Second Order Elliptic PDE

T. Muthukumar tmk@iitk.ac.in

December 16, 2014

Contents

1	A Quick Introduction to PDE	1
2	Classification of Second Order PDE	3
3	Linear Second Order Elliptic Operators	4
4	Periodic Boundary Conditions	12

1 A Quick Introduction to PDE

A multi-index $\alpha = (\alpha_1, \ldots, \alpha_n)$ is a *n*-tuple where α_i , for each $1 \leq i \leq n$, is a non-negative integer. Let $|\alpha| := \alpha_1 + \ldots + \alpha_n$. If α and β are two multi-indices, then $\alpha \leq \beta$ means $\alpha_i \leq \beta_i$, for all $1 \leq i \leq n$, and $\alpha \pm \beta = (\alpha_1 \pm \beta_1, \ldots, \alpha_n \pm \beta_n)$. Also, $\alpha! = \alpha_1! \ldots \alpha_n!$ and, for any $x \in \mathbb{R}^n$, $x^{\alpha} = x_1^{\alpha_1} \ldots x_n^{\alpha_n}$. The multi-index notation, introduced by L. Schwartz, is quite handy in representing multi-variable equations in a concise form. For instance, a k-degree polynomial in *n*-variables can be written as

$$\sum_{|\alpha| \le k} a_{\alpha} x^{\alpha}$$

The partial differential operator of order α is denoted as

$$D^{\alpha} = \frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}} \dots \frac{\partial^{\alpha_n}}{\partial x_n^{\alpha_n}} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}}.$$

One adopts the convention that between same components of α the order in which differentiation is performed is irrelevant. This is not a restrictive convention because the independence of order of differentiation is valid for smooth¹ functions. For each $k \in \mathbb{N}$, $D^k := \{D^{\alpha} \mid |\alpha| = k\}$.

Definition 1.1. Let Ω be an open subset of \mathbb{R}^n . A k-th order partial differential equation of an unknown function $u : \Omega \to \mathbb{R}$ is of the form

$$F(D^{k}u(x), D^{k-1}u(x), \dots Du(x), u(x), x) = 0,$$
(1.1)

for each $x \in \Omega$, where $F : \mathbb{R}^{n^k} \times \mathbb{R}^{n^{k-1}} \times \ldots \mathbb{R}^n \times \mathbb{R} \times \Omega \to \mathbb{R}$ is a given map.

A general first order PDE has the form F(Du(x), u(x), x) = 0 and a general second order PDE has the form $F(D^2u(x), Du(x), u(x), x) = 0$.

Definition 1.2. (i) A PDE is linear if F in (1.1) has the form

$$\sum_{|\alpha| \le k} a_{\alpha}(x) D^{\alpha} u(x) = f(x)$$

for given functions f and a_{α} 's. In addition, if $f \equiv 0$ then the PDE is linear and homogeneous.

(ii) A PDE is semilinear if F is linear only in the highest order, i.e., F has the form

$$\sum_{|\alpha|=k} a_{\alpha}(x) D^{\alpha} u(x) + a_0(D^{k-1}u(x), \dots, Du(x), u(x), x) = 0.$$

(iii) A PDE is quasilinear if F has the form

$$\sum_{|\alpha|=k} a_{\alpha}(D^{k-1}u(x), \dots, u(x), x)D^{\alpha}u + a_0(D^{k-1}u(x), \dots, u(x), x) = 0,$$

i.e., coefficient of the highest order derivative depends on u and its derivative only up to the previous orders.

(iv) A PDE is fully nonlinear if it depends nonlinearly on the highest order derivatives.

¹smooth, usually, refers to as much differentiability as required

Observe that, for a semilinear PDE, a_0 is never linear in u, otherwise it reduces to being linear. For a quasilinear PDE, a_{α} (with $|\alpha| = k$), cannot be independent of u or its derivatives, otherwise it reduces to being semilinear or linear.

Definition 1.3. We say $u : \Omega \to \mathbb{R}$ is a classical solution to the k-th order PDE (1.1),

- if $u \in C^k(\Omega)$, i.e., u is k-times differentiable with the continuous k-th derivative
- and u satisfies the equation (1.1).

2 Classification of Second Order PDE

A general second order PDE is of the form $F(D^2u(x), Du(x), u(x), x) = 0$, for each $x \in \Omega \subset \mathbb{R}^n$ and $u : \Omega \to \mathbb{R}$ is the unknown. Consider the general second order semilinear PDE with *n* independent variable

$$F(x, u, Du, D^{2}u) := A(x) \cdot D^{2}u - D(\nabla u, u, x), \qquad (2.1)$$

where $A = A_{ij}$ is an $n \times n$ matrix with entries $A_{ij}(x, u, \nabla u)$, $D^2 u$ is the Hessian matrix. The dot product in LHS is in \mathbb{R}^{n^2} , i.e,

$$A(x) \cdot D^2 u = \sum_{i,j=1}^n a_{ij}(x) u_{x_i x_j}(x).$$

Since we demand the solution to be in C^2 , the mixed derivatives are equal and we can assume, without loss of generality that, A is symmetric. In fact if Ais not symmetric, we can replace A with $A^s := \frac{1}{2}(A + A^t)$, which is symmetric since $A \cdot D^2 u = A^s \cdot D^2 u$. Since A(x) is a real symmetric matrix, it is diagonalisable. There is a coordinate transformation T(x) such that the matrix $T(x)A(x)T^t(x)$ is diagonal with diagonal entries, say $\lambda_1(x), \lambda_2(x), \ldots, \lambda_n(x)$, for each $x \in \Omega$. Thus, we classify a PDE, at $x \in \Omega$, based on the eigenvalues of the matrix A(x). Let P denote the number of strictly positive eigenvalues and Z denote the number of zero eigenvalues.

Definition 2.1. We say a PDE is hyperbolic at a point $x \in \Omega$, if Z = 0and either P = 1 or P = n - 1. We say it is parabolic if Z > 0. We say it is elliptic, if Z = 0 and either P = n or P = 0. If Z = 0 and 1 < P < n - 1then the PDE is said to be ultra hyperbolic. One may, equivalently, define a linear second order PDE to be *elliptic* at x if

$$\sum_{i,j=1}^{n} A_{ij}(x)\xi_i\xi_j \neq 0 \quad \forall \xi \in \mathbb{R}^n \setminus \{0\}.$$

If A(x) is a constant matrix (independent of x) then with a suitable transformation T one can rewrite

$$\sum_{i,j=1}^{n} a_{ij} u_{x_i x_j}(x) = \Delta v(x)$$

where v(x) := u(Tx).

3 Linear Second Order Elliptic Operators

The elliptic operators come in two forms, divergence and non-divergence form, and we shall see that a notion of weak solution can be defined for elliptic operator in divergence form.

Let Ω be an open subset of \mathbb{R}^n . Let $A = A(x) = (a_{ij}(x))$ be any given $n \times n$ matrix of functions, for $1 \leq i, j \leq n$. Let $\mathbf{b} = \mathbf{b}(x) = (b_i(x))$ be any given *n*-tuple of functions and let c = c(x) be any given function.

Definition 3.1. A second order operator L is said to be in divergence form, if L acting on some u has the form

$$Lu := -\operatorname{div}(A(x)\nabla u) + \boldsymbol{b}(x) \cdot \nabla u + c(x)u.$$

On the other hand, a second order operator L is said to be in non-divergence form, if L acting some u has the form

$$Lu := -\sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^2 u}{\partial x_i x_j} + \boldsymbol{b}(x) \cdot \nabla u + c(x)u$$

Observe that the operator L makes sense, in the divergence form, only if $a_{ij}(x) \in C^1(\Omega)$. Thus, if $a_{ij}(x) \in C^1$, then a divergence form equation can be rewritten in to a non-divergence form because

$$\nabla \cdot (A(x)\nabla u) = \sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^2 u}{\partial x_i \partial x_j} + \left(\sum_{j=1}^{n} \frac{\partial a_{ij}}{\partial x_j}\right)_i \cdot \nabla u.$$

Now, by setting $\tilde{b}_i(x) = b_i(x) - \sum_{j=1}^n \frac{\partial a_{ij}}{\partial x_j}$, we have written a divergence *L* in non-divergence form.

Definition 3.2. We say a second order operator L is elliptic or coercive if there is a positive constant $\alpha > 0$ such that

$$|\alpha|\xi|^2 \le A(x)\xi.\xi$$
 a.e. in x , $\forall \xi = (\xi_i) \in \mathbb{R}^n$.

The second order operator L is said to be degenerate elliptic if

$$0 \le A(x)\xi.\xi$$
 a.e. in x , $\forall \xi = (\xi_i) \in \mathbb{R}^n$.

We remark that for the integrals in the definition of weak solution to make sense, the minimum hypotheses on A(x), **b** and c is that $a_{ij}, b_i, c \in L^{\infty}(\Omega)$.

Definition 3.3. Let $a_{ij}, b_i, c \in L^{\infty}(\Omega)$ and let $f \in H^{-1}(\Omega)$, we say $u \in H^1_0(\Omega)$ is a weak solution of the homogeneous Dirichlet problem

$$\begin{cases} -\operatorname{div}(A(x)\nabla u) + \boldsymbol{b}(x) \cdot \nabla u + c(x)u &= f \quad in \ \Omega \\ u &= 0 \quad on \ \partial\Omega \end{cases}$$
(3.1)

whenever, for all $v \in H_0^1(\Omega)$,

$$\int_{\Omega} A\nabla u \cdot \nabla v \, dx + \int_{\Omega} (\boldsymbol{b} \cdot \nabla u) v \, dx + \int_{\Omega} cuv \, dx = \langle f, v \rangle_{H^{-1}(\Omega), H^{1}_{0}(\Omega)} \,. \tag{3.2}$$

We define the map $a(\cdot, \cdot) : H_0^1(\Omega) \times H_0^1(\Omega) \to \mathbb{R}$ as

$$a(v,w) := \int_{\Omega} A\nabla v \cdot \nabla w \, dx + \int_{\Omega} (\boldsymbol{b} \cdot \nabla v) w \, dx + \int_{\Omega} cvw \, dx.$$

It is easy to see that $a(\cdot, \cdot)$ is bilinear.

Lemma 3.4. If $a_{ij}, b_i, c \in L^{\infty}(\Omega)$ then the bilinear map $a(\cdot, \cdot)$ is continuous on $H_0^1(\Omega) \times H_0^1(\Omega)$, i.e., there is a constant $c_1 > 0$ such that

$$|a(v,w)| \le c_1 \|v\|_{H^1_0(\Omega)} \|w\|_{H^1_0(\Omega)}$$

Also, in addition, if Ω is bounded and L is elliptic, then there are constants $c_2 > 0$ and $c_3 \ge 0$ such that

$$c_2 \|v\|_{H^1_0(\Omega)}^2 \le a(v,v) + c_3 \|v\|_2^2$$

Proof. Consider,

$$\begin{aligned} |a(v,w)| &\leq \int_{\Omega} |A(x)\nabla v(x) \cdot \nabla w(x)| \, dx + \int_{\Omega} |(\boldsymbol{b}(x) \cdot \nabla v(x))w(x)| \, dx \\ &+ \int_{\Omega} |c(x)v(x)w(x)| \, dx \\ &\leq \max_{i,j} \|a_{ij}\|_{\infty} \|\nabla v\|_{2} \|\nabla w\|_{2} + \max_{i} \|b_{i}\|_{\infty} \|\nabla v\|_{2} \|w\|_{2} \\ &+ \|c\|_{\infty} \|v\|_{2} \|w\|_{2} \\ &\leq m \|\nabla v\|_{2} (\|\nabla w\|_{2} + \|w\|_{2}) + m \|v\|_{2} \|w\|_{2}, \\ &\qquad \text{where } m = \max \left(\max_{i,j} \|a_{ij}\|_{\infty}, \max_{i} \|b_{i}\|_{\infty}, \|c\|_{\infty} \right) \\ &\leq c_{1} \|v\|_{H_{0}^{1}(\Omega)} \|w\|_{H_{0}^{1}(\Omega)}. \end{aligned}$$

Since L is elliptic, we have

$$\begin{aligned} \alpha \|\nabla v\|_{2}^{2} &\leq \int_{\Omega} A(x)\nabla v \cdot \nabla v \, dx \\ &= a(v,v) - \int_{\Omega} (\boldsymbol{b} \cdot \nabla v) v \, dx - \int_{\Omega} cv^{2} \, dx \\ &\leq a(v,v) + \max_{i} \|b_{i}\|_{\infty} \|\nabla v\|_{2} \|v\|_{2} + \|c\|_{\infty} \|v\|_{2}^{2}. \end{aligned}$$

If $\boldsymbol{b} = 0$, then we have the result with $c_2 = \alpha$ and $c_3 = ||c||_{\infty}$. If $\boldsymbol{b} \neq 0$, we choose a $\gamma > 0$ such that

$$\gamma < \frac{2\alpha}{\max_i \|b_i\|_{\infty}}.$$

Then, we have

$$\begin{aligned} \alpha \|\nabla v\|_{2}^{2} &\leq a(v,v) + \max_{i} \|b_{i}\|_{\infty} \|\nabla v\|_{2} \|v\|_{2} + \|c\|_{\infty} \|v\|_{2}^{2} \\ &= a(v,v) + \max_{i} \|b_{i}\|_{\infty} \gamma^{1/2} \|\nabla v\|_{2} \frac{\|v\|_{2}}{\gamma^{1/2}} \\ &+ \|c\|_{\infty} \|v\|_{2}^{2} \\ &\leq a(v,v) + \frac{\max_{i} \|b_{i}\|_{\infty}}{2} \left(\gamma \|\nabla v\|_{2}^{2} + \frac{\|v\|_{2}^{2}}{\gamma}\right) \\ &+ \|c\|_{\infty} \|v\|_{2}^{2} \quad (\text{using } ab \leq a^{2}/2 + b^{2}/2) \\ \left(\alpha - \frac{\gamma}{2} \max_{i} \|b_{i}\|_{\infty}\right) \|\nabla v\|_{2}^{2} &\leq a(v,v) + \left(\frac{1}{2\gamma} \max_{i} \|b_{i}\|_{\infty} + \|c\|_{\infty}\right) \|v\|_{2}^{2}. \end{aligned}$$

By Poincaré inequality there is a constant C > 0 such that $1/C \|v\|_{H_0^1(\Omega)}^2 \leq \|\nabla v\|_2^2$. Thus, we have

$$c_2 \|v\|_{H_0^1(\Omega)}^2 \le a(v,v) + c_3 \|v\|_2^2.$$

Theorem 3.5 (Lax-Milgram). Let H be a Hilbert space. Let $a(\cdot, \cdot)$ be a coercive bilinear form on H and $f \in H^*$. Then there exists a unique solution $x^* \in H$ such that $a(x^*, y) = \langle f, y \rangle_{H^*, H}$ for all $y \in H$.

Theorem 3.6. Let Ω be a bounded open subset of \mathbb{R}^n , a_{ij} , $c \in L^{\infty}(\Omega)$, $\boldsymbol{b} = 0$, $c(x) \geq 0$ a.e. in Ω and $f \in H^{-1}(\Omega)$. Also, let A satisfy ellipticity condition. Then there is a unique weak solution $u \in H^1_0(\Omega)$ satisfying

$$\int_{\Omega} A\nabla u \cdot \nabla v \, dx + \int_{\Omega} cuv \, dx = \langle f, v \rangle_{H^{-1}(\Omega), H^{1}_{0}(\Omega)} \,, \quad \forall v \in H^{1}_{0}(\Omega)$$

Further, if A is symmetric then u minimizes the functional $J: H_0^1(\Omega) \to \mathbb{R}$ defined as,

$$J(v) := \frac{1}{2} \int_{\Omega} A\nabla v \cdot \nabla v \, dx + \frac{1}{2} \int_{\Omega} cv^2 \, dx - \langle f, v \rangle_{H^{-1}(\Omega), H^1_0(\Omega)}$$

in $H_0^1(\Omega)$.

Proof. We define the bilinear form as

$$a(v,w) := \int_{\Omega} A \nabla v \cdot \nabla w \, dx + \int_{\Omega} cvw \, dx.$$

It follows from Lemma 3.4 that a is a continuous. Now ,consider

$$\begin{aligned} \alpha \|\nabla v\|_2^2 &\leq \int_{\Omega} A(x) \nabla v \cdot \nabla v \, dx \\ &\leq \int_{\Omega} A(x) \nabla v \cdot \nabla v \, dx + \int_{\Omega} c v^2 \, dx \quad (\text{since } c(x) \ge 0) \\ &= a(v, v). \end{aligned}$$

Thus, a is coercive in $H_0^1(\Omega)$, by Poincaré inequality. Hence, by Lax Milgram theorem (cf. Theorem 3.5), $u \in H_0^1(\Omega)$ exists. Also, if A is symmetric, then u minimizes the functional J on $H_0^1(\Omega)$.

Theorem 3.7. Let $\langle X, Y \rangle$ be a dual system and $S : X \to X, T : Y \to Y$ be compact adjoint operators. Then

$$\dim(N(I-S)) = \dim(N(I-T)) < \infty.$$

Theorem 3.8. Let $\langle X, Y \rangle$ be a dual system and $S : X \to X, T : Y \to Y$ be compact adjoint operators. Then

$$R(I-S) = \{x \in X \mid \langle x, y \rangle = 0, \forall y \in N(I-T)\}$$

and

$$R(I-T) = \{ y \in Y \mid \langle x, y \rangle = 0, \forall x \in N(I-S) \}.$$

Theorem 3.9. Let Ω be a bounded open subset of \mathbb{R}^n , $a_{ij}, b_i, c \in L^{\infty}(\Omega)$ and $f \in L^2(\Omega)$. Also, let A satisfy ellipticity condition. Consider L as in (3.1). The space of solutions $\{u \in H_0^1(\Omega) \mid Lu = 0\}$ is finite dimensional. For non-zero $f \in L^2(\Omega)$, there exists a finite dimensional subspace $S \subset L^2(\Omega)$ such that (3.1) has solution iff $f \in S^{\perp}$, the orthogonal complement of S.

Proof. It is already noted in Lemma 3.4 that one can find a $c_3 > 0$ such that $a(v, v) + c_3 ||v||_2^2$ is coercive in $H_0^1(\Omega)$. Thus, by Theorem 3.6, there is a unique $u \in H_0^1(\Omega)$ such that

$$a(u,v) + c_3 \int_{\Omega} uv \, dx = \int_{\Omega} fv \, dx \quad \forall v \in H_0^1(\Omega).$$

Set the map $T: L^2(\Omega) \to H_0^1(\Omega)$ as Tf = u. The map T is a compact operator on $L^2(\Omega)$ because it maps u into $H_0^1(\Omega)$ which is compactly contained in $L^2(\Omega)$. Note that (3.1) is equivalent to $u = T(f + c_3 u)$. Set $v := f + c_3 u$. Then $v - c_3 Tv = f$. Recall that T is compact and $c_3 > 0$. Thus, $I - c_3 T$ is invertible except when c_3^{-1} is an eigenvalue of T. If c_3^{-1} is not an eigenvalue then there is a unique solution v for all $f \in L^2(\Omega)$. If c_3^{-1} is an eigenvalue then it has finite geometric multiplicity (T being compact). Therefore, by Fredhölm alternative (cf. Theorems 3.7 and 3.8), solution exists iff $f \in N(I - c_3 T^*)^{\perp}$ and the dimension of $S := N(I - c_3 T^*)$ is same as $N(I - c_3 T)$.

Theorem 3.10 (Regularity of Weak Solution). Let Ω be an open subset of class C^2 . Let $a_{ij}, b_i, c \in L^{\infty}(\Omega)$ and $f \in L^2(\Omega)$. Let $u \in H_0^1(\Omega)$ be such that it satisfies (3.2). If $a_{ij} \in C^1(\overline{\Omega})$, $b_i \in C(\overline{\Omega})$ and $f \in L^2(\Omega)$ then $u \in H^2(\Omega)$. More generally, for $m \ge 1$, if $a_{ij} \in C^{m+1}(\overline{\Omega})$, $b_i \in C^m(\overline{\Omega})$ and $f \in H^m(\Omega)$ then $u \in H^{m+2}(\Omega)$.

Theorem 3.11 (Weak Maximum Principle). Let Ω be a bounded open subset of \mathbb{R}^n with sufficient smooth boundary $\partial\Omega$. Let $a_{ij}, c \in L^{\infty}(\Omega), c(x) \geq 0$ and $f \in L^2(\Omega)$. Let $u \in H^1(\Omega) \cap C(\overline{\Omega})$ be such that it satisfies (3.2) with $\mathbf{b} \equiv 0$. Then the following are true:

- (i) If $f \ge 0$ on Ω and $u \ge 0$ on $\partial \Omega$ then $u \ge 0$ in Ω .
- (ii) If $c \equiv 0$ and $f \geq 0$ then $u(x) \geq \inf_{y \in \partial \Omega} u(y)$ for all $x \in \Omega$.
- (iii) If $c \equiv 0$ and $f \equiv 0$ then $\inf_{y \in \partial \Omega} u(y) \leq u(x) \leq \sup_{y \in \partial \Omega} u(y)$ for all $x \in \Omega$.

Proof. Recall that if $u \in H^1(\Omega)$ then |u|, u^+ and u^- are also in $H^1(\Omega)$.

(i) If $u \ge 0$ on $\partial\Omega$ then u = |u| on $\partial\Omega$. Hence, $u^- \in H^1_0(\Omega)$. Thus, using $v = u^-$ in (3.2), we get

$$-\int_{\Omega} A\nabla u^{-} \cdot \nabla u^{-} dx - \int_{\Omega} c(x)(u^{-})^{2} dx = \int_{\Omega} f(x)u^{-}(x) dx$$

because u^+ and u^- intersect on $\{u = 0\}$ and, on this set, $u^+ = u^- = 0$ and $\nabla u^+ = \nabla u^- = 0$ a.e. Note that RHS is non-negative because both f and u^- are non-negative. Therefore,

$$0 \ge \int_{\Omega} A \nabla u^- \cdot \nabla u^- \, dx + \int_{\Omega} c(x) (u^-)^2 \, dx \ge \alpha \|\nabla u^-\|_2^2.$$

Thus, $\|\nabla u^-\|_2 = 0$ and, by Poincarè inequality, $\|u^-\|_2 = 0$. This implies $u^- = 0$ a.e and, hence, $u = u^+$ a.e. on Ω .

- (ii) Let $m = \inf_{y \in \partial \Omega} u(y)$. Then $u m \ge 0$ on $\partial \Omega$. Further, $c \equiv 0$ implies that u m satisfies (3.2) with $\boldsymbol{b} = 0$. By previous case, $u m \ge 0$ on Ω .
- (iii) If $f \equiv 0$ then -u satisfies (3.2) with $\boldsymbol{b} = 0$. By previous case, we have the result.

Definition 3.12. Let H be a Hilbert space with scalar product $\langle \cdot, \cdot \rangle$. A linear continuous operator $T : H \to H$ is said to be:

(i) positive if, for all $x \in H$, $\langle Tx, x \rangle \ge 0$.

- (ii) self-adjoint if, for all $x, y \in H$, $\langle Tx, y \rangle = \langle x, Ty \rangle$.
- (iii) compact if the image of any bounded set in H is relatively compact (i.e. has compact closure) in H.

Theorem 3.13. Let H be a separable Hilbert space of infinite dimension and $T: H \to H$ is a self-adjoint, compact and positive operator. Then, there exists a sequence of real positive eigenvalues $\{\mu_m\}$, for $m \ge 1$, converging to 0 and a sequence of eigenvectors $\{x_m\}$, for $m \ge 1$, forming a basis of H such that, for all $m \ge 1$, $Tx_m = \mu_m x_m$.

Theorem 3.14 (Dirichlet Spectral Decomposition). Let A be a symmetric matrix, i.e., $a_{ij}(x) = a_{ji}(x)$, and $c(x) \ge 0$. There exists a sequence of positive real eigenvalues $\{\lambda_m\}$ and corresponding orthonormal basis $\{\phi_m\} \subset C^{\infty}(\Omega)$ of $L^2(\Omega)$, with $m \in \mathbb{N}$, such that

$$\begin{cases} -\operatorname{div}[A(x)\nabla\phi_m(x)] + c(x)\phi_m(x) &= \lambda_m\phi_m(x) & \text{in } \Omega\\ \phi_m &= 0 & \text{on } \partial\Omega \end{cases}$$
(3.3)

and $0 < \lambda_1 \leq \lambda_2 \leq \dots$ diverges.

Proof. Let $T: L^2(\Omega) \to H^1_0(\Omega)$ defined as Tf = u where u is the solution of

$$\begin{cases} -\operatorname{div}[A(x)\nabla u(x)] + c(x)u(x) &= f(x) & \text{in } \Omega\\ \phi_m &= 0 & \text{on } \partial\Omega. \end{cases}$$

Thus,

$$\int_{\Omega} A(x)\nabla(Tf) \cdot \nabla v(x) \, dx + \int_{\Omega} c(x)(Tf)(x)v(x) \, dx = \int_{\Omega} f(x)v(x) \, dx.$$

Note that T is a compact operator on $L^2(\Omega)$ and T is self-adjoint because, for every $g \in L^2(\Omega)$,

$$\int_{\Omega} (Tf)(x)g(x) \, dx = \int_{\Omega} A(x)\nabla(Tg) \cdot \nabla(Tf) \, dx$$
$$+ \int_{\Omega} c(x)(Tg)(x)(Tf)(x) \, dx$$
$$= \int_{\Omega} (Tg)(x)f(x) \, dx.$$

Further, T is positive definite because, for $f \neq 0$,

$$\int_{\Omega} (Tf)(x)f(x) dx = \int_{\Omega} A(x)\nabla(Tf) \cdot \nabla(Tf) dx + \int_{\Omega} c(x)(Tf)^2(x) dx$$

$$\geq \alpha \|\nabla Tf\|_2^2 > 0.$$

Thus, there exists an orthonormal basis of eigenfunctions $\{\phi_m\}$ in $L^2(\Omega)$ and a sequence of positive eigenvalues μ_m decreasing to zero such that $T\phi_m = \mu_m\phi_m$. Set $\lambda_m = \mu_m^{-1}$. Then $\phi_m = \lambda_m T\phi_m = T(\lambda_m\phi_m)$. Thus, $\phi_m \in H_0^1(\Omega)$ because range of T is $H_0^1(\Omega)$. Hence, ϕ_m satisfies (3.3). It now only remains to show that $\phi_m \in C^{\infty}(\Omega)$. For any $x \in \Omega$, choose $B_r(x) \subset \Omega$. Since $\phi_m \in L^2(B_r(x))$ and solves the eigen value problem, by interior regularity (cf. Theorem 3.10), $\phi_m \in H^2(B_r(x))$. Arguing similarly, we obtain $\phi_m \in$ $H^k(B_r(x))$ for all k. Thus, by Sobolev imbedding results, $\phi_m \in C^{\infty}(B_r(x))$. Since $x \in \Omega$ is arbitrary, $\phi_m \in C^{\infty}(\Omega)$.

Remark 3.15. Observe that if $H_0^1(\Omega)$ is equipped with the inner product $\int_{\Omega} \nabla u \cdot \nabla v \, dx$, then $\lambda_m^{-1/2} \phi_m$ is an orthonormal basis for $H_0^1(\Omega)$ where (λ_m, ϕ_m) is the eigen pair corresponding to A(x) = I and $c \equiv 0$. With the usual inner product

$$\int_{\Omega} uv \, dx + \int_{\Omega} \nabla u \cdot \nabla v \, dx$$

in $H_0^1(\Omega)$, $(\lambda_m + 1)^{-1/2} \phi_m$ forms an orthonormal basis of $H_0^1(\Omega)$. The set $\{\phi_m\}$ is dense in $H_0^1(\Omega)$ w.r.t both the norms mentioned above. Suppose $f \in H_0^1(\Omega)$ is such that $\langle f, \phi_m \rangle = 0$ in $H_0^1(\Omega)$, for all m. Then, from the eigenvalue problem, we get $\lambda_m \int_{\Omega} \phi_m f \, dx = 0$. Since ϕ_m is a basis for $L^2(\Omega)$, f = 0.

Theorem 3.16 (Krein-Rutman). Let X be a Banach space and C be a closed convex cone in X with vertex at O, $Int(C) \neq \emptyset$ and satisfying $C \cap (-C) =$ $\{O\}$. Let $T : E \to E$ be a compact operator such that $T(C \setminus \{O\}) \subset Int(C)$. Then the greatest eigenvalue of T is simple, and the corresponding eigenvector is in Int(C) (or in - Int(C)).

Theorem 3.17. Let Ω be a regular connected open set. Then the first eigenvalue $\lambda_1(\Omega)$ is simple and the first eigenfunction ϕ_1 has a constant sign on Ω . Usually, we choose it to be positive on Ω .

Proof. In the Krein-Rutman theorem, let $X = C(\overline{\Omega})$, $T = L^{-1}$ and $C = \{v \in C(\overline{\Omega}) \mid v(x) \ge 0\}$. Then, by strong maximum principle, T satisfies $T(C \setminus \{O\}) \subset \text{Int}(C)$.

Theorem 3.18 (Neumann Spectral Decomposition). Let Ω be a bounded open subset of \mathbb{R}^n with Lipschitz boundary. Let A be such that $a_{ij}(x) = a_{ji}(x)$, i.e., is a symmetric matrix and $c(x) \geq 0$. There exists a sequence of positive real eigenvalues $\{\lambda_m^{(N)}\}$ and corresponding orthonormal basis $\{\phi_m^{(N)}\} \subset C^{\infty}(\Omega)$ of $L^2(\Omega)$, with $m \in \mathbb{N}$, such that

$$\begin{cases} -\operatorname{div}[A(x)\nabla\phi_m^{(N)}(x)] + c(x)\phi_m^{(N)}(x) &= \lambda_m^{(N)}\phi_m^{(N)}(x) & \text{in } \Omega\\ A(x)\nabla\phi_m^{(N)} \cdot \nu &= 0 & \text{on } \partial\Omega \end{cases}$$
(3.4)

and $0 \leq \lambda_1^{(N)} \leq \lambda_2^{(N)} \leq \dots$ diverges.

Remark 3.19. The case when $c(x) \equiv 0$, the first eigenvalue $\lambda_1^{(N)} = 0$ and $\phi_1^{(N)}$ is a non-zero constant on a connected component of Ω . The Lipschitz condition on Ω is required for the compactness of $H^1(\Omega)$ imbedding in $L^2(\Omega)$.

Definition 3.20. The Rayleigh quotient map $R : H_0^1(\Omega) \setminus \{0\} \to [0, \infty)$ is defined as

$$R(v) = \frac{\int_{\Omega} A(x)\nabla v \cdot \nabla v \, dx + \int_{\Omega} c(x)v^2(x) \, dx}{\|v\|_{2,\Omega}^2}.$$

Remark 3.21 (Min-Max Principle). The eigenvalues satisfy the formula

$$\lambda_m = \min_{\substack{W_m \subset H_0^1(\Omega) \\ v \neq 0}} \max_{\substack{v \in W_m \\ v \neq 0}} R(v)$$

and

$$\lambda_m^{(N)} = \min_{\substack{W_m \subset H^1(\Omega) \ v \in W_m \\ v \neq 0}} \max_{\substack{v \in 0}} R(v)$$

where W_m is a *m*-dimensional subspace. The minimum is achieved for the subspace W_m spanned by the first *m* eigenfunctions.

4 Periodic Boundary Conditions

Let $Y = [0,1)^n$ be the unit cell of \mathbb{R}^n and let, for each i, j = 1, 2, ..., n, $a_{ij} : Y \to \mathbb{R}$ and $A(y) = (a_{ij})$. For any given $f : Y \to \mathbb{R}$, extended Y-periodically to \mathbb{R}^n , we want to solve the problem

$$\begin{cases} -\operatorname{div}(A(y)\nabla u(y)) &= f(y) & \text{in } Y \\ u & \text{is} & Y - \text{periodic.} \end{cases}$$
(4.1)

The condition u is Y-periodic is equivalent to saying that u takes equal values on opposite faces of Y. One may rewrite the equation on the *n*-dimensional unit torus \mathbb{T}^n without the periodic boundary condition.

Let us now identify the solution space for (4.1). Let $C_{\text{per}}^{\infty}(Y)$ be the set of all Y-periodic functions in $C^{\infty}(\mathbb{R}^n)$. Let $H_{\text{per}}^1(Y)$ denote the closure of $C_{\text{per}}^{\infty}(Y)$ in the H^1 -norm. Being a second order equation, in the weak formulation, we expect the weak solution u to be in $H_{\text{per}}^1(Y)$. Note that if u solves (4.1) then u + c, for any constant c, also solves (4.1). Thus, the solution will be unique up to a constant in the space $H_{\text{per}}^1(Y)$. Therefore, we define the quotient space $W_{\text{per}}(Y) = H_{\text{per}}^1(Y)/\mathbb{R}$ as solution space where the solution is unique.

Solving (4.1) is to find $u \in W_{per}(Y)$, for any given $f \in (W_{per}(Y))^*$ in the dual of $W_{per}(Y)$, such that

$$\int_{Y} A\nabla u \cdot \nabla v \, dx = \langle f, v \rangle_{(W_{\text{per}}(Y))^{\star}, W_{\text{per}}(Y)} \quad \forall v \in W_{\text{per}}(Y).$$

The requirement that $f \in (W_{per}(Y))^*$ is equivalent to saying that

$$\int_Y f(y) \, dy = 0$$

because f defines a linear functional on $W_{\text{per}}(Y)$ and f(0) = 0, where $0 \in H^1_{\text{per}}(Y)/\mathbb{R}$. In particular, the equivalence class of 0 is same as the equivalence class 1 and hence

$$\int_{Y} f(y) \, dy = \langle f, 1 \rangle = \langle f, 0 \rangle = 0.$$

Theorem 4.1. Let Y be unit open cell and let $a_{ij} \in L^{\infty}(\Omega)$ such that the matrix $A(y) = (a_{ij}(y))$ is elliptic with ellipticity constant $\alpha > 0$. For any $f \in (W_{per}(Y))^*$, there is a unique weak solution $u \in W_{per}(Y)$ satisfying

$$\int_{Y} A\nabla u \cdot \nabla v \, dx = \langle f, v \rangle_{(W_{per}(Y))^{\star}, W_{per}(Y)} \quad \forall v \in W_{per}(Y).$$

Note that the solution u we find from above theorem is an equivalence class of functions which are all possible solutions. Any representative element from the equivalence class is a solution. All the elements in the equivalence differ by a constant. Let u be an element from the equivalence class and let c be the constant

$$c = \frac{1}{|Y|} \int_Y u(y) \, dy.$$

Thus, we have u-c is a solution with zero mean value in Y, i.e., $\int_Y u(y) \, dy = 0$. Therefore, rephrasing (4.1) as

$$\begin{cases} -\operatorname{div}(A(y)\nabla u(y)) &= f(y) & \text{in } Y \\ u & \text{is} & Y - \text{periodic} \\ \frac{1}{|Y|} \int_Y u(y) \, dy &= 0 \end{cases}$$

we have unique solution u in the solution space

$$V_{\rm per}(Y) = \left\{ u \in H^1_{\rm per}(Y) \mid \frac{1}{|Y|} \int_Y u(y) \, dy = 0 \right\}.$$