Bloch-Floquet Transform

T. Muthukumar
tmk@iitk.ac.in

December 19, 2014

Contents

1 Raison d'être 1
1.1 Fourier Transform 1
1.2 Schrödinger Operator with Periodic Potential 2
1.3 Direct Integral Decomposition 3
1.4 Bloch Periodic Functions 6
2 Bloch Transform 7
2.1 Spectrum of Elliptic Operator 9
2.2 Regularity of $\lambda_{m}(\eta)$ and $\phi_{1}(\cdot, \eta)$ 11
2.3 Taylor Expansion of Ground State 12
3 Homogenization of Second order Elliptic Operator 14

1 Raison d'être

1.1 Fourier Transform

Recall that $-\Delta: H^{2}\left(\mathbb{R}^{n}\right) \subset L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right)$ is an unbounded, self-adjoint operator whose spectral decomposition is well-known. The "generalised" eigenfunctions ${ }^{1}$ are the plane or Fourier waves $e^{\imath \xi \cdot x}$, for each $\xi \in \mathbb{R}^{n}$, and $|\xi|^{2}$ is an eigenvalue, for each $\xi \in \mathbb{R}^{n}$, giving the spectrum to be $[0, \infty)$. Further, $-\Delta\left(e^{2 x \cdot \xi}\right)=|\xi|^{2} e^{2 x \cdot \xi}$.

Theorem 1.1. Given any $f \in L^{2}\left(\mathbb{R}^{n}\right)$ there is a unique $\hat{f} \in L^{2}\left(\mathbb{R}^{n}\right)$ such that

$$
f(x)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} \hat{f}(\xi) e^{\imath \xi \cdot x} d \xi .
$$

Also, for any $f, g \in L^{2}\left(\mathbb{R}^{n}\right)$,

$$
\int_{\mathbb{R}^{n}} f(x) \overline{g(x)} d x=\int_{\mathbb{R}^{n}} \hat{f}(\xi) \overline{\hat{g}(\xi)} d \xi
$$

In particular, the Fourier transform $f \mapsto \hat{f}$ is an isometry from $L^{2}\left(\mathbb{R}^{n}\right)$ to $L^{2}\left(\mathbb{R}^{n}\right)$.

[^0]The Fourier transform will change a differential equation in to an algebraic equation. For instance, $-\Delta u=f$ tranforms to, on applying Fourier transform,

$$
\begin{aligned}
\hat{f}(\xi) & =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} f(x) e^{-\imath x \cdot \xi} d x=-\frac{1}{(2 \pi)^{n / 2}} \sum_{j=1}^{n} \int_{\mathbb{R}^{n}} \frac{\partial^{2} u(x)}{\partial x_{j}^{2}} e^{-\imath x \cdot \xi} d x \\
& =\frac{1}{(2 \pi)^{n / 2}} \sum_{j=1}^{n}\left(-\imath \xi_{j}\right) \int_{\mathbb{R}^{n}} \frac{\partial u(x)}{\partial x_{j}} e^{-\imath x \cdot \xi} d x \quad \text { (Integration by parts) } \\
& =-\sum_{j=1}^{n}\left(-\imath \xi_{j}\right)^{2} \frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} u(x) e^{-\imath x \cdot \xi} d x \quad \text { (Integration by parts) } \\
& =|\xi|^{2} \hat{u}(\xi) .
\end{aligned}
$$

More generally, any m-th order linear differential equation with constant coefficients $P(D) u=f$ where $P(D)=\sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}$ will transform in to an algebraic eqaution $P(\imath \xi) \hat{u}(\xi)=\hat{f}(\xi)$.

The Laplacian is a particular case of the elliptic operator $-\Delta+c(x)$ with $c \equiv 0$. For $c(x) \neq 0$ (without loss of generality assume $c(x) \geq 0$), the Bloch theorem gives the generalised eigenfunction for $-\Delta+c(x)$ when c is Y-periodic, for any given reference cell $Y \subset \mathbb{R}^{n}$.

1.2 Schrödinger Operator with Periodic Potential

Definition 1.2. Let $\left\{e_{i}\right\}$ be the canonical basis for \mathbb{R}^{n}. Let $Y=\Pi_{i=1}^{n}\left[0, \ell_{i}\right)$ be a reference cell (or period) in \mathbb{R}^{n}. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to be Y-periodic if $f\left(x+e_{i} p_{i} \ell_{i}\right)=f(x)$ for a.e. $x \in \mathbb{R}^{n}$ and all $p \in \mathbb{Z}^{n}$, for all $i=1,2, \ldots, n$.

Consider the Schrödinger operator $-\Delta+c(x)$ where c is a periodic function, i.e., for some $\ell=\left(\ell_{i}\right) \in \mathbb{R}^{n}$ and $p \in \mathbb{Z}^{n}, c\left(x+e_{i} \ell_{i} p_{i}\right)=c(x)$. Let $L: \mathcal{S}(\mathbb{R}) \rightarrow \mathcal{S}(\mathbb{R})$ be the operator $L:=-\Delta+c(x)$.

To begin, let us consider the one dimension situation with $c \in C_{c}^{\infty}(\mathbb{R})$ with bounded derivatives and $L: \mathcal{S}(\mathbb{R}) \rightarrow \mathcal{S}(\mathbb{R})$ defined as

$$
L:=-\frac{d^{2}}{d x^{2}}+c(x) .
$$

If c is 2π-periodic and, hence, c admits a uniformly convergent Fourier series

$$
c(x)=\sum_{\eta \in \mathbb{Z}} c_{\eta} e^{\imath \eta x}
$$

where

$$
c_{\eta}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} c(x) e^{-i \eta x} d x
$$

If $u \in \mathcal{S}(\mathbb{R})$ then

$$
\begin{aligned}
\widehat{L u(x)}(\xi) & =\xi^{2} \hat{u}(\xi)+\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} c(x) u(x) e^{-\imath \xi x} d x \\
& =\xi^{2} \hat{u}(\xi)+\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}}\left(\sum_{\eta \in \mathbb{Z}} c_{\eta} e^{\imath \eta x}\right) u(x) e^{-\imath \xi x} d x \\
& =\xi^{2} \hat{u}(\xi)+\sum_{\eta \in \mathbb{Z}} c_{\eta} \frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} u(x) e^{-\imath(\xi-\eta) x} d x \\
& =\xi^{2} \hat{u}(\xi)+\sum_{\eta \in \mathbb{Z}} c_{\eta} \hat{u}(\xi-\eta) .
\end{aligned}
$$

Thus, $\widehat{L u}(\xi)$ depends only on the values $\hat{u}(\xi-\eta)$ for all $\eta \in \mathbb{Z}$. But recall that $\hat{u}(\xi-\eta)=e^{\widehat{x x \eta} u(x)}(\xi)$. This suggests that the operator L depends on the modulation by all $\eta \in \mathbb{Z}$.

1.3 Direct Integral Decomposition

Let H be a separable Hilbert space and (X, μ) be a σ-finite measure space. Let $L^{2}(X, \mu ; H)$ is the Hilbert space of square integrable H-valued functions. If μ is a sum of point measures at finite set of points x_{1}, \ldots, x_{k} then, any $f \in L^{2}(X, \mu ; H)$, is determined by the k-tuple $\left(f\left(x_{1}\right), \ldots, f\left(x_{k}\right)\right)$. Thus, $L^{2}(X, \mu ; H)$ is isomorphic to the direct sum $\oplus_{i=1}^{k} H$. For more general μ, one may define a kind of "continuous direct sum" called the constant fiber direct integral and write

$$
L^{2}(X, \mu ; H)=\int_{X}^{\oplus} H d \mu
$$

Definition 1.3. A function $T(\cdot): X \rightarrow L(H)$ is measurable iff, for each $\phi, \psi \in H,\langle\phi, T(\cdot) \psi\rangle$ is measurable. $L^{\infty}(X, \mu ; L(H))$ denotes the equivalence class (with a.e.) of measurable functions from X to $L(H)$ with

$$
\|T\|_{\infty}=\text { ess sup }\|T(x)\|_{L(H)}<\infty
$$

Definition 1.4. A bounded operator T on $\mathcal{H}=\int_{X}^{\oplus} H d \mu$ is said to be decomposed by the direct integral decomposition iff there is $T(\cdot) \in L^{\infty}(X, \mu ; L(H))$ such that, for all $\psi \in \mathcal{H}$,

$$
(T \psi)(x)=T(x) \psi(x) .
$$

We then say T is decomposable and

$$
T=\int_{X}^{\oplus} T(x) d \mu(x)
$$

The $T(x)$ are called the fibers of T.
Theorem 1.5. Let $H=l_{2}$ and

$$
\mathcal{H}=\int_{\left(-\frac{1}{2}, \frac{1}{2}\right]}^{\oplus} H d x
$$

For $\eta \in\left(-\frac{1}{2}, \frac{1}{2}\right]$, let $L_{\eta}: l_{2} \rightarrow l_{2}$ be defined as

$$
\left(L_{\eta}(z)\right)_{k}=(\eta+k)^{2} z_{k}+\sum_{m \in \mathbb{Z}} c_{m} z_{k-m}
$$

Define $T: L^{2}(\mathbb{R}) \rightarrow \mathcal{H}$ by

$$
[(T f)(\eta)]_{k}=\hat{f}(\eta+k)
$$

For $L=-\frac{d^{2}}{d x^{2}}+c(x)$ on $L^{2}(\mathbb{R})$,

$$
T L T^{-1}=\int_{\left(-\frac{1}{2}, \frac{1}{2}\right]}^{\oplus} L_{\eta} d \eta
$$

When $c \equiv 0$, the eigenvalues and eigenfunctions of L_{η} are $(\eta+k)^{2}$ and the Fourier transform of $e^{\imath(\eta+k) x}$, respectively. This suggests that L_{η} is related to $-\frac{d^{2}}{d x^{2}}$ on $[0,2 \pi)$ with the boundary condition $u(2 \pi)=e^{22 \pi \eta} u(0)$ and $u^{\prime}(2 \pi)=e^{22 \pi \eta} u^{\prime}(0)$.

Lemma 1.6. Let $H=L^{2}[0,2 \pi)$ and

$$
\mathcal{H}=\int_{\left(-\frac{1}{2}, \frac{1}{2}\right]}^{\oplus} H d \eta
$$

Then $T: \mathcal{S}(\mathbb{R}) \rightarrow \mathcal{H}$ given by

$$
(T f)_{\eta}(x)=\sum_{m \in \mathbb{Z}} e^{\imath 2 \pi m \eta} f(x+2 \pi m) \quad \eta \in\left(-\frac{1}{2}, \frac{1}{2}\right] x \in[0,2 \pi)
$$

which extends uniquely to an unitary operator on $L^{2}(\mathbb{R})$. Moreover,

$$
\begin{equation*}
T\left(-\frac{d^{2}}{d x^{2}}\right) T^{-1}=\int_{\left(-\frac{1}{2}, \frac{1}{2}\right]}^{\oplus}\left(-\frac{d^{2}}{d x^{2}}\right)_{\eta} d \eta \tag{1.1}
\end{equation*}
$$

where $\left(-\frac{d^{2}}{d x^{2}}\right)_{\eta}$ is the operator $-\frac{d^{2}}{d x^{2}}$ on $L^{2}[0,2 \pi)$ with boundary condition

$$
u(2 \pi)=e^{\imath 2 \pi \eta} u(0) \quad u^{\prime}(2 \pi)=e^{\imath 2 \pi \eta} u^{\prime}(0)
$$

Proof. Let us note that T is well defined. For any $f \in \mathcal{S}(\mathbb{R})$, the series in RHS is convergent. For any $f \in \mathcal{S}(\mathbb{R})$, $T f \in \mathcal{S}(\mathbb{R})$ because

$$
\begin{aligned}
& \int_{-\frac{1}{2}}^{\frac{1}{2}}\left(\int_{0}^{2 \pi}\left|\sum_{m=-\infty}^{\infty} e^{-\imath 2 \pi m \eta} f(x+2 \pi m)\right|^{2} d x\right) d \eta \\
= & \int_{0}^{2 \pi}\left[\left(\sum_{m, p \in \mathbb{Z}} \overline{f(x+2 \pi m)} f(x+2 \pi p)\right) \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{-\imath 2 \pi(p-m) \eta} d \eta\right] d x
\end{aligned}
$$

(by Fubini's Theorem)

$$
=\int_{0}^{2 \pi}\left(\sum_{m \in \mathbb{Z}}|f(x+2 \pi m)|^{2}\right) d x=\int_{\mathbb{R}}|f(x)|^{2} d x
$$

Thus, T is well defined and admits a unique isometry extension. To see that T is onto \mathcal{H}, we compute T^{\star}. For any $g \in \mathcal{H}, x \in[0,2 \pi]$ and $m \in \mathbb{Z}$

$$
\left(T^{\star} g\right)(x+2 \pi m)=\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{22 \pi m \eta} g_{\eta}(x) d \eta
$$

Further,

$$
\begin{aligned}
\left\|T^{\star} g\right\|_{2}^{2} & =\int_{\mathbb{R}}\left|\left(T^{\star} g\right)(y)\right|^{2} d y \\
& =\int_{0}^{2_{\pi}}\left(\sum_{m \in \mathbb{Z}}\left|\left(T^{\star} g\right)(2 \pi m+x)\right|^{2}\right) d x \\
& =\int_{0}^{2_{\pi}}\left(\sum_{m \in \mathbb{Z}}\left|\int_{0}^{2 \pi} e^{\imath 2 \pi m \eta} g_{\eta}(x) d \theta\right|^{2}\right) d x \\
& =\int_{0}^{2_{\pi}}\left(\int_{0}^{2_{\pi}}\left|g_{\eta}(x)\right|^{2} d \theta\right) d x \quad \text { (Parseval's Identity) } \\
& =\|g\|^{2} .
\end{aligned}
$$

Finally, to prove (1.1), let G be the operator on the right-hand side of (1.1). We shall show that if $f \in \mathcal{S}(\mathbb{R})$, then $T f \in D(G)$ and $T\left(-f^{\prime \prime}\right)=G(T f)$. Since $-d^{2} / d x^{2}$ is essentially self-adjoint on $\mathcal{S}(\mathbb{R})$ and G is self-adjoint, (1.1) will follow. So, suppose $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, then $T f$ is given by the convergent sum as in the statement. Thus, $T f \in C^{\infty}(0,2 \pi)$ with $(T f)_{\eta}^{\prime}(x)=\left(T f_{\eta}^{\prime}(x)\right.$ and similarly for higher derivatives. Further, it is clear that

$$
\begin{aligned}
(T f)_{\theta}(2 \pi) & =\sum_{m \in \mathbb{Z}} e^{-\imath 2 \pi m \eta} f(2 \pi(m+1)) \\
& =\sum_{m \in \mathbb{Z}} e^{-\imath 2 \pi(m-1) \eta} f(2 \pi m)=e^{\imath 2 \pi \eta}(T f)_{\eta}(0) .
\end{aligned}
$$

Similarly, $(T f)_{\eta}^{\prime}(2 \pi)=e^{22 \pi \eta}\left(T f_{\eta}\right)^{\prime}(0)$. Thus, for each $\eta,(T f)_{\eta} \in D\left(\left(-\frac{d^{2}}{d x^{2}}\right)_{\eta}\right)$ and

$$
\left(-\frac{d^{2}}{d x^{2}}\right)_{\eta}(T f)=U\left(-f^{\prime \prime}\right)_{\eta} .
$$

We conclude that $T f \in D(G)$ and $G(T f)=U\left(-f^{\prime \prime}\right)$. This proves (1.1).
Theorem 1.7 (Direct Integral Decomposition of Periodic Schrödinger operator). Let c be a bounded measurable function on \mathbb{R} with period 2π. For $\eta \in\left(-\frac{1}{2}, \frac{1}{2}\right]$, let

$$
L_{\eta}=\left(-\frac{d^{2}}{d x^{2}}\right)_{\eta}+c(x)
$$

be an operator on $L^{2}[0,2 \pi]$. Let T be given by

$$
(T f)_{\eta}(x)=\sum_{m \in \mathbb{Z}} e^{\imath 2 \pi m \eta} f(x+2 \pi m) \quad \eta \in\left(-\frac{1}{2}, \frac{1}{2}\right] x \in[0,2 \pi) .
$$

Then

$$
T\left(-\frac{d^{2}}{d x^{2}}+c\right) T^{-1}=\int_{\left(-\frac{1}{2}, \frac{1}{2}\right]}^{\oplus} L_{\eta} d \eta
$$

Proof. Let c be the η-independent operator acting on the fiber $H=L^{2}[0,2 \pi)$ by $\left(c_{\eta} f\right)(x)=$ $c(x) f(x)$ for $0 \leq x \leq 2 \pi$. It is sufficient to prove that

$$
T c T^{-1}=\int_{\left(-\frac{1}{2}, \frac{1}{2}\right]}^{\oplus} c_{\eta} d \eta
$$

For $f \in \mathcal{S}(\mathbb{R})$,

$$
\begin{aligned}
(T c f)_{\eta}(x) & =\sum_{m \in \mathbb{Z}} e^{-\imath 2 \pi m \eta} c(x+2 \pi m) f(x+2 \pi m) \\
& =c(x) \sum_{m \in \mathbb{Z}} e^{-\imath 2 \pi m \eta} f(x+2 \pi m) \\
& =c_{\eta}(T f)_{\eta}(x) .
\end{aligned}
$$

The second last equality is due to the periodicity of c.

1.4 Bloch Periodic Functions

The Bloch transform is a generalization of Fourier transform that leaves the periodic functions invariant, in some sense. Let us begin by considering a generalization of periodic functions.

Definition 1.8. Let $Y=\Pi_{i=1}^{n}\left[0, \ell_{i}\right)$ be a reference cell (or period) in \mathbb{R}^{n}. For each $\eta \in \mathbb{R}^{n}$, a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to be (η, Y)-Bloch periodic if $f(x+\ell \cdot p)=e^{22 \pi p \cdot \eta} f(x)$ for a.e. $x \in \mathbb{R}^{n}$ and for all $p \in \mathbb{Z}^{n}$.

Note that the case $\eta=0$ corresponds to the usual notion of Y-periodic functions. Note that the boundary condition remains unchanged if η is replaced with $\eta+k$, for any $k \in \mathbb{Z}^{n}$. Hence, it is sufficient to consider $\eta \in Y^{\star}$ where $Y^{\star}=\left(-\frac{1}{2}, \frac{1}{2}\right]^{n}$. The cell Y^{\star} is called the reciprocal cell and, in Physics literature, Y^{\star} is known as the first Brillouin zone.

We shall assume that $Y=[0,2 \pi)^{n}$ and, for $j, k=1,2, \ldots, n, a_{j k}: Y \rightarrow \mathbb{R}$ is such that $a_{j k} \in L_{\mathrm{per}}^{\infty}(Y)$. Let $A(y)=\left(a_{j k}(y)\right) \in M(\alpha, \beta, Y)$ and is a symmetric matrix, i.e., $a_{j k}(y)=a_{k j}(y)$. One can extend $a_{j k}$ to entire \mathbb{R}^{n} as a Y-periodic function. Also, c is a Y-periodic function such that $c(y) \geq c_{3}>0$. We are interested in the spectral resolution of closure of the operator $\mathcal{A}=$ $-\operatorname{div}(A(y) \nabla)+c(y)$ in $L^{2}\left(\mathbb{R}^{n}\right)$.

By Bloch Theorem, it is enough to study the (η, Y)-Bloch periodic eigenvalue problem, for each $\eta \in \mathbb{R}^{n}$, i.e.,

Definition 1.9. For any fixed (momentum) vector $\eta \in Y^{\star}$, consider the eigenvalue problem: given a symmetric $A \in M(\alpha, \beta, Y)$, find $\lambda(\eta) \in \mathbb{C}$ and non-zero $\psi(\cdot ; \eta): \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

$$
\left\{\begin{align*}
\mathcal{A} \psi(y ; \eta)) & =\lambda(\eta) \psi(y ; \eta) & & \text { in } \mathbb{R}^{n} \tag{1.2}\\
\psi(y+2 \pi \ell) & =e^{2 \pi \imath \cdot \eta} \psi(y) & & \ell \in \mathbb{Z}^{n}, y \in \mathbb{R}^{n} .
\end{align*}\right.
$$

The eigenvalues ψ are known as Bloch waves associated with \mathcal{A} and the eigenvalues λ are called Bloch eigenvalues.

Suppose $\eta \in Y^{\star}$ have rational components and $\eta=\left(\eta_{1}, \ldots, \eta_{n}\right)$. Recall that there is a homeomorphism from Y^{\star} to S^{1}. Thus, $e^{22 \pi \eta_{j}} \in S^{1}$. In this sense, the Bloch periodicity condition has the form $e^{2 \pi \imath p \cdot \eta}=\omega^{p}$ where $\omega \in\left[S^{1}\right]^{n}$ and $\omega^{p}=\omega_{1}^{p_{1}} \omega_{2}^{p_{2}} \ldots \omega_{n}^{p_{n}}$. For any $m \in \mathbb{Z}^{n}$, let $D_{m} \subset\left[S^{1}\right]^{n}$ be the collection of all $\omega \in\left[S^{1}\right]^{n}$ such that its j-th component is the m_{j}-th root of unity. Thus, $\omega^{m}=1$ for all $\omega \in D_{m}$. The spectral problem (1.2) may be seen as a sequence of spectral problems, i.e., for each $m \in \mathbb{Z}^{n}$, we define ψ_{m} as

$$
\left\{\begin{aligned}
\mathcal{A} \psi_{m}(y) & =\lambda_{m} \psi_{m}(y) & & \text { in } \mathbb{R}^{n} \\
\psi_{m}(y+2 \pi m) & =\psi(y) & & y \in \mathbb{R}^{n} .
\end{aligned}\right.
$$

Note that in the above boundary condition ψ is Y_{m}-periodic where $Y_{m}=\prod_{i=1}^{n}\left[0,2 \pi m_{i}\right)$. The space of spectral decomposition is $L_{\mathrm{per}}^{2}\left(Y_{m}\right)$ which admits the orthogonal decomposition $L_{\mathrm{per}}^{2}\left(Y_{m}\right)=$ $\oplus_{\omega \in D_{m}} L_{\text {per }}^{2}(\omega, Y)$ where

$$
L_{\mathrm{per}}^{2}(\omega, Y)=\left\{\psi \in L_{\mathrm{loc}}^{2}\left(\mathbb{R}^{n}\right) \mid \psi(y+2 \pi \ell)=\omega^{\ell} \psi(y) \forall \ell \in \mathbb{Z}^{n}, y \in \mathbb{R}^{n}\right\} .
$$

Thus, we observe that the above space consists of (η, Y)-Bloch Periodic functions. For any irrational η can be approximated by rationals by varying m and noting that the sets of roots of unity is dense in S^{1}.

2 Bloch Transform

Theorem 2.1 (Bloch Decomposition). Let $Y=[0,2 \pi)^{n}$ and $Y^{\star}=\left(-\frac{1}{2}, \frac{1}{2}\right]^{n}$. Given a $f \in L^{2}\left(\mathbb{R}^{n}\right)$ there is a unique function, called Bloch Transform, $f_{b} \in L^{2}\left(Y \times Y^{\star}\right)$ such that

$$
f(y)=\int_{Y^{\star}} f_{b}(y, \eta) e^{\imath \eta \cdot y} d \eta .
$$

Also, for any $f, g \in L^{2}\left(\mathbb{R}^{n}\right)$, the Plancherel formula holds, i.e.,

$$
\int_{\mathbb{R}^{n}} f(y) \overline{g(y)} d y=\int_{Y} \int_{Y^{\star}} f_{b}(y, \eta) \overline{g_{b}(y, \eta)} d y d \eta .
$$

In particular, the Bloch transform $f \mapsto f_{b}$ is an isometry from $L^{2}\left(\mathbb{R}^{n}\right)$ to $L^{2}\left(Y \times Y^{\star}\right)$.
Proof. For any $f \in \mathcal{D}\left(\mathbb{R}^{n}\right)$ and for each $\eta \in Y^{\star}$, define

$$
f_{b}(y ; \eta):=\sum_{p \in \mathbb{Z}^{n}} f(y+2 \pi p) e^{-\imath(y+2 \pi p) \cdot \eta}
$$

The sum is well defined because it has finite number of terms because f has compact support. Note that $f_{b}(y ; \eta)$ is Y-periodic in y variable because

$$
f_{b}(y+2 \pi ; \eta):=\sum_{p+1 \in \mathbb{Z}^{n}} f(y+2 \pi p) e^{-\imath(y+2 \pi p) \cdot \eta}=f_{b}(y ; \eta) .
$$

Similarly, $e^{\imath y \cdot \eta} f_{b}(y ; \eta)$ is Y^{\star}-periodic in η variable because, for $k \in \mathbb{Z}^{n}$,

$$
\begin{aligned}
e^{\imath y \cdot(\eta+k)} f_{b}(y ; \eta+k) & =e^{\imath y \cdot(\eta+k)} \sum_{p \in \mathbb{Z}^{n}} f(y+2 \pi p) e^{-\imath(y+2 \pi p) \cdot(\eta+k)} \\
& =e^{\imath y \cdot(\eta+k)} \sum_{p \in \mathbb{Z}^{n}} f(y+2 \pi p) e^{-\imath(y+2 \pi p) \cdot \eta} e^{-\imath(y+2 \pi p) \cdot k} \\
& =e^{\imath y \cdot(\eta+k)} e^{-\imath y \cdot k} \sum_{p \in \mathbb{Z}^{n}} f(y+2 \pi p) e^{-\imath(y+2 \pi p) \cdot \eta} e^{-\imath 2 \pi p \cdot k} \\
& =e^{\imath y \cdot \eta} f_{b}(y ; \eta) .
\end{aligned}
$$

In the above relation we have used the fact that $e^{22 \pi p \cdot k}=1$. Observe that

$$
e^{\imath y \cdot \eta} f_{b}(y ; \eta)=\sum_{p \in \mathbb{Z}^{n}} f(y+2 \pi p) e^{-2 \imath \pi p \cdot \eta}
$$

Thus,

$$
\begin{aligned}
\int_{Y^{\star}} e^{\imath y \cdot \eta} f_{b}(y ; \eta) d \eta & =f(y)+\sum_{\substack{p \in \mathbb{Z}^{n} \\
p \neq 0}} f(y+2 \pi p) \int_{Y^{\star}} e^{-2 \imath \pi p \cdot \eta} d y \\
& =f(y)-\sum_{\substack{p \in \mathbb{Z}^{n} \\
p \neq 0}} f(y+2 \pi p)\left[\frac{e^{-\imath \pi p}-e^{\imath \pi p}}{2 \imath \pi p_{1} \ldots p_{n}}\right] d y \\
& =f(y) .
\end{aligned}
$$

Therefore, we have proved the results for all functions in $\mathcal{D}\left(\mathbb{R}^{n}\right)$. Similarly, one can prove the Plancherel's formula for functions in $\mathcal{D}\left(\mathbb{R}^{n}\right)$. The Bloch transform is a linear map on $\mathcal{D}\left(\mathbb{R}^{n}\right)$ bounded on $L^{2}\left(\mathbb{R}^{n}\right)$. Thus, by density of $\mathcal{D}\left(\mathbb{R}^{n}\right)$ in $L^{2}\left(\mathbb{R}^{n}\right)$, the Bloch transform extends to $L^{2}\left(\mathbb{R}^{n}\right)$ and Plancherel's formula holds true.

Remark 2.2. Note that, for each fixed $\eta \in Y^{\star}, y \mapsto f_{b}(y, \eta)$ is extended Y-periodic to \mathbb{R}^{n} and, for each fixed $y \in Y, \eta \mapsto e^{\imath \eta \cdot y} f_{b}(y, \eta)$ is extended Y^{\star}-periodic to \mathbb{R}^{n}. Thus, the Bloch transform may be seen as an isometry from $L^{2}\left(\mathbb{R}^{n}\right)$ to $L^{2}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$.

Remark 2.3. The Bloch transform is a "modulation" of Zak transform. The Zak transform for any $f \in \mathcal{D}\left(\mathbb{R}^{n}\right)$ is defined as

$$
f_{z}(y ; \eta):=\sum_{p \in \mathbb{Z}^{n}} f(y+2 \pi p) e^{-\imath 2 \pi p \cdot \eta}
$$

and extended unitarily to to $L^{2}\left(\mathbb{R}^{n}\right)$. Further, $f_{b}(y ; \eta)=e^{-\imath y \cdot \eta} f_{z}(y ; \eta)$ for all $f \in \mathcal{D}\left(\mathbb{R}^{n}\right)$.
The following theorem explains the sense in which the Bloch transform leaves the periodic functions invariant.

Theorem 2.4 (Invariance of Periodic Functions). Let $Y=[0,2 \pi)^{n}$ and $c: Y \rightarrow \mathbb{C}$ be such that $c \in L^{\infty}(Y)$ extended Y-periodically to \mathbb{R}^{n}. For any $f \in L^{2}\left(\mathbb{R}^{n}\right),(c f)_{b}(y ; \eta)=c(y) f_{b}(y ; \eta)$.

Proof. It is enough to prove the result for $f \in \mathcal{D}\left(\mathbb{R}^{n}\right)$. Consider

$$
\begin{aligned}
(c f)_{b}(y ; \eta) & =\sum_{p \in \mathbb{Z}^{n}} c(y+2 \pi p) f(y+2 \pi p) e^{-\imath(y+2 \pi p) \cdot \eta} \\
& =c(y) \sum_{p \in \mathbb{Z}^{n}} f(y+2 \pi p) e^{-\imath(y+2 \pi p) \cdot \eta} \\
& =c(y) f_{b}(y ; \eta)
\end{aligned}
$$

By density the result is true for any $f \in L^{2}\left(\mathbb{R}^{n}\right)$.
Theorem 2.5. For any $f \in H^{1}\left(\mathbb{R}^{n}\right),\left(\nabla_{y} f\right)_{b}(y ; \eta)=\left(\nabla_{y}+\imath \eta\right) f_{b}(y ; \eta)$.
Proof. It is enough to prove the result for $f \in \mathcal{D}\left(\mathbb{R}^{n}\right)$. Consider

$$
\begin{aligned}
\left(\nabla_{y} f\right)_{b}(y ; \eta)= & \sum_{p \in \mathbb{Z}^{n}}\left[\nabla_{y} f(y+2 \pi p)\right] e^{-\imath(y+2 \pi p) \cdot \eta} \\
= & \sum_{p \in \mathbb{Z}^{n}} \nabla_{y}\left[f(y+2 \pi p) e^{-\imath(y+2 \pi p) \cdot \eta}\right] \\
& +\imath \eta \sum_{p \in \mathbb{Z}^{n}} f(y+2 \pi p) e^{-\imath(y+2 \pi p) \cdot \eta} \\
= & {\left[\nabla_{y}+\imath \eta\right] f_{b}(y ; \eta) . }
\end{aligned}
$$

For any $f \in L^{2}\left(\mathbb{R}^{n}\right)$, consider the equation $\mathcal{A} u=f$ in \mathbb{R}^{n}. Applying Bloch transform to this equation, using Theorems 2.4 and 2.5 , we obtain a family of equations, indexed by $\eta \in Y^{\star}$, with periodic boundary conditions:

$$
\left\{\begin{array}{rll}
\mathcal{A}(\eta) u_{b}(y ; \eta) & =f_{b}(y ; \eta) & \text { in } \mathbb{R}^{n} \tag{2.1}\\
u_{b}(y+2 \pi \ell ; \eta) & =u_{b}(y ; \eta) & \ell \in \mathbb{Z}^{n} y \in \mathbb{R}^{n},
\end{array}\right.
$$

where $\mathcal{A}(\eta)$ is the shifted operator, denoted as

$$
\mathcal{A}(\eta):=-\sum_{j, k=1}^{n}\left(\frac{\partial}{\partial y_{j}}+\imath \eta_{j}\right)\left[a_{j k}(y)\left(\frac{\partial}{\partial y_{k}}+\imath \eta_{k}\right)\right]+c(y) .
$$

The shifted operator equation admits a solution (being a periodic problem) in $H_{\mathrm{per}}^{1}(Y)$ and a corresponding Poincaré inequality holds true, i.e., for all $u \in H_{\mathrm{per}}^{1}(Y)$ and $\eta \in Y^{\star}$,

$$
c\left(\|\nabla u\|_{2, Y}+|\eta|\|u\|_{2, Y}\right) \leq\|\nabla u+\imath u \eta\|_{2, Y} \leq\|\nabla u\|_{2, Y}+|\eta|\|u\|_{2, Y} .
$$

2.1 Spectrum of Elliptic Operator

The spectral decomposition of \mathcal{A}, in one dimension periodic media, was first studied by Floquet (1883) and much later, in crystal lattice, by Bloch (1928). We shall compute the spectral decomposition of \mathcal{A} in $L^{2}\left(\mathbb{R}^{n}\right)$ via the spectral decomposition of the shifted operator $\mathcal{A}(\eta)$. Consider the eigenvalue problem

$$
\left\{\begin{align*}
\mathcal{A}(\eta) \phi(y ; \eta) & =\lambda(\eta) \phi(y ; \eta) & & \text { in } \mathbb{R}^{n} \tag{2.2}\\
\phi(y+2 \pi \ell) & =\phi(y) & & \ell \in \mathbb{Z}^{n}, y \in \mathbb{R}^{n}
\end{align*}\right.
$$

Theorem 2.6 (Periodic Eigen Value problem). There exists a sequence of pairs $\left(\lambda_{m}, \phi_{m}\right)$ satisfying

$$
\left\{\begin{array}{rlrl}
\mathcal{A} \phi(y) & =\lambda \phi(y) & & \text { in } \mathbb{R}^{n} \tag{2.3}\\
\phi(y+2 \pi \ell) & =\phi(y) & \ell \in \mathbb{Z}^{n}, y \in \mathbb{R}^{n}
\end{array}\right.
$$

where $\left\{\lambda_{m}\right\}$ are positive real eigenvalues and $\left\{\phi_{m}(y)\right\}$ are the corresponding eigenvectors, for each $m \in \mathbb{N}$, such that $\left\{\phi_{m}\right\}$ form an orthonormal basis of $L_{p e r}^{2}(Y)$ and $0 \leq \lambda_{1} \leq \lambda_{2} \leq \ldots$ diverges and each eigenvalue has finite multiplicity.

Remark 2.7. By Theorem 2.6, for each fixed $\eta \in Y^{\star}$, there exists a sequence of pairs $\left(\lambda_{m}, \phi_{m}\right)$ satisfying (2.2) where $\left\{\lambda_{m}(\eta)\right\}$ are positive real eigenvalues and $\left\{\phi_{m}(y ; \eta)\right\}$ are the corresponding eigenvectors, for each $m \in \mathbb{N}$, such that $\left\{\phi_{m}(\cdot ; \eta)\right\}$ form an orthonormal basis of $L_{\text {per }}^{2}(Y)$ and $0 \leq \lambda_{1}(\eta) \leq \lambda_{2}(\eta) \leq \ldots$ diverges and each eigenvalue has finite multiplicity. By varying $\eta \in Y^{\star}$, we obtain the spectral resolution of \mathcal{A} in $L^{2}\left(\mathbb{R}^{n}\right)$. The set $\left\{e^{\imath y \cdot \eta} \phi_{m}(y, \eta) ; m \in \mathbb{N}, \eta \in Y^{\star}\right\}$ forms a 'generalised' basis of $L^{2}\left(\mathbb{R}^{n}\right)$. As a consequence, $L^{2}\left(\mathbb{R}^{n}\right)$ can be identified with $L^{2}\left(Y^{\star} ; \ell^{2}(\mathbb{N})\right)$. \mathcal{A} acts as a multiplication operator: $\mathcal{A}\left[e^{\imath y \cdot \eta} \phi_{m}(y, \eta)\right]=\lambda_{m}(\eta) e^{\imath y \cdot \eta} \phi_{m}(y, \eta)$. The spectrum of \mathcal{A}, denoted as $\sigma(\mathcal{A})$, coincides with the Bloch spectrum and denoted as σ_{b}. The Bloch spectrum is defined as the union of the images of all the mappings $\lambda_{m}(\eta)$, i.e.,

$$
\sigma_{b}:=\cup_{m=1}^{\infty}\left[\inf _{\eta \in Y^{\star}} \lambda_{m}(\eta), \sup _{\eta \in Y^{\star}} \lambda_{m}(\eta)\right]
$$

The spectrum has a band structure. In contrast to the homogeneous case, $\sigma(\mathcal{A})$ need not fill up the entire $[0, \infty)$ and there may be gaps.

Theorem 2.8. For any $f \in L^{2}\left(\mathbb{R}^{n}\right)$, its Bloch transform is given as

$$
f_{b}(y ; \eta)=\sum_{m=1}^{\infty} f_{b}^{m}(\eta) \phi_{m}(y ; \eta)
$$

where, $\left\{\phi_{m}\right\}$ are the eigenfunctions corresponding to the shifted operator $\mathcal{A}(\eta)$ and $f_{b}^{m}(\eta)$, for each $\eta \in Y^{\star}$, is the m-th Bloch coefficient of f defined as

$$
f_{b}^{m}(\eta):=\int_{\mathbb{R}^{n}} f(y) e^{-\imath y \cdot \eta} \overline{\phi_{m}(y ; \eta)} d y
$$

Proof. It is enough to prove the result for $f \in \mathcal{D}\left(\mathbb{R}^{n}\right)$. Recall that, for each $\eta \in Y^{\star}, f_{b}(\cdot ; \eta) \in$ $L_{\text {per }}^{2}(Y)$. Hence, by spectral decomposition of $\mathcal{A}(\eta)$,

$$
f_{b}(y ; \eta)=\sum_{m=1}^{\infty} f_{b}^{m}(\eta) \phi_{m}(y ; \eta)
$$

where

$$
f_{b}^{m}(\eta)=\int_{Y} f_{b}(y ; \eta) \overline{\phi_{m}(y ; \eta)} d y
$$

But,

$$
\begin{aligned}
f_{b}^{m}(\eta) & =\int_{Y} \sum_{p \in \mathbb{Z}^{n}} f(y+2 \pi p) e^{-\imath(y+2 \pi p) \cdot \eta} \overline{\phi_{m}(y ; \eta)} d y \\
& =\int_{Y} \sum_{p \in \mathbb{Z}^{n}} f(y+2 \pi p) e^{-\imath(y+2 \pi p) \cdot \eta} \overline{\left.\phi_{m}(y+2 \pi p) ; \eta\right)} d y \\
& =\int_{\mathbb{R}^{n}} f(y) e^{-\imath y \cdot \eta} \overline{\phi_{m}(y ; \eta)} d y .
\end{aligned}
$$

Remark 2.9. The Bloch inversion formula can rewritten as:

$$
f(y)=\int_{Y^{\star}} e^{\imath y \cdot \eta} f_{b}(y ; \eta) d \eta=\int_{Y^{\star}} e^{\imath y \cdot \eta} \sum_{m=1}^{\infty} f_{b}^{m}(\eta) \phi_{m}(y ; \eta) d \eta .
$$

Further, the Parseval formula holds:

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|f(y)|^{2} d y=\int_{Y^{\star}} \sum_{m=1}^{\infty}\left|f_{b}^{m}(\eta)\right|^{2} d \eta \tag{2.4}
\end{equation*}
$$

Remark 2.10 (Algebraic Formula for Solution). For each $m \in \mathbb{N}$ and $\eta \in Y^{\star}$, multiply $\phi_{m}(y ; \eta)$ on both sides of (2.1) to obtain

$$
\begin{aligned}
\int_{Y} \mathcal{A}(\eta)\left[\sum_{k=1}^{\infty} u_{b}^{k}(\eta) \phi_{k}(y ; \eta)\right] \phi_{m}(y ; \eta) d y & =\int_{Y} \sum_{k=1}^{\infty} f_{b}^{k}(\eta) \phi_{k}(y ; \eta) \phi_{m}(y ; \eta) d y \\
\int_{Y} \sum_{k=1}^{\infty} u_{b}^{k}(\eta) \phi_{k}(y ; \eta) \lambda_{m}(\eta) \phi_{m}(y ; \eta) d y & =f_{b}^{m}(\eta) \\
u_{b}^{m}(\eta) \lambda_{m}(\eta) & =f_{b}^{m}(\eta) \\
u_{b}^{m}(\eta) & =\frac{f_{b}^{m}(\eta)}{\lambda_{m}(\eta)}
\end{aligned}
$$

Set $\psi_{m}(y ; \eta):=\left\{e^{\imath y \cdot \eta} \phi_{m}(y ; \eta)\right\}$. Then, for each $\eta \in Y^{\star}, \psi_{m}(\cdot ; \eta)$ forms a basis of $L^{2}\left(\mathbb{R}^{n}\right)$. Thus, $L^{2}\left(\mathbb{R}^{n}\right)$ can be identified with $L^{2}\left(Y^{\star} ; \ell^{2}(\mathbb{N})\right)$. Let us compute $\psi(y+2 \pi \ell)$:

$$
\begin{aligned}
\psi_{m}(y+2 \pi \ell) & =e^{\imath y \cdot \eta} e^{2 \pi \imath \cdot \cdot \eta} \phi_{m}(y+2 \pi \ell) \\
& =e^{\imath y \cdot \eta} e^{2 \pi \imath \cdot \eta} \phi_{m}(y) \\
& =e^{2 \pi \ell \cdot \eta} \psi_{m}(y) .
\end{aligned}
$$

2.2 Regularity of $\lambda_{m}(\eta)$ and $\phi_{1}(\cdot, \eta)$

Theorem 2.11. For all $m \geq 1, \eta \mapsto \lambda_{m}(\eta)$ is a Lipschitz function.
Proof. Consider the quadratic form associated with $\mathcal{A}(\eta)$:

$$
a(v, v ; \eta)=\int_{Y} a_{j k}(y)\left(\frac{\partial v}{\partial y_{k}}+\imath \eta_{k} v\right)\left(\overline{\frac{\partial v}{\partial y_{j}}+\imath \eta_{j} v}\right) d y .
$$

The quadratic form admits a decomposition as follows:

$$
a(v, v ; \eta)=a\left(v, v ; \eta^{0}\right)+R\left(v, v ; \eta, \eta^{0}\right)
$$

where

$$
\begin{aligned}
R=\int_{Y} a_{j k}(y) \frac{\partial v}{\partial y_{k}}\left(\overline{\left(\eta_{j}-\imath \eta_{j}^{0}\right.}\right) v d y & +\int_{Y} a_{j k}(y)\left(\imath \eta_{k}-\imath \eta_{k}^{0}\right) v \overline{\frac{\partial v}{\partial y_{j}}} d y \\
& +\int_{Y} a_{j k}(y)\left(\eta_{k} \eta_{j}-\eta_{k}^{0} \eta_{j}^{0}\right)|v|^{2} d y .
\end{aligned}
$$

By Cauchy-Schwarz's inequality,

$$
|R| \leq C_{0}\left|\eta-\eta^{0}\right| \int_{Y}\left(|\nabla v|^{2}+|v|^{2}\right) d y .
$$

By min-max principle,

$$
\lambda_{m}(\eta)=\min _{W \subset H_{\mathrm{per}}^{1}(Y)} \max _{v \in W} \frac{a(v, v ; \eta)}{\|v\|_{2, Y}^{2}}
$$

where W is a m-dimensional subspace of $H_{\text {per }}^{1}(Y)$. Using the estimate on R, we deduce that

$$
\lambda_{m}(\eta) \leq \lambda_{m}\left(\eta^{0}\right)+C_{0}\left|\eta-\eta^{0}\right|
$$

for a suitable constant C_{0}. Interchanging η and η^{0}, we obtain

$$
\left|\lambda_{m}(\eta)-\lambda_{m}\left(\eta^{0}\right)\right| \leq C_{0}\left|\eta-\eta^{0}\right|
$$

Theorem 2.12 (Analyticity). There is a $\delta>0$ such that $\lambda_{1}(\eta)$ is analytic in the open ball $B_{\delta}(0)$ centred at origin and radius δ. Further, one can choose a corresponding unit eigenvector $\phi_{1}(y ; \eta)$ satisfying
(i) $\eta \mapsto \phi_{1}(\cdot ; \eta)$ from Y^{\star} to $H_{p e r}^{1}(Y)$ is analytic on $B_{\delta}(0)$.
(ii) $\phi_{1}(y ; 0):=|Y|^{-1 / 2}:=(2 \pi)^{-n / 2}$.
(iii) $\left\|\phi_{1}(\cdot ; \eta)\right\|_{2, Y}=1$ and $\int_{Y} \phi_{1}(y ; \eta) d y=0$ for each $\eta \in B_{\delta}$.

2.3 Taylor Expansion of Ground State

Observe that (2.1) is a polynomial of degree two w.r.t η variable. Let $T_{m}(\eta): L^{2}(Y) \rightarrow L^{2}(Y)$ be defined as

$$
T_{m}(\eta)(\phi)=\mathcal{A}(\eta) \phi-\lambda_{m} \phi .
$$

For a fixed $m \in \mathbb{N}$, let us compute the j-th first partial derivative of (2.2) w.r.t η to get

$$
\mathcal{A}(\eta) \frac{\partial \phi_{m}}{\partial \eta_{j}}+\frac{\partial \mathcal{A}(\eta)}{\partial \eta_{j}} \phi_{m}=\lambda_{m} \frac{\partial \phi_{m}}{\partial \eta_{j}}+\phi_{m} \frac{\partial \lambda_{m}}{\partial \eta_{j}} .
$$

Thus,

$$
\begin{aligned}
T_{m}(\eta) \frac{\partial \phi_{m}}{\partial \eta_{j}} & =-\frac{\partial \mathcal{A}(\eta)}{\partial \eta_{j}} \phi_{m}+\phi_{m} \frac{\partial \lambda_{m}}{\partial \eta_{j}} \\
& =\imath e_{j} A\left(\nabla_{y}+\imath \eta\right) \phi_{m}+\left(\nabla_{y}+\imath \eta\right) \cdot\left(\imath A e_{j} \phi_{m}\right)+\phi_{m} \frac{\partial \lambda_{m}}{\partial \eta_{j}} .
\end{aligned}
$$

There exists a solution to the above equation which is unique upto an additive multiple of ϕ_{m}. Hence, the RHS satisfies the compatibility condition or Fredhölm alternative. Therefore,

$$
\int_{Y} T_{m}(\eta) \frac{\partial \phi_{m}}{\partial \eta_{j}} \bar{\phi}_{m} d y=0
$$

yields a formula for $\nabla_{\eta} \lambda_{m}\left(\eta^{m}\right)$ in terms of ϕ_{m}. Thus,

$$
\frac{\partial \lambda_{m}}{\partial \eta_{j}}(\eta)=\left\langle\frac{\partial \mathcal{A}(\eta)}{\partial \eta_{j}} \phi_{m}(\cdot ; \eta), \phi_{m}(\cdot ; \eta)\right\rangle .
$$

Similarly, by computing the j-th second partial derivative of (2.2) w.r.t η, we get

$$
\begin{aligned}
T_{m}(\eta) \frac{\partial^{2} \phi_{m}}{\partial \eta_{j} \partial \eta_{k}}= & \imath e_{j} A\left(\nabla_{y}+\imath \eta\right) \frac{\partial \phi_{m}}{\partial \eta_{k}}+\left(\nabla_{y}+\imath \eta\right) \cdot\left(\imath A e_{j} \frac{\partial \phi_{m}}{\partial \eta_{k}}\right) \\
& +\imath e_{k} A\left(\nabla_{y}+\imath \eta\right) \frac{\partial \phi_{m}}{\partial \eta_{j}}+\left(\nabla_{y}+\imath \eta\right) \cdot\left(\imath A e_{k} \frac{\partial \phi_{m}}{\partial \eta_{j}}\right) \\
& +\frac{\partial \lambda_{m}}{\partial \eta_{j}} \frac{\partial \lambda_{m}}{\partial \eta_{k}}+\frac{\partial \lambda_{m}}{\partial \eta_{k}} \frac{\partial \lambda_{m}}{\partial \eta_{j}}-e_{j} A e_{k} \phi_{m}-e_{k} A e_{j} \phi_{m} \\
& +\frac{\partial^{2} \lambda_{m}}{\partial \eta_{k} \partial \eta_{j}} \phi_{m} .
\end{aligned}
$$

There exists a solution to the above equation which is unique upto an additive multiple of ϕ_{m}. Hence, the RHS satisfies the compatibility condition or Fredhölm alternative. Therefore,

$$
\int_{Y} T_{m}(\eta) \frac{\partial^{2} \phi_{m}}{\partial \eta_{j} \partial \eta_{k}} \bar{\phi}_{m} d y=0
$$

yields a formula for the Hessian matrix $D_{\eta}^{2} \lambda_{m}\left(\eta^{m}\right)$ in terms of ϕ_{m}. Thus,

$$
\begin{aligned}
\frac{1}{2} \frac{\partial^{2} \lambda_{m}}{\partial \eta_{j} \partial \eta_{k}}(\eta)= & \left\langle a_{j k} \phi_{m}, \phi_{m}\right\rangle+\frac{1}{2}\left\langle\left[\frac{\partial \mathcal{A}(\eta)}{\partial \eta_{j}}-\frac{\partial \lambda_{m}}{\partial \eta_{j}}\right] \frac{\partial \phi_{m}}{\partial \eta_{k}}, \phi_{m}\right\rangle \\
& +\frac{1}{2}\left\langle\left[\frac{\partial \mathcal{A}(\eta)}{\partial \eta_{k}}-\frac{\partial \lambda_{m}}{\partial \eta_{k}}\right] \frac{\partial \phi_{m}}{\partial \eta_{j}}, \phi_{m}\right\rangle .
\end{aligned}
$$

Let us summarise the properties of the eigenvalues $\lambda_{m}(\eta)$ and eigenvectors $\phi_{m}(y ; \eta)$.
(a) All odd order derivatives of $\lambda_{1}(\eta)$ at $\eta=0$ vanish.
(b) All odd order derivatives of $\phi_{1}(\cdot, \eta)$ at $\eta=0$ are purely imaginary. For instance, the first order derivatives at $\eta=0$ are given by

$$
\frac{\partial \phi_{1}}{\partial \eta_{j}}(y ; 0)=\imath|Y|^{-1 / 2} w_{j}(y),
$$

where $w_{j} \in H_{\mathrm{per}}^{1}(Y)$ is the unique solution of the cell problem

$$
\left\{\begin{aligned}
\mathcal{A} w_{j} & =\sum_{k=1}^{n} \frac{\partial a_{j k}}{\partial y_{k}} \quad \text { in } \mathbb{R}^{n}, \\
\frac{1}{|Y|} \int_{Y} w_{j}(y) d y & =0 .
\end{aligned}\right.
$$

(c) All even order derivatives of $\phi_{1}(\cdot ; \eta)$ at $\eta=0$ are real.
(d) Second order derivatives of $\lambda_{1}(\eta)$ at $\eta=0$ are given by

$$
\frac{1}{2} \frac{\partial^{2} \lambda_{1}}{\partial \eta_{j} \partial \eta_{k}}(0)=a_{j k}^{0}, \quad \forall j, k=1, \ldots, n
$$

where $a_{j k}^{0}$ are the homogenized coefficients defined by

$$
\frac{1}{|Y|} \int_{Y}\left[a_{j k}+\sum_{m=1}^{n} a_{j m} \frac{\partial w_{m}}{\partial y_{m}}\right] .
$$

Theorem 2.13. The origin is a critical point of the first Bloch eigenvalue, i.e., $\frac{\partial \lambda_{1}}{\partial \eta_{j}}(0)=0$ for all $j=1, \ldots, n$.Further, the Hessian of λ_{1} at $\eta=0$ is given by

$$
\frac{1}{2} \frac{\partial^{2} \lambda_{1}}{\partial \eta_{j} \partial \eta_{k}}(0)=a_{j k}^{0} \quad \forall j, k=1, \ldots, n .
$$

The derivatives of the first Bloch mode can also be calculated and they are as follows:

$$
\frac{\partial \phi_{1}}{\partial \eta_{j}}(y ; 0)=\imath|Y|^{-\frac{1}{2}} w_{j}(y) \quad \forall j=1, \ldots, n .
$$

Proof. Use the information $\lambda_{1}(0)=0$ and $\phi_{1}(y ; 0)=|Y|^{-\frac{1}{2}}$ in the Taylor expansion with $\eta=0$.

3 Homogenization of Second order Elliptic Operator

Let $\mathcal{A}_{\varepsilon}=-\operatorname{div}_{x}\left(A(x / \varepsilon) \nabla_{x}\right)$ be the elliptic opertor with periodically oscillating coefficients. If ξ corresponds to the Fourier variable corresponding to x then $\varepsilon \xi$ corresponds to the Fourier variable corresponding to x / ε. Recall that, for each $m \in \mathbb{N},\left\{\lambda_{m}(\eta)\right\}$ and $\left\{e^{2 y \cdot \eta} \phi_{m}(y ; \eta)\right\}$ are the eigenvalues and eigenvectors, respectively, of $\mathcal{A}=-\operatorname{div}_{y}\left(A(y) \nabla_{y}\right)$. We employ the change of variables, $y=x / \varepsilon$ and $\eta=\varepsilon \xi$, in the equation $\mathcal{A}\left[e^{2 y \cdot \eta} \phi_{m}(y ; \eta)\right]=\lambda_{m}(\eta) e^{\imath y \cdot \eta} \phi_{m}(y ; \eta)$ to obtain

$$
\varepsilon^{2} \mathcal{A}_{\varepsilon}\left[e^{\imath x \cdot \xi} \phi_{m}\left(\frac{x}{\varepsilon} ; \varepsilon \xi\right)\right]=\lambda_{m}(\varepsilon \xi) e^{i x \cdot \xi} \phi_{m}\left(\frac{x}{\varepsilon} ; \varepsilon \xi\right) .
$$

Thus, the eigenvalues and eigenvectors of $\mathcal{A}_{\varepsilon}$ are $\varepsilon^{-2} \lambda_{m}(\varepsilon \xi)$ and $e^{\imath x \cdot \xi} \phi_{m}(x / \varepsilon ; \varepsilon \xi)$. Set $\lambda_{m}^{\varepsilon}(\xi):=$ $\varepsilon^{-2} \lambda_{m}(\varepsilon \xi)$ and $\phi_{m}^{\varepsilon}(x ; \xi):=\phi_{m}(x / \varepsilon ; \varepsilon \xi)$. Hence, the Bloch transform of $f \in L^{2}\left(\mathbb{R}^{n}\right)$, for each $x \in \mathbb{R}^{n}$ and $\varepsilon>0$, is

$$
f_{b}^{\varepsilon}(x ; \xi)=\sum_{m=1}^{\infty} f_{b}^{m, \varepsilon}(\xi) \phi_{m}^{\varepsilon}(x ; \xi)
$$

where, for each $m \in \mathbb{N}, \varepsilon>0$ and $\xi \in \varepsilon^{-1} Y^{\star}$, the m-th Bloch coefficient of f is

$$
f_{b}^{m, \varepsilon}(\xi)=\varepsilon^{-n / 2} \int_{\mathbb{R}^{n}} f(x) e^{-\imath x \cdot \xi} \overline{\phi_{m}^{\varepsilon}(x ; \xi)} d x .
$$

Thus, the inverse formula is

$$
f(x)=\varepsilon^{n / 2} \int_{\varepsilon^{-1} Y^{\star}} \sum_{m=1}^{\infty} f_{b}^{m, \varepsilon}(\xi) e^{\imath x \cdot \xi} \phi_{m}^{\varepsilon}(x ; \xi) d \xi
$$

The $\varepsilon^{n / 2}$ is a normalising factor appearing because the Lebesgue measure of $\varepsilon^{-1} Y^{\star}$ is ε^{-n}. The Plancherel identity holds: for any $f, g \in L^{2}\left(\mathbb{R}^{n}\right)$

$$
\varepsilon^{-n} \int_{\mathbb{R}^{n}} f(x) \overline{g(x)} d x=\int_{\varepsilon^{-1} Y^{\star}} \sum_{m=1}^{\infty} f_{b}^{m, \varepsilon}(\xi) \overline{g_{b}^{m, \varepsilon}(\xi)} d \xi
$$

Applying the Bloch transform, the equation $\mathcal{A}_{\varepsilon} u_{\varepsilon}=f$ transforms in to a set of algebraic equations, indexed by $m \geq 1, \lambda_{m}^{\varepsilon}(\xi) u_{b}^{m, \varepsilon}(\xi)=f_{b}^{m, \varepsilon}(\xi)$ for all $\xi \in \varepsilon^{-1} Y^{\star}$ (cf. Remark 2.10). Our aim is to pass to the limit in the system of algebraic equations. We first claim that one can neglect all the equations corresponding to $m \geq 2$.
Proposition 3.1. Let

$$
v_{\varepsilon}(x)=\varepsilon^{n / 2} \int_{\varepsilon^{-1} Y^{\star}} \sum_{m=2}^{\infty} u_{b}^{m, \varepsilon}(\xi) e^{2 x \cdot \xi} \phi_{m}^{\varepsilon}(x ; \xi) d \xi .
$$

Then $\left\|v_{\varepsilon}\right\|_{2, \mathbb{R}^{n}} \leq C_{0} \varepsilon$.
Proof. Since

$$
\int_{\mathbb{R}^{n}} \mathcal{A}_{\varepsilon} u_{\varepsilon} \overline{u_{\varepsilon}} d x=\int_{\mathbb{R}^{n}} f(x) \overline{u_{\varepsilon}}(x) d x .
$$

The LHS is bounded and, applying Plancherel Identity, we get

$$
\begin{aligned}
\beta \int_{\mathbb{R}^{n}}\left|\nabla u_{\varepsilon}\right|^{2} d x & \geq \varepsilon^{n} \int_{\varepsilon^{-1} Y^{\star}} \sum_{m=1}^{\infty} f_{b}^{m, \varepsilon}(\xi) \overline{u_{b}^{m, \varepsilon}}(\xi) d \xi \\
& =\varepsilon^{n} \int_{\varepsilon^{-1} Y^{\star}} \sum_{m=1}^{\infty} \lambda_{m}^{\varepsilon}(\xi)\left|u_{b}^{m, \varepsilon}(\xi)\right|^{2} d \xi \\
& =\varepsilon^{n-2} \int_{\varepsilon^{-1} Y^{\star}} \sum_{m=1}^{\infty} \lambda_{m}(\eta)\left|u_{b}^{m, \varepsilon}(\xi)\right|^{2} d \xi \\
& \geq \varepsilon^{n-2} \int_{\varepsilon^{-1} Y^{\star}} \sum_{m=2}^{\infty} \lambda_{m}(\eta)\left|u_{b}^{m, \varepsilon}(\xi)\right|^{2} d \xi \\
& \geq \varepsilon^{n-2} \lambda_{2}^{(N)} \int_{\varepsilon^{-1} Y^{\star}} \sum_{m=2}^{\infty}\left|u_{b}^{m, \varepsilon}(\xi)\right|^{2} d \xi .
\end{aligned}
$$

The last inequality is a consequence of the min-max principle yielding, for $m \geq 2$,

$$
\lambda_{m}(\eta) \geq \lambda_{2}(\eta) \geq \lambda_{2}^{(N)}>0 \quad \forall \eta \in Y^{\star}
$$

where $\lambda_{2}^{(N)}$ is the second eigenvalue of the eigenvalue problem for \mathcal{A} in the cell Y with Neumann boundary condition on ∂Y. Then

$$
\varepsilon^{n} \int_{\varepsilon^{-1} Y^{\star}} \sum_{m=2}^{\infty}\left|u_{b}^{m, \varepsilon}(\xi)\right|^{2} d \xi \leq C_{0} \varepsilon^{2}
$$

By Parseval's Identity, the left side is equal to $\left\|v_{\varepsilon}\right\|_{2, \mathbb{R}^{n}}$.
Remark 3.2. Consider the algebraic equation corresponding to $m=1$, i.e.,

$$
\lambda_{1}^{\varepsilon}(\xi) u_{b}^{1, \varepsilon}(\xi)=f_{b}^{1, \varepsilon}(\xi) \quad \forall \xi \in \varepsilon^{-1} Y^{\star} .
$$

Multiplying both sides by $\varepsilon^{n / 2}$, we get

$$
\varepsilon^{-2} \lambda_{1}(\varepsilon \xi) \varepsilon^{n / 2} u_{b}^{1, \varepsilon}(\xi)=\varepsilon^{n / 2} f_{b}^{1, \varepsilon}(\xi) \quad \forall \xi \in \varepsilon^{-1} Y^{\star}
$$

Expanding $\lambda_{1}(\varepsilon \xi)$ by Taylor's formula around $\xi=0$, we get

$$
\left[\frac{1}{2} \sum_{j, k=1}^{n} \frac{\partial^{2} \lambda_{1}}{\partial \eta_{j} \eta_{k}}(0) \xi_{j} \xi_{k}+O\left(\varepsilon \xi^{3}\right)\right] \varepsilon^{n / 2} u_{b}^{1, \varepsilon}(\xi)=\varepsilon^{n / 2} f_{b}^{1, \varepsilon}(\xi)
$$

Passing to the limit as $\varepsilon \rightarrow 0$ to get

$$
\frac{1}{2} \sum_{j, k=1}^{n} \frac{\partial^{2} \lambda_{1}}{\partial \eta_{j} \eta_{k}}(0) \xi_{j} \xi_{k} \hat{u}_{0}(\xi)=\hat{f}(\xi) .
$$

Setting

$$
a_{j k}^{0}=\frac{1}{2} \frac{\partial^{2} \lambda_{1}}{\partial \eta_{j} \eta_{k}}(0)
$$

Then $\sum_{j, k=1}^{n} a_{j k}^{0} \xi_{k} \xi_{j} \hat{u}_{0}(\xi)=\hat{f}(\xi)$ and $\mathcal{A}_{0} u_{0}:=-\sum_{j, k=1}^{n} a_{j k}^{0} \frac{\partial^{2} u_{0}}{\partial x_{j} \partial x_{k}}=f(x)$. The only flaw in the above argument is that in passing to limit we have not checked uniform compact support of the sequence. To overcome this difficulty we use cut-off function technique to localize the equation.

Proposition 3.3 (First Bloch Transform tends to Fourier Transform). Let $\left\{g_{\varepsilon}\right\} \subset L^{2}\left(\mathbb{R}^{n}\right)$ be a sequence such that there is a fixed compact set $K \subset \mathbb{R}^{n}$ such that $\operatorname{supp}\left(g_{\varepsilon}\right) \subseteq K$ for all ε. If $g_{\varepsilon} \rightharpoonup g$ weakly in $L^{2}\left(\mathbb{R}^{n}\right)$ then $\varepsilon^{\frac{n}{2}} g_{b}^{1, \varepsilon} \rightharpoonup \hat{g}$ weakly in $L_{\text {loc }}^{2}\left(\mathbb{R}^{n}\right)$.

Proof. The first Bloch transform $g_{b}^{1, \varepsilon}(\xi)$, a priori defined for

$$
\xi \in \varepsilon^{-1} Y^{\star}=\left(-\frac{\varepsilon^{-1}}{2}, \frac{\varepsilon^{-1}}{2}\right)^{n}
$$

can be extended by zero outside $\varepsilon^{-1} Y^{\star}$. We write

$$
\begin{aligned}
\varepsilon^{\frac{n}{2}} g_{b}^{1, \varepsilon}(\xi)= & \int_{\mathbb{R}^{n}} g_{\varepsilon}(x) e^{-\imath x \cdot \xi} \overline{\phi_{1}\left(\frac{x}{\varepsilon} ; 0\right)} d x \\
& +\int_{K} g_{\varepsilon}(x) e^{-l x \cdot \xi}\left(\overline{\phi_{1}\left(\frac{x}{\varepsilon} ; \varepsilon \xi\right)}-\overline{\phi_{1}\left(\frac{x}{\varepsilon} ; 0\right)}\right) d x
\end{aligned}
$$

Since $\phi_{1}(y ; 0)=|Y|^{\frac{-1}{2}}=(2 \pi)^{-n / 2}$, the first term is nothing but the Fourier transform of g_{ε} and so it converges weakly to $\hat{g}(\xi)$ in $L^{2}\left(\mathbb{R}^{n}\right)$. By Cauchy-Schwarz inequality and the regularity of the first Bloch eigenfunction $\eta \mapsto \phi_{1}(\cdot, \eta) \in L_{\text {per }}^{2}(Y)$ at $\eta=0$, the second term is bounded by

$$
\left\|g_{\varepsilon}\right\|_{2, \mathbb{R}^{n}}\left[\int_{K}\left|\phi_{1}\left(\frac{x}{\varepsilon} ; \varepsilon \xi\right)-\phi_{1}\left(\frac{x}{\varepsilon} ; 0\right)\right|^{2} d x\right]^{\frac{1}{2}} \leq C_{0}\left\|\phi_{1}(y ; \varepsilon \xi)-\phi_{1}(y ; 0)\right\|_{2, Y} .
$$

By Lipschitz continuity of $\eta \mapsto \phi_{1}(\cdot, \eta)$, the second term in the right side is bounded above by $C_{0} \varepsilon \xi$. Thus, if $|\xi| \leq M$ then it is bounded above by $c M \varepsilon$ and so, in particular, it converges to zero in $L_{\text {loc }}^{\infty}\left(\mathbb{R}^{n}\right)$.

Theorem 3.4. Let $\Omega \subset \mathbb{R}^{n}$ be an arbitrary, not necessarily bounded, domain. Consider a sequence $u_{\varepsilon} \rightharpoonup u_{0}$ weakly in $H^{1}(\Omega)$ and $A_{\varepsilon} u_{0}=f$ in Ω with $f \in L^{2}(\Omega)$. Then u_{0} satisfies $A_{0} u_{0}=f$ in Ω. In fact, $A_{\varepsilon} \nabla u_{\varepsilon} \rightharpoonup A_{0} \nabla u_{0}$ weakly in $L^{2}(\Omega)$.

Proof. Let $\phi \in D(\Omega)$ be arbitrary. If u_{ε} satisfies $\mathcal{A}_{\varepsilon} u_{\varepsilon}=f$ in Ω then consider its localization ϕu_{ε} satisfies

$$
\mathcal{A}_{\varepsilon}\left(\phi u_{\varepsilon}\right)=\phi f+g_{\varepsilon}+h_{\varepsilon} \text { in } \quad \mathbb{R}^{n},
$$

where

$$
\begin{aligned}
g_{\varepsilon} & =-2 \sum_{j=1}^{n} \sigma_{j}^{\varepsilon} \frac{\partial \phi}{\partial x_{j}}-\sum_{j, k=1}^{n} a_{j k}^{\varepsilon} \frac{\partial^{2} \phi}{\partial x_{j} \partial x_{k}} u_{\varepsilon}, \\
\sigma_{j}^{\varepsilon}(x) & =\sum_{k=1}^{n} a_{j k}^{\varepsilon} \frac{\partial u_{\varepsilon}}{\partial x_{k}}, \\
h_{\varepsilon} & =-\sum_{j, k=1}^{n} \frac{\partial a_{j k}^{\varepsilon}}{\partial x_{j}} \frac{\partial \phi}{\partial x_{k}} u_{\varepsilon} .
\end{aligned}
$$

Using the arguments given in the remark above, we can pass to the limit above, since ϕu_{ε} is bounded in $H^{1}\left(\mathbb{R}^{n}\right)$. Neglecting all the harmonics corresponding to $m \geq 2$ and considering only the $m=1$ yields at the limit

$$
\begin{equation*}
\frac{1}{2} \sum_{j, k=1}^{n} \frac{\partial^{2} \lambda_{1}}{\partial \eta_{j} \partial \eta_{k}}(0) \xi_{j} \xi_{k} \widehat{\left(\phi u_{0}\right)}(\xi)=\widehat{(\phi f)}(\xi)+\lim _{\varepsilon \rightarrow 0} \varepsilon^{\frac{n}{2}} g_{b}^{1, \varepsilon}(\xi)+\lim _{\varepsilon \rightarrow 0} \varepsilon^{\frac{n}{2}} \hat{h}_{b}^{1, \varepsilon}(\xi) \tag{3.1}
\end{equation*}
$$

The sequence σ_{j}^{ε} is bounded in $L^{2}(\Omega)$. Therefore, we can extract a subsequence (still denoted by $\varepsilon)$ which is weakly convergent in $L^{2}(\Omega)$. Let σ_{j}^{0} denote its limit and its extension by zero outside Ω. Using this convergence and the definition of g_{ε}, we see that

$$
g_{\varepsilon} \rightharpoonup g_{0}:=-2 \sum_{j=1}^{n} \sigma_{j}^{0} \frac{\partial \phi}{\partial x_{j}}-\sum_{j, k=1}^{n} \mathcal{M}\left(a_{j k}\right) \frac{\partial^{2} \phi}{\partial x_{j} \partial x_{k}} u_{0} \text { weakly in } L^{2}\left(\mathbb{R}^{n}\right)
$$

where $\mathcal{M}\left(a_{j k}\right)$ is the average of $a_{j k}$ on Y. Therefore,

$$
\varepsilon^{\frac{n}{2}} g_{b}^{1, \varepsilon}(\xi) \rightharpoonup \hat{g}_{0}(\xi) \text { weakly in } L_{\mathrm{loc}}^{2}\left(\mathbb{R}^{n}\right)
$$

A similar argument fails for $\left\{h_{b}^{1, \varepsilon}\right\}$ because h_{ε} is not bounded in $L^{2}\left(\mathbb{R}^{n}\right)$. We decompose

$$
\begin{aligned}
\varepsilon^{\frac{n}{2}} h_{b}^{1, \varepsilon}(\xi)= & \int_{\mathbb{R}^{n}} h_{\varepsilon}(x) e^{-i x \cdot \xi} \overline{\phi_{1}\left(\frac{x}{\varepsilon}, 0\right)} d x \\
& \left.+\int_{\mathbb{R}^{n}} h_{\varepsilon}(x) e^{-l x \cdot \xi} \overline{\left(\phi_{1}\left(\frac{x}{\varepsilon} ; \varepsilon \xi\right)\right.}-\overline{\phi_{1}\left(\frac{x}{\varepsilon} ; 0\right)}\right) d x .
\end{aligned}
$$

Using the Taylor expansion of $\phi_{1}(y ; \eta)$ at $\eta=0$, the second term is equal to

$$
-\varepsilon^{-1} \sum_{j, k=1}^{n} \int_{\mathbb{R}^{n}} \frac{\partial a_{j k}}{\partial y_{j}}\left(\frac{x}{\varepsilon}\right) \frac{\partial \phi}{\partial x_{k}}(x) u_{\varepsilon}(x) e^{-\imath x \cdot \xi}\left[\varepsilon \sum_{\ell=1}^{n} \frac{\partial \overline{\phi_{1}}}{\partial \eta_{\ell}}\left(\frac{x}{\varepsilon} ; 0\right) \xi_{\ell}+O\left(\varepsilon^{2} \xi^{2}\right)\right] d x
$$

which evidently converges to

$$
-\sum_{j, k, \ell=1}^{n} \mathcal{M}\left(\frac{\partial a_{j k}}{\partial y_{j}} \frac{\partial \overline{\phi_{1}}}{\partial \eta_{\ell}}(y ; 0)\right) \xi_{\ell} \int_{\mathbb{R}^{n}} \frac{\partial \phi}{\partial x_{k}} u_{0} e^{-\imath x \cdot \xi} d x .
$$

strongly in $L_{\text {loc }}^{\infty}\left(\mathbb{R}^{n}\right)$. On the other hand, after integraing by parts, the first term in the RHS of the decomposition of $\varepsilon^{n / 2} h_{b}^{1, \varepsilon}$ becomes

$$
\sum_{j, k=1}^{n} \int_{\mathbb{R}^{n}} a_{j k}^{\varepsilon}\left[\frac{\partial^{2} \phi}{\partial x_{j} \partial x_{k}} u_{\varepsilon}+\frac{\partial \phi}{\partial x_{k}} \frac{\partial u^{\varepsilon}}{\partial x_{j}}-\imath \xi_{j} \frac{\partial \phi}{\partial x_{k}} u_{\varepsilon}\right] e^{-\imath x \cdot \xi} \overline{\phi_{1}}\left(\frac{x}{\varepsilon} ; 0\right) d x .
$$

Choosing $\phi_{1}(y ; 0)=|Y|^{-\frac{1}{2}}$, it is easily seen that the above integral converges weakly in $L^{2}\left(\mathbb{R}^{n}\right)$ to

$$
\begin{aligned}
& |Y|^{-\frac{1}{2}} \sum_{j, k=1}^{n} \int_{\mathbb{R}^{n}}\left[\mathcal{M}\left(a_{j k}\right) \frac{\partial^{2} \phi}{\partial x_{j} \partial x_{k}} u_{0}-\imath \xi_{j} \mathcal{M}\left(a_{j k}\right) \frac{\partial \phi}{\partial x_{k}} u_{0}\right] e^{-\imath x \cdot \xi} d x \\
+ & |Y|^{-\frac{1}{2}} \sum_{k=1}^{n} \int_{\mathbb{R}^{n}} \sigma_{k}^{0} \frac{\partial \phi}{\partial x_{k}} e^{-\imath x \cdot \xi} d x .
\end{aligned}
$$

Using this information in (3.1) and using Theorem 2.13, we conclude that

$$
\begin{aligned}
\sum_{j, k=1}^{n} a_{j k}^{0} \xi_{j} \xi_{k} \widehat{\left(\phi u_{0}\right)}(\xi)= & \widehat{(\phi f)}(\xi)-|Y|^{-\frac{1}{2}} \sum_{k=1}^{n} \int_{\mathbb{R}^{n}} \sigma_{k}^{0} \frac{\partial \phi}{\partial x_{k}} e^{-\imath x \cdot \xi} d x \\
& -\imath \sum_{j, k=1}^{n} \xi_{j}|Y|^{-\frac{1}{2}} a_{j k}^{0} \int_{\mathbb{R}^{n}} \frac{\partial \phi}{\partial x_{k}} u_{0} e^{-\imath x \cdot \xi} d x .
\end{aligned}
$$

This can be rewritten as

$$
\begin{aligned}
{\left.\left[\widehat{\mathcal{A}_{0}\left(\phi u_{0}\right.}\right)\right](\xi)=} & \widehat{(\phi f})(\xi)-|Y|^{-\frac{1}{2}} \sum_{k=1}^{n} \int_{\mathbb{R}^{n}} \sigma_{k}^{0} \frac{\partial \phi}{\partial x_{k}} e^{-\imath x \cdot \xi} d x \\
& -\imath \sum_{j, k=1}^{n} \xi_{j}|Y|^{-\frac{1}{2}} a_{j k}^{0} \int_{\mathbb{R}^{n}} \frac{\partial \phi}{\partial x_{k}} u_{0} e^{-\imath x \cdot \xi} d x .
\end{aligned}
$$

This is the localized homogenized equation in the Fourier space. Taking inverse Fourier transform of the above equation, we obtain

$$
\mathcal{A}_{0}\left(\phi u_{0}\right)=\phi f-\sum_{k=1}^{n} \sigma_{k}^{0} \frac{\partial \phi}{\partial x_{k}}-\sum_{j, k=1}^{n} a_{j k}^{0} \frac{\partial}{\partial x_{j}}\left(\frac{\partial \phi}{\partial x_{k}} u_{0}\right) \text { in } \mathbb{R}^{n} .
$$

On the other hand, we can calculate $\mathcal{A}_{0}\left(\phi u_{0}\right)$ directly:

$$
\mathcal{A}_{0}\left(\phi u_{0}\right)=-\sum_{j, k=1}^{n}\left[a_{j k}^{0} \frac{\partial^{2} \phi}{\partial x_{j} \partial x_{k}} u_{0}+2 a_{j k}^{0} \frac{\partial \phi}{\partial x_{j}} \frac{\partial u_{0}}{\partial x_{k}}\right]+\phi \mathcal{A}_{0} u_{0} \text { in } \mathbb{R}^{n}
$$

A comparison of the above two equation yields

$$
\phi\left(\mathcal{A}_{0} u_{0}-f\right)=\sum_{j=1}^{n}\left(\sum_{k=1}^{n} a_{j k}^{0} \frac{\partial u_{0}}{\partial x_{k}}-\sigma_{j}^{0}\right) \frac{\partial \phi}{\partial x_{j}} \text { in } \mathbb{R}^{n} .
$$

Since the above relation is true for all ϕ in $\mathcal{D}(\Omega)$, the desired conclusions follow. In fact, let us choose $\phi(x)=\phi_{0}(x) e^{\imath m x \cdot \nu}$, where ν is a unit vector in \mathbb{R}^{n} and $\phi_{0}(x) \in \mathcal{D}(\Omega)$ is fixed. Letting $m \rightarrow \infty$ in the resuling relation and varying the unit vector ν, we can easily deduce, successively, that $\sigma_{j}^{0}=\sum_{k=1}^{n} a_{j k}^{0} \frac{\partial u_{0}}{\partial x_{k}}$ in Ω and $\mathcal{A}_{0} u_{0}=f$ in Ω.

[^0]: ${ }^{1}$ For each $\xi \in \mathbb{R}^{n}$, $e^{\imath \xi \cdot x}$ are not elements of $L^{2}\left(\mathbb{R}^{n}\right)$ but they span $L^{2}\left(\mathbb{R}^{n}\right)$

