{

−div(A(y)∇u(y)) = f(y) in Y
u is Y − periodic.

(4.1)
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The condition u is Y -periodic is equivalent to saying that u takes equal values
on opposite faces of Y . One may rewrite the equation on the n-dimensional
unit torus Tn without the periodic boundary condition.

Let us now identify the solution space for (4.1). Let C∞per(Y ) be the
set of all Y -periodic functions in C∞(Rn). Let H1

per(Y ) denote the closure
of C∞per(Y ) in the H1-norm. Being a second order equation, in the weak
formulation, we expect the weak solution u to be in H1

per(Y ). Note that if
u solves (4.1) then u + c, for any constant c, also solves (4.1). Thus, the
solution will be unique up to a constant in the space H1

per(Y ). Therefore, we
define the quotient space Wper(Y ) = H1

per(Y )/R as solution space where the
solution is unique.

Solving (4.1) is to find u ∈ Wper(Y ), for any given f ∈ (Wper(Y ))? in the
dual of Wper(Y ), such that∫

Y

A∇u · ∇v dx = 〈f, v〉(Wper(Y ))?,Wper(Y ) ∀v ∈ Wper(Y ).

The requirement that f ∈ (Wper(Y ))? is equivalent to saying that∫
Y

f(y) dy = 0

because f defines a linear functional on Wper(Y ) and f(0) = 0, where 0 ∈
H1

per(Y )/R. In particular, the equivalence class of 0 is same as the equivalence
class 1 and hence ∫

Y

f(y) dy = 〈f, 1〉 = 〈f, 0〉 = 0.

Theorem 4.1. Let Y be unit open cell and let aij ∈ L∞(Ω) such that the
matrix A(y) = (aij(y)) is elliptic with ellipticity constant α > 0. For any
f ∈ (Wper(Y ))?, there is a unique weak solution u ∈ Wper(Y ) satisfying∫

Y

A∇u · ∇v dx = 〈f, v〉(Wper(Y ))?,Wper(Y ) ∀v ∈ Wper(Y ).

Note that the solution u we find from above theorem is an equivalence
class of functions which are all possible solutions. Any representative element
from the equivalence class is a solution. All the elements in the equivalence
differ by a constant. Let u be an element from the equivalence class and let
c be the constant

c =
1

|Y |

∫
Y

u(y) dy.
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Thus, we have u−c is a solution with zero mean value in Y , i.e.,
∫
Y
u(y) dy =

0. Therefore, rephrasing (4.1) as
−div(A(y)∇u(y)) = f(y) in Y

u is Y − periodic
1
|Y |

∫
Y
u(y) dy = 0

we have unique solution u in the solution space

Vper(Y ) =

{
u ∈ H1

per(Y ) | 1

|Y |

∫
Y

u(y) dy = 0

}
.
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