Second Order Elliptic PDE

T. Muthukumar
tmk@iitk.ac.in

December 16, 2014

Contents

1 A Quick Introduction to PDE 1
2 Classification of Second Order PDE 3
3 Linear Second Order Elliptic Operators 4
4 Periodic Boundary Conditions 12

1 A Quick Introduction to PDE

A multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a n-tuple where α_{i}, for each $1 \leq i \leq$ n, is a non-negative integer. Let $|\alpha|:=\alpha_{1}+\ldots+\alpha_{n}$. If α and β are two multi-indices, then $\alpha \leq \beta$ means $\alpha_{i} \leq \beta_{i}$, for all $1 \leq i \leq n$, and $\alpha \pm \beta=\left(\alpha_{1} \pm \beta_{1}, \ldots, \alpha_{n} \pm \beta_{n}\right)$. Also, $\alpha!=\alpha_{1}!\ldots \alpha_{n}!$ and, for any $x \in \mathbb{R}^{n}$, $x^{\alpha}=x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$. The multi-index notation, introduced by L. Schwartz, is quite handy in representing multi-variable equations in a concise form. For instance, a k-degree polynomial in n-variables can be written as

$$
\sum_{|\alpha| \leq k} a_{\alpha} x^{\alpha} .
$$

The partial differential operator of order α is denoted as

$$
D^{\alpha}=\frac{\partial^{\alpha_{1}}}{\partial x_{1}{ }^{\alpha_{1}}} \cdots \frac{\partial^{\alpha_{n}}}{\partial x_{n}{ }^{\alpha_{n}}}=\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{n}^{\alpha_{n}}} .
$$

One adopts the convention that between same components of α the order in which differentiation is performed is irrelevant. This is not a restrictive convention because the independence of order of differentiation is valid for smooth 1 functions. For each $k \in \mathbb{N}, D^{k}:=\left\{D^{\alpha}| | \alpha \mid=k\right\}$.

Definition 1.1. Let Ω be an open subset of \mathbb{R}^{n}. A k-th order partial differential equation of an unknown function $u: \Omega \rightarrow \mathbb{R}$ is of the form

$$
\begin{equation*}
F\left(D^{k} u(x), D^{k-1} u(x), \ldots D u(x), u(x), x\right)=0 \tag{1.1}
\end{equation*}
$$

for each $x \in \Omega$, where $F: \mathbb{R}^{n^{k}} \times \mathbb{R}^{n^{k-1}} \times \ldots \mathbb{R}^{n} \times \mathbb{R} \times \Omega \rightarrow \mathbb{R}$ is a given map.
A general first order PDE has the form $F(D u(x), u(x), x)=0$ and a general second order PDE has the form $F\left(D^{2} u(x), D u(x), u(x), x\right)=0$.

Definition 1.2. (i) $A P D E$ is linear if F in (1.1) has the form

$$
\sum_{|\alpha| \leq k} a_{\alpha}(x) D^{\alpha} u(x)=f(x)
$$

for given functions f and a_{α} 's. In addition, if $f \equiv 0$ then the PDE is linear and homogeneous.
(ii) A PDE is semilinear if F is linear only in the highest order, i.e., F has the form

$$
\sum_{|\alpha|=k} a_{\alpha}(x) D^{\alpha} u(x)+a_{0}\left(D^{k-1} u(x), \ldots, D u(x), u(x), x\right)=0 .
$$

(iii) A PDE is quasilinear if F has the form

$$
\sum_{|\alpha|=k} a_{\alpha}\left(D^{k-1} u(x), \ldots, u(x), x\right) D^{\alpha} u+a_{0}\left(D^{k-1} u(x), \ldots, u(x), x\right)=0
$$

i.e., coefficient of the highest order derivative depends on u and its derivative only upto the previous orders.
(iv) A PDE is fully nonlinear if it depends nonlinearly on the highest order derivatives.

[^0]Observe that, for a semilinear PDE, a_{0} is never linear in u, otherwise it reduces to being linear. For a quasilinear PDE, a_{α} (with $|\alpha|=k$), cannot be independent of u or its derivatives, otherwise it reduces to being semilinear or linear.

Definition 1.3. We say $u: \Omega \rightarrow \mathbb{R}$ is a classical solution to the k-th order PDE (1.1),

- if $u \in C^{k}(\Omega)$, i.e., u is k-times differentiable with the continuous k-th derivative
- and u satisfies the equation (1.1).

2 Classification of Second Order PDE

A general second order PDE is of the form $F\left(D^{2} u(x), D u(x), u(x), x\right)=0$, for each $x \in \Omega \subset \mathbb{R}^{n}$ and $u: \Omega \rightarrow \mathbb{R}$ is the unknown. Consider the general second order semilinear PDE with n independent variable

$$
\begin{equation*}
F\left(x, u, D u, D^{2} u\right):=A(x) \cdot D^{2} u-D(\nabla u, u, x), \tag{2.1}
\end{equation*}
$$

where $A=A_{i j}$ is an $n \times n$ matrix with entries $A_{i j}(x, u, \nabla u), D^{2} u$ is the Hessian matrix. The dot product in LHS is in $\mathbb{R}^{n^{2}}$, i.e,

$$
A(x) \cdot D^{2} u=\sum_{i, j=1}^{n} a_{i j}(x) u_{x_{i} x_{j}}(x)
$$

Since we demand the solution to be in C^{2}, the mixed derivatives are equal and we can assume, without loss of generality that, A is symmetric. In fact if A is not symmetric, we can replace A with $A^{s}:=\frac{1}{2}\left(A+A^{t}\right)$, which is symmetric since $A \cdot D^{2} u=A^{s} \cdot D^{2} u$. Since $A(x)$ is a real symmetric matrix, it is diagonalisable. There is a coordinate transformation $T(x)$ such that the matrix $T(x) A(x) T^{t}(x)$ is diagonal with diagonal entries, say $\lambda_{1}(x), \lambda_{2}(x), \ldots, \lambda_{n}(x)$, for each $x \in \Omega$. Thus, we classify a PDE, at $x \in \Omega$, based on the eigenvalues of the matrix $A(x)$. Let P denote the number of strictly positive eigenvalues and Z denote the number of zero eigenvalues.

Definition 2.1. We say a PDE is hyperbolic at a point $x \in \Omega$, if $Z=0$ and either $P=1$ or $P=n-1$. We say it is parabolic if $Z>0$. We say it is elliptic, if $Z=0$ and either $P=n$ or $P=0$. If $Z=0$ and $1<P<n-1$ then the $P D E$ is said to be ultra hyperbolic.

One may, equivalently, define a linear second order PDE to be elliptic at x if

$$
\sum_{i, j=1}^{n} A_{i j}(x) \xi_{i} \xi_{j} \neq 0 \quad \forall \xi \in \mathbb{R}^{n} \backslash\{0\}
$$

If $A(x)$ is a constant matrix (independent of x) then with a suitable transformation T one can rewrite

$$
\sum_{i, j=1}^{n} a_{i j} u_{x_{i} x_{j}}(x)=\Delta v(x)
$$

where $v(x):=u(T x)$.

3 Linear Second Order Elliptic Operators

The elliptic operators come in two forms, divergence and non-divergence form, and we shall see that a notion of weak solution can be defined for elliptic operator in divergence form.

Let Ω be an open subset of \mathbb{R}^{n}. Let $A=A(x)=\left(a_{i j}(x)\right)$ be any given $n \times n$ matrix of functions, for $1 \leq i, j \leq n$. Let $\boldsymbol{b}=\boldsymbol{b}(x)=\left(b_{i}(x)\right)$ be any given n-tuple of functions and let $c=c(x)$ be any given function.

Definition 3.1. A second order operator L is said to be in divergence form, if L acting on some u has the form

$$
L u:=-\operatorname{div}(A(x) \nabla u)+\boldsymbol{b}(x) \cdot \nabla u+c(x) u .
$$

On the other hand, a second order operator L is said to be in non-divergence form, if L acting some u has the form

$$
L u:=-\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2} u}{\partial x_{i} x_{j}}+\boldsymbol{b}(x) \cdot \nabla u+c(x) u .
$$

Observe that the operator L makes sense, in the divergence form, only if $a_{i j}(x) \in C^{1}(\Omega)$. Thus, if $a_{i j}(x) \in C^{1}$, then a divergence form equation can be rewritten in to a non-divergence form because

$$
\nabla \cdot(A(x) \nabla u)=\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\left(\sum_{j=1}^{n} \frac{\partial a_{i j}}{\partial x_{j}}\right)_{i} \cdot \nabla u
$$

Now, by setting $\widetilde{b}_{i}(x)=b_{i}(x)-\sum_{j=1}^{n} \frac{\partial a_{i j}}{\partial x_{j}}$, we have written a divergence L in non-divergence form.

Definition 3.2. We say a second order operator L is elliptic or coercive if there is a positive constant $\alpha>0$ such that

$$
\alpha|\xi|^{2} \leq A(x) \xi . \xi \quad \text { a.e. in } x, \quad \forall \xi=\left(\xi_{i}\right) \in \mathbb{R}^{n}
$$

The second order operator L is said to be degenerate elliptic if

$$
0 \leq A(x) \xi . \xi \quad \text { a.e. in } x, \quad \forall \xi=\left(\xi_{i}\right) \in \mathbb{R}^{n}
$$

We remark that for the integrals in the defintion of weak solution to make sense, the minimum hypotheses on $A(x), \boldsymbol{b}$ and c is that $a_{i j}, b_{i}, c \in L^{\infty}(\Omega)$.

Definition 3.3. Let $a_{i j}, b_{i}, c \in L^{\infty}(\Omega)$ and let $f \in H^{-1}(\Omega)$, we say $u \in$ $H_{0}^{1}(\Omega)$ is a weak solution of the homogeneous Dirichlet problem

$$
\left\{\begin{align*}
-\operatorname{div}(A(x) \nabla u)+\boldsymbol{b}(x) \cdot \nabla u+c(x) u & =f & & \text { in } \Omega \tag{3.1}\\
u & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

whenever, for all $v \in H_{0}^{1}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega} A \nabla u \cdot \nabla v d x+\int_{\Omega}(\boldsymbol{b} \cdot \nabla u) v d x+\int_{\Omega} c u v d x=\langle f, v\rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)} . \tag{3.2}
\end{equation*}
$$

We define the map $a(\cdot, \cdot): H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ as

$$
a(v, w):=\int_{\Omega} A \nabla v \cdot \nabla w d x+\int_{\Omega}(\boldsymbol{b} \cdot \nabla v) w d x+\int_{\Omega} c v w d x
$$

It is easy to see that $a(\cdot, \cdot)$ is bilinear.
Lemma 3.4. If $a_{i j}, b_{i}, c \in L^{\infty}(\Omega)$ then the bilinear map $a(\cdot, \cdot)$ is continuous on $H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)$, i.e., there is a constant $c_{1}>0$ such that

$$
|a(v, w)| \leq c_{1}\|v\|_{H_{0}^{1}(\Omega)}\|w\|_{H_{0}^{1}(\Omega)}
$$

Also, in addition, if Ω is bounded and L is elliptic, then there are constants $c_{2}>0$ and $c_{3} \geq 0$ such that

$$
c_{2}\|v\|_{H_{0}^{1}(\Omega)}^{2} \leq a(v, v)+c_{3}\|v\|_{2}^{2}
$$

Proof. Consider,

$$
\begin{aligned}
|a(v, w)| \leq & \int_{\Omega}|A(x) \nabla v(x) \cdot \nabla w(x)| d x+\int_{\Omega}|(\boldsymbol{b}(x) \cdot \nabla v(x)) w(x)| d x \\
& +\int_{\Omega}|c(x) v(x) w(x)| d x \\
\leq & \max _{i, j}\left\|a_{i j}\right\|_{\infty}\|\nabla v\|_{2}\|\nabla w\|_{2}+\max _{i}\left\|b_{i}\right\|_{\infty}\|\nabla v\|_{2}\|w\|_{2} \\
& +\|c\|_{\infty}\|v\|_{2}\|w\|_{2} \\
\leq & m\|\nabla v\|_{2}\left(\|\nabla w\|_{2}+\|w\|_{2}\right)+m\|v\|_{2}\|w\|_{2} \\
& \text { where } m=\max \left(\max _{i, j}\left\|a_{i j}\right\|_{\infty}, \max _{i}\left\|b_{i}\right\|_{\infty},\|c\|_{\infty}\right) \\
\leq & c_{1}\|v\|_{H_{0}^{1}(\Omega)}\|w\|_{H_{0}^{1}(\Omega)} .
\end{aligned}
$$

Since L is elliptic, we have

$$
\begin{aligned}
\alpha\|\nabla v\|_{2}^{2} & \leq \int_{\Omega} A(x) \nabla v \cdot \nabla v d x \\
& =a(v, v)-\int_{\Omega}(\boldsymbol{b} \cdot \nabla v) v d x-\int_{\Omega} c v^{2} d x \\
& \leq a(v, v)+\max _{i}\left\|b_{i}\right\|_{\infty}\|\nabla v\|_{2}\|v\|_{2}+\|c\|_{\infty}\|v\|_{2}^{2}
\end{aligned}
$$

If $\boldsymbol{b}=0$, then we have the result with $c_{2}=\alpha$ and $c_{3}=\|c\|_{\infty}$. If $\boldsymbol{b} \neq 0$, we choose a $\gamma>0$ such that

$$
\gamma<\frac{2 \alpha}{\max _{i}\left\|b_{i}\right\|_{\infty}}
$$

Then, we have

$$
\begin{aligned}
\alpha\|\nabla v\|_{2}^{2} \leq & a(v, v)+\max _{i}\left\|b_{i}\right\|_{\infty}\|\nabla v\|_{2}\|v\|_{2}+\|c\|_{\infty}\|v\|_{2}^{2} \\
= & a(v, v)+\max _{i}\left\|b_{i}\right\|_{\infty} \gamma^{1 / 2}\|\nabla v\|_{2} \frac{\|v\|_{2}}{\gamma^{1 / 2}} \\
& +\|c\|_{\infty}\|v\|_{2}^{2} \\
\leq & a(v, v)+\frac{\max _{i}\left\|b_{i}\right\|_{\infty}}{2}\left(\gamma\|\nabla v\|_{2}^{2}+\frac{\|v\|_{2}^{2}}{\gamma}\right) \\
& +\|c\|_{\infty}\|v\|_{2}^{2} \quad\left(\text { using } a b \leq a^{2} / 2+b^{2} / 2\right) \\
\left(\alpha-\frac{\gamma}{2} \max _{i}\left\|b_{i}\right\|_{\infty}\right)\|\nabla v\|_{2}^{2} \leq & a(v, v)+\left(\frac{1}{2 \gamma} \max _{i}\left\|b_{i}\right\|_{\infty}+\|c\|_{\infty}\right)\|v\|_{2}^{2} .
\end{aligned}
$$

By Poincaré inequality there is a constant $C>0$ such that $1 / C\|v\|_{H_{0}^{1}(\Omega)}^{2} \leq$ $\|\nabla v\|_{2}^{2}$. Thus, we have

$$
c_{2}\|v\|_{H_{0}^{1}(\Omega)}^{2} \leq a(v, v)+c_{3}\|v\|_{2}^{2} .
$$

Theorem 3.5 (Lax-Milgram). Let H be a Hilbert space. Let $a(\cdot, \cdot)$ be a coercive bilinear form on H and $f \in H^{\star}$. Then there exists a unique solution $x^{\star} \in H$ such that $a\left(x^{\star}, y\right)=\langle f, y\rangle_{H^{\star}, H}$ for all $y \in H$.

Theorem 3.6. Let Ω be a bounded open subset of $\mathbb{R}^{n}, a_{i j}, c \in L^{\infty}(\Omega), \boldsymbol{b}=0$, $c(x) \geq 0$ a.e. in Ω and $f \in H^{-1}(\Omega)$. Also, let A satisfy ellipticity condition. Then there is a unique weak solution $u \in H_{0}^{1}(\Omega)$ satisfying

$$
\int_{\Omega} A \nabla u \cdot \nabla v d x+\int_{\Omega} c u v d x=\langle f, v\rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}, \quad \forall v \in H_{0}^{1}(\Omega) .
$$

Further, if A is symmetric then u minimizes the functional $J: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ defined as,

$$
J(v):=\frac{1}{2} \int_{\Omega} A \nabla v \cdot \nabla v d x+\frac{1}{2} \int_{\Omega} c v^{2} d x-\langle f, v\rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}
$$

in $H_{0}^{1}(\Omega)$.
Proof. We define the bilinear form as

$$
a(v, w):=\int_{\Omega} A \nabla v \cdot \nabla w d x+\int_{\Omega} c v w d x .
$$

It follows from Lemma 3.4 that a is a continuous. Now ,consider

$$
\begin{aligned}
\alpha\|\nabla v\|_{2}^{2} & \leq \int_{\Omega} A(x) \nabla v \cdot \nabla v d x \\
& \leq \int_{\Omega} A(x) \nabla v \cdot \nabla v d x+\int_{\Omega} c v^{2} d x \quad(\text { since } c(x) \geq 0) \\
& =a(v, v)
\end{aligned}
$$

Thus, a is coercive in $H_{0}^{1}(\Omega)$, by Poincaré inequality. Hence, by Lax Milgram theorem (cf. Theorem 3.5), $u \in H_{0}^{1}(\Omega)$ exists. Also, if A is symmetric, then u minimizes the functional J on $H_{0}^{1}(\Omega)$.

Theorem 3.7. Let $\langle X, Y\rangle$ be a dual system and $S: X \rightarrow X, T: Y \rightarrow Y$ be compact adjoint operators. Then

$$
\operatorname{dim}(N(I-S))=\operatorname{dim}(N(I-T))<\infty
$$

Theorem 3.8. Let $\langle X, Y\rangle$ be a dual system and $S: X \rightarrow X, T: Y \rightarrow Y$ be compact adjoint operators. Then

$$
R(I-S)=\{x \in X \mid\langle x, y\rangle=0, \forall y \in N(I-T)\}
$$

and

$$
R(I-T)=\{y \in Y \mid\langle x, y\rangle=0, \forall x \in N(I-S)\}
$$

Theorem 3.9. Let Ω be a bounded open subset of $\mathbb{R}^{n}, a_{i j}, b_{i}, c \in L^{\infty}(\Omega)$ and $f \in L^{2}(\Omega)$. Also, let A satisfy ellipticity condition. Consider L as in (3.1). The space of solutions $\left\{u \in H_{0}^{1}(\Omega) \mid L u=0\right\}$ is finite dimensional. For non-zero $f \in L^{2}(\Omega)$, there exists a finite dimensional subspace $S \subset L^{2}(\Omega)$ such that (3.1) has solution iff $f \in S^{\perp}$, the orthogonal complement of S.

Proof. It is already noted in Lemma 3.4 that one can find a $c_{3}>0$ such that $a(v, v)+c_{3}\|v\|_{2}^{2}$ is coercive in $H_{0}^{1}(\Omega)$. Thus, by Theorem 3.6, there is a unique $u \in H_{0}^{1}(\Omega)$ such that

$$
a(u, v)+c_{3} \int_{\Omega} u v d x=\int_{\Omega} f v d x \quad \forall v \in H_{0}^{1}(\Omega)
$$

Set the map $T: L^{2}(\Omega) \rightarrow H_{0}^{1}(\Omega)$ as $T f=u$. The map T is a compact operator on $L^{2}(\Omega)$ because it maps u into $H_{0}^{1}(\Omega)$ which is compactly contained in $L^{2}(\Omega)$. Note that (3.1) is equivalent to $u=T\left(f+c_{3} u\right)$. Set $v:=f+c_{3} u$. Then $v-c_{3} T v=f$. Recall that T is compact and $c_{3}>0$. Thus, $I-c_{3} T$ is invertible except when c_{3}^{-1} is an eigenvalue of T. If c_{3}^{-1} is not an eigenvalue then there is a unique solution v for all $f \in L^{2}(\Omega)$. If c_{3}^{-1} is an eigenvalue then it has finite geometric multiplicity (T being compact). Therefore, by Fredhölm alternative (cf. Theorems 3.7 and 3.8), solution exists iff $f \in N\left(I-c_{3} T^{*}\right)^{\perp}$ and the dimension of $S:=N\left(I-c_{3} T^{*}\right)$ is same as $N\left(I-c_{3} T\right)$.

Theorem 3.10 (Regularity of Weak Solution). Let Ω be an open subset of class C^{2}. Let $a_{i j}, b_{i}, c \in L^{\infty}(\Omega)$ and $f \in L^{2}(\Omega)$. Let $u \in H_{0}^{1}(\Omega)$ be such that it satisfies (3.2). If $a_{i j} \in C^{1}(\bar{\Omega}), b_{i} \in C(\bar{\Omega})$ and $f \in L^{2}(\Omega)$ then $u \in H^{2}(\Omega)$. More generally, for $m \geq 1$, if $a_{i j} \in C^{m+1}(\bar{\Omega}), b_{i} \in C^{m}(\bar{\Omega})$ and $f \in H^{m}(\Omega)$ then $u \in H^{m+2}(\Omega)$.

Theorem 3.11 (Weak Maximum Principle). Let Ω be a bounded open subset of \mathbb{R}^{n} with sufficient smooth boundary $\partial \Omega$. Let $a_{i j}, c \in L^{\infty}(\Omega), c(x) \geq 0$ and $f \in L^{2}(\Omega)$. Let $u \in H^{1}(\Omega) \cap C(\bar{\Omega})$ be such that it satisfies (3.2) with $\boldsymbol{b} \equiv 0$. Then the following are true:
(i) If $f \geq 0$ on Ω and $u \geq 0$ on $\partial \Omega$ then $u \geq 0$ in Ω.
(ii) If $c \equiv 0$ and $f \geq 0$ then $u(x) \geq \inf _{y \in \partial \Omega} u(y)$ for all $x \in \Omega$.
(iii) If $c \equiv 0$ and $f \equiv 0$ then $\inf _{y \in \partial \Omega} u(y) \leq u(x) \leq \sup _{y \in \partial \Omega} u(y)$ for all $x \in \Omega$.

Proof. Recall that if $u \in H^{1}(\Omega)$ then $|u|, u^{+}$and u^{-}are also in $H^{1}(\Omega)$.
(i) If $u \geq 0$ on $\partial \Omega$ then $u=|u|$ on $\partial \Omega$. Hence, $u^{-} \in H_{0}^{1}(\Omega)$. Thus, using $v=u^{-}$in (3.2), we get

$$
-\int_{\Omega} A \nabla u^{-} \cdot \nabla u^{-} d x-\int_{\Omega} c(x)\left(u^{-}\right)^{2} d x=\int_{\Omega} f(x) u^{-}(x) d x
$$

because u^{+}and u^{-}intersect on $\{u=0\}$ and, on this set, $u^{+}=u^{-}=0$ and $\nabla u^{+}=\nabla u^{-}=0$ a.e. Note that RHS is non-negative because both f and u^{-}are non-negative. Therefore,

$$
0 \geq \int_{\Omega} A \nabla u^{-} \cdot \nabla u^{-} d x+\int_{\Omega} c(x)\left(u^{-}\right)^{2} d x \geq \alpha\left\|\nabla u^{-}\right\|_{2}^{2}
$$

Thus, $\left\|\nabla u^{-}\right\|_{2}=0$ and, by Poincarè inequality, $\left\|u^{-}\right\|_{2}=0$. This implies $u^{-}=0$ a.e and, hence, $u=u^{+}$a.e. on Ω.
(ii) Let $m=\inf _{y \in \partial \Omega} u(y)$. Then $u-m \geq 0$ on $\partial \Omega$. Further, $c \equiv 0$ implies that $u-m$ satisfies (3.2) with $\boldsymbol{b}=0$. By previous case, $u-m \geq 0$ on Ω.
(iii) If $f \equiv 0$ then $-u$ satisfies (3.2) with $\boldsymbol{b}=0$. By previous case, we have the result.

Definition 3.12. Let H be a Hilbert space with scalar product $\langle\cdot, \cdot\rangle$. A linear continuous operator $T: H \rightarrow H$ is said to be:
(i) positive if, for all $x \in H,\langle T x, x\rangle \geq 0$.
(ii) self-adjoint if, for all $x, y \in H,\langle T x, y\rangle=\langle x, T y\rangle$.
(iii) compact if the image of any bounded set in H is relatively compact (i.e. has compact closure) in H.

Theorem 3.13. Let H be a separable Hilbert space of infinite dimension and $T: H \rightarrow H$ is a self-adjoint, compact and positive operator. Then, there exists a sequence of real positive eigenvalues $\left\{\mu_{m}\right\}$, for $m \geq 1$, converging to 0 and a sequence of eigenvectors $\left\{x_{m}\right\}$, for $m \geq 1$, forming a basis of H such that, for all $m \geq 1, T x_{m}=\mu_{m} x_{m}$.

Theorem 3.14 (Dirichlet Spectral Decomposition). Let A be a symmetric matrix, i.e., $a_{i j}(x)=a_{j i}(x)$, and $c(x) \geq 0$. There exists a sequence of positive real eigenvalues $\left\{\lambda_{m}\right\}$ and corresponding orthonormal basis $\left\{\phi_{m}\right\} \subset C^{\infty}(\Omega)$ of $L^{2}(\Omega)$, with $m \in \mathbb{N}$, such that

$$
\left\{\begin{align*}
-\operatorname{div}\left[A(x) \nabla \phi_{m}(x)\right]+c(x) \phi_{m}(x) & =\lambda_{m} \phi_{m}(x) & & \text { in } \Omega \tag{3.3}\\
\phi_{m} & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

and $0<\lambda_{1} \leq \lambda_{2} \leq \ldots$ diverges.
Proof. Let $T: L^{2}(\Omega) \rightarrow H_{0}^{1}(\Omega)$ defined as $T f=u$ where u is the solution of

$$
\left\{\begin{aligned}
-\operatorname{div}[A(x) \nabla u(x)]+c(x) u(x) & =f(x) & & \text { in } \Omega \\
\phi_{m} & =0 & & \text { on } \partial \Omega .
\end{aligned}\right.
$$

Thus,

$$
\int_{\Omega} A(x) \nabla(T f) \cdot \nabla v(x) d x+\int_{\Omega} c(x)(T f)(x) v(x) d x=\int_{\Omega} f(x) v(x) d x
$$

Note that T is a compact operator on $L^{2}(\Omega)$ and T is self-adjoint because, for every $g \in L^{2}(\Omega)$,

$$
\begin{aligned}
\int_{\Omega}(T f)(x) g(x) d x= & \int_{\Omega} A(x) \nabla(T g) \cdot \nabla(T f) d x \\
& +\int_{\Omega} c(x)(T g)(x)(T f)(x) d x \\
= & \int_{\Omega}(T g)(x) f(x) d x
\end{aligned}
$$

Further, T is positive definite because, for $f \not \equiv 0$,

$$
\begin{aligned}
\int_{\Omega}(T f)(x) f(x) d x & =\int_{\Omega} A(x) \nabla(T f) \cdot \nabla(T f) d x+\int_{\Omega} c(x)(T f)^{2}(x) d x \\
& \geq \alpha\|\nabla T f\|_{2}^{2}>0
\end{aligned}
$$

Thus, there exists an orthonormal basis of eigenfunctions $\left\{\phi_{m}\right\}$ in $L^{2}(\Omega)$ and a sequence of positive eigenvalues μ_{m} decreasing to zero such that $T \phi_{m}=$ $\mu_{m} \phi_{m}$. Set $\lambda_{m}=\mu_{m}^{-1}$. Then $\phi_{m}=\lambda_{m} T \phi_{m}=T\left(\lambda_{m} \phi_{m}\right)$. Thus, $\phi_{m} \in H_{0}^{1}(\Omega)$ because range of T is $H_{0}^{1}(\Omega)$. Hence, ϕ_{m} satisfies (3.3). It now only remains to show that $\phi_{m} \in C^{\infty}(\Omega)$. For any $x \in \Omega$, choose $B_{r}(x) \subset \Omega$. Since $\phi_{m} \in L^{2}\left(B_{r}(x)\right)$ and solves the eigen value problem, by interior regularity (cf. Theorem 3.10), $\phi_{m} \in H^{2}\left(B_{r}(x)\right)$. Arguing similarly, we obtain $\phi_{m} \in$ $H^{k}\left(B_{r}(x)\right)$ for all k. Thus, by Sobolev imbedding results, $\phi_{m} \in C^{\infty}\left(B_{r}(x)\right)$. Since $x \in \Omega$ is arbitrary, $\phi_{m} \in C^{\infty}(\Omega)$.

Remark 3.15. Observe that if $H_{0}^{1}(\Omega)$ is equipped with the inner product $\int_{\Omega} \nabla u \cdot \nabla v d x$, then $\lambda_{m}^{-1 / 2} \phi_{m}$ is an orthonormal basis for $H_{0}^{1}(\Omega)$ where $\left(\lambda_{m}, \phi_{m}\right)$ is the eigen pair corresponding to $A(x)=I$ and $c \equiv 0$. With the usual inner product

$$
\int_{\Omega} u v d x+\int_{\Omega} \nabla u \cdot \nabla v d x
$$

in $H_{0}^{1}(\Omega),\left(\lambda_{m}+1\right)^{-1 / 2} \phi_{m}$ forms an orthonormal basis of $H_{0}^{1}(\Omega)$. The set $\left\{\phi_{m}\right\}$ is dense in $H_{0}^{1}(\Omega)$ w.r.t both the norms mentioned above. Suppose $f \in H_{0}^{1}(\Omega)$ is such that $\left\langle f, \phi_{m}\right\rangle=0$ in $H_{0}^{1}(\Omega)$, for all m. Then, from the eigenvalue problem, we get $\lambda_{m} \int_{\Omega} \phi_{m} f d x=0$. Since ϕ_{m} is a basis for $L^{2}(\Omega)$, $f=0$.

Theorem 3.16 (Krein-Rutman). Let X be a Banach space and C be a closed convex cone in X with vertex at $O, \operatorname{Int}(C) \neq \emptyset$ and satisfying $C \cap(-C)=$ $\{O\}$. Let $T: E \rightarrow E$ be a compact operator such that $T(C \backslash\{O\}) \subset \operatorname{Int}(C)$. Then the greatest eigenvalue of T is simple, and the corresponding eigenvector is in $\operatorname{Int}(C)$ (or in $-\operatorname{Int}(C))$.

Theorem 3.17. Let Ω be a regular connected open set. Then the first eigenvalue $\lambda_{1}(\Omega)$ is simple and the first eigenfunction ϕ_{1} has a constant sign on Ω. Usually, we choose it to be positive on Ω.
Proof. In the Krein-Rutman theorem, let $X=C(\bar{\Omega}), T=L^{-1}$ and $C=$ $\{v \in C(\bar{\Omega}) \mid v(x) \geq 0\}$. Then, by strong maximum principle, T satisfies $T(C \backslash\{O\}) \subset \operatorname{Int}(C)$.

Theorem 3.18 (Neumann Spectral Decomposition). Let Ω be a bounded open subset of \mathbb{R}^{n} with Lipschitz boundary. Let A be such that $a_{i j}(x)=a_{j i}(x)$, i.e., is a symmetric matrix and $c(x) \geq 0$. There exists a sequence of positive real eigenvalues $\left\{\lambda_{m}^{(N)}\right\}$ and corresponding orthonormal basis $\left\{\phi_{m}^{(N)}\right\} \subset$ $C^{\infty}(\Omega)$ of $L^{2}(\Omega)$, with $m \in \mathbb{N}$, such that

$$
\left\{\begin{align*}
-\operatorname{div}\left[A(x) \nabla \phi_{m}^{(N)}(x)\right]+c(x) \phi_{m}^{(N)}(x) & =\lambda_{m}^{(N)} \phi_{m}^{(N)}(x) & & \text { in } \Omega \tag{3.4}\\
A(x) \nabla \phi_{m}^{(N)} \cdot \nu & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

and $0 \leq \lambda_{1}^{(N)} \leq \lambda_{2}^{(N)} \leq \ldots$ diverges.
Remark 3.19. The case when $c(x) \equiv 0$, the first eigenvalue $\lambda_{1}^{(N)}=0$ and $\phi_{1}^{(N)}$ is a non-zero constant on a connected component of Ω. The Lipschitz condition on Ω is required for the compactness of $H^{1}(\Omega)$ imbedding in $L^{2}(\Omega)$.

Definition 3.20. The Rayleigh quotient map $R: H_{0}^{1}(\Omega) \backslash\{0\} \rightarrow[0, \infty)$ is defined as

$$
R(v)=\frac{\int_{\Omega} A(x) \nabla v \cdot \nabla v d x+\int_{\Omega} c(x) v^{2}(x) d x}{\|v\|_{2, \Omega}^{2}}
$$

Remark 3.21 (Min-Max Principle). The eigenvalues satisfy the formula

$$
\lambda_{m}=\min _{W_{m} \subset H_{0}^{1}(\Omega)} \max _{v \in W_{m}} R(v)
$$

and

$$
\left.\lambda_{m}^{(N)}=\min _{W_{m} \subset H^{1}(\Omega)} \max _{v \in W_{m}}^{v \neq 0}\right\}
$$

where W_{m} is a m-dimensional subspace. The minimum is achieved for the subspace W_{m} spanned by the first m eigenfunctions.

4 Periodic Boundary Conditions

Let $Y=[0,1)^{n}$ be the unit cell of \mathbb{R}^{n} and let, for each $i, j=1,2, \ldots, n$, $a_{i j}: Y \rightarrow \mathbb{R}$ and $A(y)=\left(a_{i j}\right)$. For any given $f: Y \rightarrow \mathbb{R}$, extended Y periodically to \mathbb{R}^{n}, we want to solve the problem

$$
\left\{\begin{array}{rll}
-\operatorname{div}(A(y) \nabla u(y)) & =f(y) & \text { in } Y \tag{4.1}\\
u & \text { is } & Y-\text { periodic. }
\end{array}\right.
$$

The condition u is Y-periodic is equivalent to saying that u takes equal values on opposite faces of Y. One may rewrite the equation on the n-dimensional unit torus \mathbb{T}^{n} without the periodic boundary condition.

Let us now identify the solution space for (4.1). Let $C_{\text {per }}^{\infty}(Y)$ be the set of all Y-periodic functions in $C^{\infty}\left(\mathbb{R}^{n}\right)$. Let $H_{\mathrm{per}}^{1}(Y)$ denote the closure of $C_{\text {per }}^{\infty}(Y)$ in the H^{1}-norm. Being a second order equation, in the weak formulation, we expect the weak solution u to be in $H_{\text {per }}^{1}(Y)$. Note that if u solves (4.1) then $u+c$, for any constant c, also solves (4.1). Thus, the solution will be unique up to a constant in the space $H_{\text {per }}^{1}(Y)$. Therefore, we define the quotient space $W_{\text {per }}(Y)=H_{\text {per }}^{1}(Y) / \mathbb{R}$ as solution space where the solution is unique.

Solving (4.1) is to find $u \in W_{\text {per }}(Y)$, for any given $f \in\left(W_{\text {per }}(Y)\right)^{\star}$ in the dual of $W_{\text {per }}(Y)$, such that

$$
\int_{Y} A \nabla u \cdot \nabla v d x=\langle f, v\rangle_{\left(W_{\operatorname{per}}(Y)\right)^{\star}, W_{\mathrm{per}}(Y)} \quad \forall v \in W_{\mathrm{per}}(Y) .
$$

The requirement that $f \in\left(W_{\mathrm{per}}(Y)\right)^{\star}$ is equivalent to saying that

$$
\int_{Y} f(y) d y=0
$$

because f defines a linear functional on $W_{\text {per }}(Y)$ and $f(0)=0$, where $0 \in$ $H_{\text {per }}^{1}(Y) / \mathbb{R}$. In particular, the equivalence class of 0 is same as the equivalence class 1 and hence

$$
\int_{Y} f(y) d y=\langle f, 1\rangle=\langle f, 0\rangle=0
$$

Theorem 4.1. Let Y be unit open cell and let $a_{i j} \in L^{\infty}(\Omega)$ such that the matrix $A(y)=\left(a_{i j}(y)\right)$ is elliptic with ellipticity constant $\alpha>0$. For any $f \in\left(W_{\text {per }}(Y)\right)^{\star}$, there is a unique weak solution $u \in W_{\text {per }}(Y)$ satisfying

$$
\int_{Y} A \nabla u \cdot \nabla v d x=\langle f, v\rangle_{\left(W_{p e r}(Y)\right)^{\star}, W_{\operatorname{per}}(Y)} \quad \forall v \in W_{\operatorname{per}}(Y) .
$$

Note that the solution u we find from above theorem is an equivalence class of functions which are all possible solutions. Any representative element from the equivalence class is a solution. All the elements in the equivalence differ by a constant. Let u be an element from the equivalence class and let c be the constant

$$
c=\frac{1}{|Y|} \int_{Y} u(y) d y
$$

Thus, we have $u-c$ is a solution with zero mean value in Y, i.e., $\int_{Y} u(y) d y=$ 0 . Therefore, rephrasing (4.1) as

$$
\left\{\begin{aligned}
-\operatorname{div}(A(y) \nabla u(y)) & =f(y) & \text { in } Y \\
u & \text { is } & Y-\text { periodic } \\
\frac{1}{|Y|} \int_{Y} u(y) d y & =0 &
\end{aligned}\right.
$$

we have unique solution u in the solution space

$$
V_{\mathrm{per}}(Y)=\left\{u \in H_{\mathrm{per}}^{1}(Y) \left\lvert\, \frac{1}{|Y|} \int_{Y} u(y) d y=0\right.\right\} .
$$

[^0]: ${ }^{1}$ smooth, usually, refers to as much differentiability as required

