Bloch-Floquet Transform

T. Muthukumar tmk@iitk.ac.in

December 19, 2014

Contents

1	Raison d'être						
	1.1	Fourier Transform	1				
	1.2	Schrödinger Operator with Periodic Potential	2				
	1.3	Direct Integral Decomposition	3				
	1.4	Bloch Periodic Functions	6				
2	Bloch Transform						
	2.1	Spectrum of Elliptic Operator	9				
	2.2	Regularity of $\lambda_m(\eta)$ and $\phi_1(\cdot, \eta)$	11				
	2.3	Taylor Expansion of Ground State	12				
3	Но	mogenization of Second order Elliptic Operator	14				

1 Raison d'être

1.1 Fourier Transform

Recall that $-\Delta : H^2(\mathbb{R}^n) \subset L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ is an unbounded, self-adjoint operator whose spectral decomposition is well-known. The "generalised" eigenfunctions¹ are the *plane or Fourier* waves $e^{i\xi \cdot x}$, for each $\xi \in \mathbb{R}^n$, and $|\xi|^2$ is an eigenvalue, for each $\xi \in \mathbb{R}^n$, giving the spectrum to be $[0, \infty)$. Further, $-\Delta(e^{ix \cdot \xi}) = |\xi|^2 e^{ix \cdot \xi}$.

Theorem 1.1. Given any $f \in L^2(\mathbb{R}^n)$ there is a unique $\hat{f} \in L^2(\mathbb{R}^n)$ such that

$$f(x) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \hat{f}(\xi) e^{i\xi \cdot x} d\xi.$$

Also, for any $f, g \in L^2(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} f(x)\overline{g(x)} \, dx = \int_{\mathbb{R}^n} \hat{f}(\xi)\overline{\hat{g}(\xi)} \, d\xi.$$

In particular, the Fourier transform $f \mapsto \hat{f}$ is an isometry from $L^2(\mathbb{R}^n)$ to $L^2(\mathbb{R}^n)$.

¹For each $\xi \in \mathbb{R}^n$, $e^{i\xi \cdot x}$ are not elements of $L^2(\mathbb{R}^n)$ but they span $L^2(\mathbb{R}^n)$

The Fourier transform will change a differential equation in to an algebraic equation. For instance, $-\Delta u = f$ transforms to, on applying Fourier transform,

$$\begin{split} \hat{f}(\xi) &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(x) e^{-\imath x \cdot \xi} \, dx = -\frac{1}{(2\pi)^{n/2}} \sum_{j=1}^n \int_{\mathbb{R}^n} \frac{\partial^2 u(x)}{\partial x_j^2} e^{-\imath x \cdot \xi} \, dx \\ &= \frac{1}{(2\pi)^{n/2}} \sum_{j=1}^n (-\imath \xi_j) \int_{\mathbb{R}^n} \frac{\partial u(x)}{\partial x_j} e^{-\imath x \cdot \xi} \, dx \quad \text{(Integration by parts)} \\ &= -\sum_{j=1}^n (-\imath \xi_j)^2 \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} u(x) e^{-\imath x \cdot \xi} \, dx \quad \text{(Integration by parts)} \\ &= |\xi|^2 \hat{u}(\xi). \end{split}$$

More generally, any *m*-th order linear differential equation with constant coefficients P(D)u = fwhere $P(D) = \sum_{|\alpha| \le m} a_{\alpha} D^{\alpha}$ will transform in to an algebraic equation $P(i\xi)\hat{u}(\xi) = \hat{f}(\xi)$.

The Laplacian is a particular case of the elliptic operator $-\Delta + c(x)$ with $c \equiv 0$. For $c(x) \neq 0$ (without loss of generality assume $c(x) \geq 0$), the Bloch theorem gives the generalised eigenfunction for $-\Delta + c(x)$ when c is Y-periodic, for any given reference cell $Y \subset \mathbb{R}^n$.

1.2 Schrödinger Operator with Periodic Potential

Definition 1.2. Let $\{e_i\}$ be the canonical basis for \mathbb{R}^n . Let $Y = \prod_{i=1}^n [0, \ell_i)$ be a reference cell (or period) in \mathbb{R}^n . A function $f : \mathbb{R}^n \to \mathbb{R}$ is said to be Y-periodic if $f(x + e_i p_i \ell_i) = f(x)$ for a.e. $x \in \mathbb{R}^n$ and all $p \in \mathbb{Z}^n$, for all i = 1, 2, ..., n.

Consider the Schrödinger operator $-\Delta + c(x)$ where c is a periodic function, i.e., for some $\ell = (\ell_i) \in \mathbb{R}^n$ and $p \in \mathbb{Z}^n$, $c(x+e_i\ell_i p_i) = c(x)$. Let $L : \mathcal{S}(\mathbb{R}) \to \mathcal{S}(\mathbb{R})$ be the operator $L := -\Delta + c(x)$.

To begin, let us consider the one dimension situation with $c \in C_c^{\infty}(\mathbb{R})$ with bounded derivatives and $L : \mathcal{S}(\mathbb{R}) \to \mathcal{S}(\mathbb{R})$ defined as

$$L := -\frac{d^2}{dx^2} + c(x).$$

If c is 2π -periodic and, hence, c admits a uniformly convergent Fourier series

$$c(x) = \sum_{\eta \in \mathbb{Z}} c_{\eta} e^{i\eta x}$$

where

$$c_{\eta} = \frac{1}{2\pi} \int_{-\pi}^{\pi} c(x) e^{-i\eta x} dx.$$

If $u \in \mathcal{S}(\mathbb{R})$ then

$$\begin{aligned} \widehat{Lu(x)}(\xi) &= \xi^2 \widehat{u}(\xi) + \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} c(x)u(x)e^{-i\xi x} \, dx \\ &= \xi^2 \widehat{u}(\xi) + \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \left(\sum_{\eta \in \mathbb{Z}} c_\eta e^{i\eta x} \right) u(x)e^{-i\xi x} \, dx \\ &= \xi^2 \widehat{u}(\xi) + \sum_{\eta \in \mathbb{Z}} c_\eta \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} u(x)e^{-i(\xi-\eta)x} \, dx \\ &= \xi^2 \widehat{u}(\xi) + \sum_{\eta \in \mathbb{Z}} c_\eta \widehat{u}(\xi-\eta). \end{aligned}$$

Thus, $\widehat{Lu}(\xi)$ depends only on the values $\hat{u}(\xi - \eta)$ for all $\eta \in \mathbb{Z}$. But recall that $\hat{u}(\xi - \eta) = e^{ix\eta}u(x)(\xi)$. This suggests that the operator L depends on the modulation by all $\eta \in \mathbb{Z}$.

1.3 Direct Integral Decomposition

Let H be a separable Hilbert space and (X, μ) be a σ -finite measure space. Let $L^2(X, \mu; H)$ is the Hilbert space of square integrable H-valued functions. If μ is a sum of point measures at finite set of points x_1, \ldots, x_k then, any $f \in L^2(X, \mu; H)$, is determined by the k-tuple $(f(x_1), \ldots, f(x_k))$. Thus, $L^2(X, \mu; H)$ is isomorphic to the direct sum $\bigoplus_{i=1}^k H$. For more general μ , one may define a kind of "continuous direct sum" called the *constant fiber direct integral* and write

$$L^2(X,\mu;H) = \int_X^{\oplus} H \, d\mu$$

Definition 1.3. A function $T(\cdot) : X \to L(H)$ is measurable iff, for each $\phi, \psi \in H$, $\langle \phi, T(\cdot)\psi \rangle$ is measurable. $L^{\infty}(X, \mu; L(H))$ denotes the equivalence class (with a.e.) of measurable functions from X to L(H) with

$$||T||_{\infty} = ess \ sup ||T(x)||_{L(H)} < \infty.$$

Definition 1.4. A bounded operator T on $\mathcal{H} = \int_X^{\oplus} H d\mu$ is said to be decomposed by the direct integral decomposition iff there is $T(\cdot) \in L^{\infty}(X, \mu; L(H))$ such that, for all $\psi \in \mathcal{H}$,

$$(T\psi)(x) = T(x)\psi(x).$$

We then say T is decomposable and

$$T = \int_X^{\oplus} T(x) \, d\mu(x).$$

The T(x) are called the fibers of T.

Theorem 1.5. Let $H = l_2$ and

$$\mathcal{H} = \int_{\left(-\frac{1}{2}, \frac{1}{2}\right]}^{\oplus} H \, dx.$$

For $\eta \in \left(-\frac{1}{2}, \frac{1}{2}\right]$, let $L_{\eta} : l_2 \to l_2$ be defined as

$$(L_{\eta}(z))_k = (\eta + k)^2 z_k + \sum_{m \in \mathbb{Z}} c_m z_{k-m}.$$

Define $T: L^2(\mathbb{R}) \to \mathcal{H}$ by

$$[(Tf)(\eta)]_k = \hat{f}(\eta + k).$$

For $L = -\frac{d^2}{dx^2} + c(x)$ on $L^2(\mathbb{R})$,

$$TLT^{-1} = \int_{(-\frac{1}{2},\frac{1}{2}]}^{\oplus} L_{\eta} \, d\eta.$$

When $c \equiv 0$, the eigenvalues and eigenfunctions of L_{η} are $(\eta + k)^2$ and the Fourier transform of $e^{i(\eta+k)x}$, respectively. This suggests that L_{η} is related to $-\frac{d^2}{dx^2}$ on $[0, 2\pi)$ with the boundary condition $u(2\pi) = e^{i2\pi\eta}u(0)$ and $u'(2\pi) = e^{i2\pi\eta}u'(0)$.

Lemma 1.6. Let $H = L^2[0, 2\pi)$ and

$$\mathcal{H} = \int_{(-\frac{1}{2},\frac{1}{2}]}^{\oplus} H \, d\eta.$$

Then $T: \mathcal{S}(\mathbb{R}) \to \mathcal{H}$ given by

$$(Tf)_{\eta}(x) = \sum_{m \in \mathbb{Z}} e^{i2\pi m\eta} f(x + 2\pi m) \quad \eta \in \left(-\frac{1}{2}, \frac{1}{2}\right] x \in [0, 2\pi)$$

which extends uniquely to an unitary operator on $L^2(\mathbb{R})$. Moreover,

$$T\left(-\frac{d^2}{dx^2}\right)T^{-1} = \int_{(-\frac{1}{2},\frac{1}{2}]}^{\oplus} \left(-\frac{d^2}{dx^2}\right)_{\eta} d\eta$$
(1.1)

where $\left(-\frac{d^2}{dx^2}\right)_{\eta}$ is the operator $-\frac{d^2}{dx^2}$ on $L^2[0,2\pi)$ with boundary condition

$$u(2\pi) = e^{i2\pi\eta}u(0)$$
 $u'(2\pi) = e^{i2\pi\eta}u'(0).$

Proof. Let us note that T is well defined. For any $f \in \mathcal{S}(\mathbb{R})$, the series in RHS is convergent. For any $f \in \mathcal{S}(\mathbb{R})$, $Tf \in \mathcal{S}(\mathbb{R})$ because

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \left(\int_{0}^{2\pi} \left| \sum_{m=-\infty}^{\infty} e^{-i2\pi m\eta} f(x+2\pi m) \right|^{2} dx \right) d\eta$$

= $\int_{0}^{2\pi} \left[\left(\sum_{m,p\in\mathbb{Z}} \overline{f(x+2\pi m)} f(x+2\pi p) \right) \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{-i2\pi (p-m)\eta} d\eta \right] dx$
(by Fubini's Theorem)
= $\int_{0}^{2\pi} \left(\sum_{m\in\mathbb{Z}} |f(x+2\pi m)|^{2} \right) dx = \int_{\mathbb{R}} |f(x)|^{2} dx.$

Thus, T is well defined and admits a unique isometry extension. To see that T is onto \mathcal{H} , we compute T^* . For any $g \in \mathcal{H}$, $x \in [0, 2\pi]$ and $m \in \mathbb{Z}$

$$(T^{\star}g)(x+2\pi m) = \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{i2\pi m\eta} g_{\eta}(x) \, d\eta.$$

Further,

$$\begin{split} \|T^{\star}g\|_{2}^{2} &= \int_{\mathbb{R}} |(T^{\star}g)(y)|^{2} dy \\ &= \int_{0}^{2\pi} \left(\sum_{m \in \mathbb{Z}} |(T^{\star}g)(2\pi m + x)|^{2} \right) dx \\ &= \int_{0}^{2\pi} \left(\sum_{m \in \mathbb{Z}} \left| \int_{0}^{2\pi} e^{i2\pi m\eta} g_{\eta}(x) d\theta \right|^{2} \right) dx \\ &= \int_{0}^{2\pi} \left(\int_{0}^{2\pi} |g_{\eta}(x)|^{2} d\theta \right) dx \quad \text{(Parseval's Identity)} \\ &= \|g\|^{2}. \end{split}$$

Finally, to prove (1.1), let G be the operator on the right-hand side of (1.1). We shall show that if $f \in \mathcal{S}(\mathbb{R})$, then $Tf \in D(G)$ and T(-f'') = G(Tf). Since $-d^2/dx^2$ is essentially self-adjoint on $\mathcal{S}(\mathbb{R})$ and G is self-adjoint, (1.1) will follow. So, suppose $f \in \mathcal{S}(\mathbb{R}^n)$, then Tf is given by the convergent sum as in the statement. Thus, $Tf \in C^{\infty}(0, 2\pi)$ with $(Tf)'_{\eta}(x) = (Tf'_{\eta}(x))$ and similarly for higher derivatives. Further, it is clear that

$$\begin{aligned} (Tf)_{\theta}(2\pi) &= \sum_{m \in \mathbb{Z}} e^{-i2\pi m\eta} f(2\pi (m+1)) \\ &= \sum_{m \in \mathbb{Z}} e^{-i2\pi (m-1)\eta} f(2\pi m) = e^{i2\pi \eta} (Tf)_{\eta}(0). \end{aligned}$$

Similarly, $(Tf)'_{\eta}(2\pi) = e^{i2\pi\eta}(Tf_{\eta})'(0)$. Thus, for each η , $(Tf)_{\eta} \in D((-\frac{d^2}{dx^2})_{\eta})$ and

$$\left(-\frac{d^2}{dx^2}\right)_{\eta}(Tf) = U(-f'')_{\eta}$$

We conclude that $Tf \in D(G)$ and G(Tf) = U(-f''). This proves (1.1).

Theorem 1.7 (Direct Integral Decomposition of Periodic Schrödinger operator). Let c be a bounded measurable function on \mathbb{R} with period 2π . For $\eta \in \left(-\frac{1}{2}, \frac{1}{2}\right]$, let

$$L_{\eta} = \left(-\frac{d^2}{dx^2}\right)_{\eta} + c(x)$$

be an operator on $L^2[0, 2\pi]$. Let T be given by

$$(Tf)_{\eta}(x) = \sum_{m \in \mathbb{Z}} e^{i2\pi m\eta} f(x+2\pi m) \quad \eta \in \left(-\frac{1}{2}, \frac{1}{2}\right] x \in [0, 2\pi).$$

Then

$$T\left(-\frac{d^2}{dx^2} + c\right)T^{-1} = \int_{(-\frac{1}{2},\frac{1}{2}]}^{\oplus} L_\eta \, d\eta.$$

Proof. Let c be the η -independent operator acting on the fiber $H = L^2[0, 2\pi)$ by $(c_\eta f)(x) = c(x)f(x)$ for $0 \le x \le 2\pi$. It is sufficient to prove that

$$TcT^{-1} = \int_{(-\frac{1}{2},\frac{1}{2}]}^{\oplus} c_{\eta} \, d\eta$$

For $f \in \mathcal{S}(\mathbb{R})$,

$$(Tcf)_{\eta}(x) = \sum_{m \in \mathbb{Z}} e^{-i2\pi m\eta} c(x+2\pi m) f(x+2\pi m)$$
$$= c(x) \sum_{m \in \mathbb{Z}} e^{-i2\pi m\eta} f(x+2\pi m)$$
$$= c_{\eta}(Tf)_{\eta}(x).$$

The second last equality is due to the periodicity of c.

1.4 Bloch Periodic Functions

The Bloch transform is a generalization of Fourier transform that leaves the periodic functions invariant, in some sense. Let us begin by considering a generalization of periodic functions.

Definition 1.8. Let $Y = \prod_{i=1}^{n} [0, \ell_i)$ be a reference cell (or period) in \mathbb{R}^n . For each $\eta \in \mathbb{R}^n$, a function $f : \mathbb{R}^n \to \mathbb{R}$ is said to be (η, Y) -Bloch periodic if $f(x + \ell \cdot p) = e^{i2\pi p \cdot \eta} f(x)$ for a.e. $x \in \mathbb{R}^n$ and for all $p \in \mathbb{Z}^n$.

Note that the case $\eta = 0$ corresponds to the usual notion of Y-periodic functions. Note that the boundary condition remains unchanged if η is replaced with $\eta + k$, for any $k \in \mathbb{Z}^n$. Hence, it is sufficient to consider $\eta \in Y^*$ where $Y^* = (-\frac{1}{2}, \frac{1}{2}]^n$. The cell Y^* is called the *reciprocal cell* and, in Physics literature, Y^* is known as the *first Brillouin zone*.

We shall assume that $Y = [0, 2\pi)^n$ and, for j, k = 1, 2, ..., n, $a_{jk} : Y \to \mathbb{R}$ is such that $a_{jk} \in L_{per}^{\infty}(Y)$. Let $A(y) = (a_{jk}(y)) \in M(\alpha, \beta, Y)$ and is a symmetric matrix, i.e., $a_{jk}(y) = a_{kj}(y)$. One can extend a_{jk} to entire \mathbb{R}^n as a Y-periodic function. Also, c is a Y-periodic function such that $c(y) \geq c_3 > 0$. We are interested in the spectral resolution of closure of the operator $\mathcal{A} = -\operatorname{div}(A(y)\nabla) + c(y)$ in $L^2(\mathbb{R}^n)$.

By Bloch Theorem, it is enough to study the (η, Y) -Bloch periodic eigenvalue problem, for each $\eta \in \mathbb{R}^n$, i.e.,

Definition 1.9. For any fixed (momentum) vector $\eta \in Y^*$, consider the eigenvalue problem: given a symmetric $A \in M(\alpha, \beta, Y)$, find $\lambda(\eta) \in \mathbb{C}$ and non-zero $\psi(\cdot; \eta) : \mathbb{R}^n \to \mathbb{R}$ such that

$$\begin{cases} \mathcal{A}\psi(y;\eta) &= \lambda(\eta)\psi(y;\eta) \quad in \ \mathbb{R}^n\\ \psi(y+2\pi\ell) &= e^{2\pi\imath\ell\cdot\eta}\psi(y) \quad \ell \in \mathbb{Z}^n, y \in \mathbb{R}^n. \end{cases}$$
(1.2)

The eigenvalues ψ are known as Bloch waves associated with \mathcal{A} and the eigenvalues λ are called Bloch eigenvalues.

Suppose $\eta \in Y^*$ have rational components and $\eta = (\eta_1, \ldots, \eta_n)$. Recall that there is a homeomorphism from Y^* to S^1 . Thus, $e^{i2\pi\eta_j} \in S^1$. In this sense, the Bloch periodicity condition has the form $e^{2\pi i p \cdot \eta} = \omega^p$ where $\omega \in [S^1]^n$ and $\omega^p = \omega_1^{p_1} \omega_2^{p_2} \ldots \omega_n^{p_n}$. For any $m \in \mathbb{Z}^n$, let $D_m \subset [S^1]^n$ be the collection of all $\omega \in [S^1]^n$ such that its *j*-th component is the m_j -th root of unity. Thus, $\omega^m = 1$ for all $\omega \in D_m$. The spectral problem (1.2) may be seen as a sequence of spectral problems, i.e., for each $m \in \mathbb{Z}^n$, we define ψ_m as

$$\begin{cases} \mathcal{A}\psi_m(y) &= \lambda_m \psi_m(y) \quad \text{in } \mathbb{R}^n\\ \psi_m(y+2\pi m) &= \psi(y) \qquad y \in \mathbb{R}^n. \end{cases}$$

Note that in the above boundary condition ψ is Y_m -periodic where $Y_m = \prod_{i=1}^n [0, 2\pi m_i)$. The space of spectral decomposition is $L^2_{\text{per}}(Y_m)$ which admits the orthogonal decomposition $L^2_{\text{per}}(Y_m) = \bigoplus_{\omega \in D_m} L^2_{\text{per}}(\omega, Y)$ where

$$L^2_{\rm per}(\omega, Y) = \{ \psi \in L^2_{\rm loc}(\mathbb{R}^n) \mid \psi(y + 2\pi\ell) = \omega^\ell \psi(y) \; \forall \ell \in \mathbb{Z}^n, y \in \mathbb{R}^n \}.$$

Thus, we observe that the above space consists of (η, Y) -Bloch Periodic functions. For any irrational η can be approximated by rationals by varying m and noting that the sets of roots of unity is dense in S^1 .

2 Bloch Transform

Theorem 2.1 (Bloch Decomposition). Let $Y = [0, 2\pi)^n$ and $Y^* = \left(-\frac{1}{2}, \frac{1}{2}\right]^n$. Given a $f \in L^2(\mathbb{R}^n)$ there is a unique function, called Bloch Transform, $f_b \in L^2(Y \times Y^*)$ such that

$$f(y) = \int_{Y^*} f_b(y,\eta) e^{i\eta \cdot y} \, d\eta.$$

Also, for any $f, g \in L^2(\mathbb{R}^n)$, the Plancherel formula holds, i.e.,

$$\int_{\mathbb{R}^n} f(y)\overline{g(y)} \, dy = \int_Y \int_{Y^*} f_b(y,\eta) \overline{g_b(y,\eta)} \, dy \, d\eta.$$

In particular, the Bloch transform $f \mapsto f_b$ is an isometry from $L^2(\mathbb{R}^n)$ to $L^2(Y \times Y^*)$.

Proof. For any $f \in \mathcal{D}(\mathbb{R}^n)$ and for each $\eta \in Y^*$, define

$$f_b(y;\eta) := \sum_{p \in \mathbb{Z}^n} f(y + 2\pi p) e^{-i(y + 2\pi p) \cdot \eta}.$$

The sum is well defined because it has finite number of terms because f has compact support. Note that $f_b(y;\eta)$ is Y-periodic in y variable because

$$f_b(y+2\pi;\eta) := \sum_{p+1 \in \mathbb{Z}^n} f(y+2\pi p) e^{-i(y+2\pi p) \cdot \eta} = f_b(y;\eta).$$

Similarly, $e^{iy\cdot\eta}f_b(y;\eta)$ is Y^* -periodic in η variable because, for $k \in \mathbb{Z}^n$,

$$e^{iy \cdot (\eta+k)} f_b(y;\eta+k) = e^{iy \cdot (\eta+k)} \sum_{p \in \mathbb{Z}^n} f(y+2\pi p) e^{-i(y+2\pi p) \cdot (\eta+k)}$$
$$= e^{iy \cdot (\eta+k)} \sum_{p \in \mathbb{Z}^n} f(y+2\pi p) e^{-i(y+2\pi p) \cdot \eta} e^{-i(y+2\pi p) \cdot k}$$
$$= e^{iy \cdot (\eta+k)} e^{-iy \cdot k} \sum_{p \in \mathbb{Z}^n} f(y+2\pi p) e^{-i(y+2\pi p) \cdot \eta} e^{-i2\pi p \cdot k}$$
$$= e^{iy \cdot \eta} f_b(y;\eta).$$

In the above relation we have used the fact that $e^{i2\pi p \cdot k} = 1$. Observe that

$$e^{iy\cdot\eta}f_b(y;\eta) = \sum_{p\in\mathbb{Z}^n} f(y+2\pi p)e^{-2i\pi p\cdot\eta}.$$

Thus,

$$\begin{split} \int_{Y^{\star}} e^{iy \cdot \eta} f_b(y;\eta) \, d\eta &= f(y) + \sum_{\substack{p \in \mathbb{Z}^n \\ p \neq 0}} f(y + 2\pi p) \int_{Y^{\star}} e^{-2i\pi p \cdot \eta} \, dy \\ &= f(y) - \sum_{\substack{p \in \mathbb{Z}^n \\ p \neq 0}} f(y + 2\pi p) \left[\frac{e^{-i\pi p} - e^{i\pi p}}{2i\pi p_1 \dots p_n} \right] \, dy \\ &= f(y). \end{split}$$

Therefore, we have proved the results for all functions in $\mathcal{D}(\mathbb{R}^n)$. Similarly, one can prove the Plancherel's formula for functions in $\mathcal{D}(\mathbb{R}^n)$. The Bloch transform is a linear map on $\mathcal{D}(\mathbb{R}^n)$ bounded on $L^2(\mathbb{R}^n)$. Thus, by density of $\mathcal{D}(\mathbb{R}^n)$ in $L^2(\mathbb{R}^n)$, the Bloch transform extends to $L^2(\mathbb{R}^n)$ and Plancherel's formula holds true.

Remark 2.2. Note that, for each fixed $\eta \in Y^*$, $y \mapsto f_b(y, \eta)$ is extended Y-periodic to \mathbb{R}^n and, for each fixed $y \in Y$, $\eta \mapsto e^{i\eta \cdot y} f_b(y, \eta)$ is extended Y^* -periodic to \mathbb{R}^n . Thus, the Bloch transform may be seen as an isometry from $L^2(\mathbb{R}^n)$ to $L^2(\mathbb{R}^n \times \mathbb{R}^n)$.

Remark 2.3. The Bloch transform is a "modulation" of Zak transform. The Zak transform for any $f \in \mathcal{D}(\mathbb{R}^n)$ is defined as

$$f_z(y;\eta) := \sum_{p \in \mathbb{Z}^n} f(y + 2\pi p) e^{-i2\pi p \cdot \eta}$$

and extended unitarily to to $L^2(\mathbb{R}^n)$. Further, $f_b(y;\eta) = e^{-iy\cdot\eta}f_z(y;\eta)$ for all $f \in \mathcal{D}(\mathbb{R}^n)$.

The following theorem explains the sense in which the Bloch transform leaves the periodic functions invariant.

Theorem 2.4 (Invariance of Periodic Functions). Let $Y = [0, 2\pi)^n$ and $c : Y \to \mathbb{C}$ be such that $c \in L^{\infty}(Y)$ extended Y-periodically to \mathbb{R}^n . For any $f \in L^2(\mathbb{R}^n)$, $(cf)_b(y;\eta) = c(y)f_b(y;\eta)$.

Proof. It is enough to prove the result for $f \in \mathcal{D}(\mathbb{R}^n)$. Consider

$$(cf)_b(y;\eta) = \sum_{p \in \mathbb{Z}^n} c(y+2\pi p)f(y+2\pi p)e^{-i(y+2\pi p)\cdot\eta}$$
$$= c(y)\sum_{p \in \mathbb{Z}^n} f(y+2\pi p)e^{-i(y+2\pi p)\cdot\eta}$$
$$= c(y)f_b(y;\eta).$$

By density the result is true for any $f \in L^2(\mathbb{R}^n)$.

Theorem 2.5. For any $f \in H^1(\mathbb{R}^n)$, $(\nabla_y f)_b(y;\eta) = (\nabla_y + i\eta)f_b(y;\eta)$.

Proof. It is enough to prove the result for $f \in \mathcal{D}(\mathbb{R}^n)$. Consider

$$\begin{aligned} (\nabla_y f)_b(y;\eta) &= \sum_{p \in \mathbb{Z}^n} \left[\nabla_y f(y+2\pi p) \right] e^{-i(y+2\pi p) \cdot \eta} \\ &= \sum_{p \in \mathbb{Z}^n} \nabla_y \left[f(y+2\pi p) e^{-i(y+2\pi p) \cdot \eta} \right] \\ &+ i\eta \sum_{p \in \mathbb{Z}^n} f(y+2\pi p) e^{-i(y+2\pi p) \cdot \eta} \\ &= \left[\nabla_y + i\eta \right] f_b(y;\eta). \end{aligned}$$

For any $f \in L^2(\mathbb{R}^n)$, consider the equation $\mathcal{A}u = f$ in \mathbb{R}^n . Applying Bloch transform to this equation, using Theorems 2.4 and 2.5, we obtain a family of equations, indexed by $\eta \in Y^*$, with periodic boundary conditions:

$$\begin{cases} \mathcal{A}(\eta)u_b(y;\eta) = f_b(y;\eta) & \text{in } \mathbb{R}^n\\ u_b(y+2\pi\ell;\eta) = u_b(y;\eta) & \ell \in \mathbb{Z}^n \, y \in \mathbb{R}^n, \end{cases}$$
(2.1)

where $\mathcal{A}(\eta)$ is the *shifted operator*, denoted as

$$\mathcal{A}(\eta) := -\sum_{j,k=1}^{n} \left(\frac{\partial}{\partial y_j} + \imath \eta_j \right) \left[a_{jk}(y) \left(\frac{\partial}{\partial y_k} + \imath \eta_k \right) \right] + c(y).$$

The shifted operator equation admits a solution (being a periodic problem) in $H^1_{\text{per}}(Y)$ and a corresponding Poincaré inequality holds true, i.e., for all $u \in H^1_{\text{per}}(Y)$ and $\eta \in Y^*$,

$$c(\|\nabla u\|_{2,Y} + |\eta| \|u\|_{2,Y}) \le \|\nabla u + \iota u\eta\|_{2,Y} \le \|\nabla u\|_{2,Y} + |\eta| \|u\|_{2,Y}.$$

2.1 Spectrum of Elliptic Operator

The spectral decomposition of \mathcal{A} , in one dimension periodic media, was first studied by Floquet (1883) and much later, in crystal lattice, by Bloch (1928). We shall compute the spectral decomposition of \mathcal{A} in $L^2(\mathbb{R}^n)$ via the spectral decomposition of the shifted operator $\mathcal{A}(\eta)$. Consider the eigenvalue problem

$$\begin{cases} \mathcal{A}(\eta)\phi(y;\eta) = \lambda(\eta)\phi(y;\eta) & \text{in } \mathbb{R}^n \\ \phi(y+2\pi\ell) = \phi(y) & \ell \in \mathbb{Z}^n, y \in \mathbb{R}^n \end{cases}$$
(2.2)

Theorem 2.6 (Periodic Eigen Value problem). There exists a sequence of pairs (λ_m, ϕ_m) satisfying

$$\begin{cases} \mathcal{A}\phi(y) = \lambda\phi(y) & \text{in } \mathbb{R}^n\\ \phi(y+2\pi\ell) = \phi(y) & \ell \in \mathbb{Z}^n, y \in \mathbb{R}^n \end{cases}$$
(2.3)

where $\{\lambda_m\}$ are positive real eigenvalues and $\{\phi_m(y)\}\ are the corresponding eigenvectors, for each <math>m \in \mathbb{N}$, such that $\{\phi_m\}\ form\ an\ orthonormal\ basis\ of\ L^2_{per}(Y)\ and\ 0 \leq \lambda_1 \leq \lambda_2 \leq \ldots\ diverges\ and\ each\ eigenvalue\ has\ finite\ multiplicity.$

Remark 2.7. By Theorem 2.6, for each fixed $\eta \in Y^*$, there exists a sequence of pairs (λ_m, ϕ_m) satisfying (2.2) where $\{\lambda_m(\eta)\}$ are positive real eigenvalues and $\{\phi_m(y;\eta)\}$ are the corresponding eigenvectors, for each $m \in \mathbb{N}$, such that $\{\phi_m(\cdot;\eta)\}$ form an orthonormal basis of $L^2_{\text{per}}(Y)$ and $0 \leq \lambda_1(\eta) \leq \lambda_2(\eta) \leq \ldots$ diverges and each eigenvalue has finite multiplicity. By varying $\eta \in Y^*$, we obtain the spectral resolution of \mathcal{A} in $L^2(\mathbb{R}^n)$. The set $\{e^{iy\cdot\eta}\phi_m(y,\eta); m \in \mathbb{N}, \eta \in Y^*\}$ forms a 'generalised' basis of $L^2(\mathbb{R}^n)$. As a consequence, $L^2(\mathbb{R}^n)$ can be identified with $L^2(Y^*; \ell^2(\mathbb{N}))$. \mathcal{A} acts as a multiplication operator: $\mathcal{A}[e^{iy\cdot\eta}\phi_m(y,\eta)] = \lambda_m(\eta)e^{iy\cdot\eta}\phi_m(y,\eta)$. The spectrum of \mathcal{A} , denoted as $\sigma(\mathcal{A})$, coincides with the *Bloch spectrum* and denoted as σ_b . The Bloch spectrum is defined as the union of the images of all the mappings $\lambda_m(\eta)$, i.e.,

$$\sigma_b := \bigcup_{m=1}^{\infty} \left[\inf_{\eta \in Y^\star} \lambda_m(\eta), \sup_{\eta \in Y^\star} \lambda_m(\eta) \right].$$

The spectrum has a band structure. In contrast to the homogeneous case, $\sigma(\mathcal{A})$ need not fill up the entire $[0, \infty)$ and there may be gaps.

Theorem 2.8. For any $f \in L^2(\mathbb{R}^n)$, its Bloch transform is given as

$$f_b(y;\eta) = \sum_{m=1}^{\infty} f_b^m(\eta)\phi_m(y;\eta)$$

where, $\{\phi_m\}$ are the eigenfunctions corresponding to the shifted operator $\mathcal{A}(\eta)$ and $f_b^m(\eta)$, for each $\eta \in Y^*$, is the m-th Bloch coefficient of f defined as

$$f_b^m(\eta) := \int_{\mathbb{R}^n} f(y) e^{-iy \cdot \eta} \overline{\phi_m(y;\eta)} \, dy.$$

Proof. It is enough to prove the result for $f \in \mathcal{D}(\mathbb{R}^n)$. Recall that, for each $\eta \in Y^*$, $f_b(\cdot; \eta) \in L^2_{\text{per}}(Y)$. Hence, by spectral decomposition of $\mathcal{A}(\eta)$,

$$f_b(y;\eta) = \sum_{m=1}^{\infty} f_b^m(\eta)\phi_m(y;\eta),$$

where

$$f_b^m(\eta) = \int_Y f_b(y;\eta) \overline{\phi_m(y;\eta)} \, dy$$

But,

$$\begin{split} f_b^m(\eta) &= \int_Y \sum_{p \in \mathbb{Z}^n} f(y + 2\pi p) e^{-i(y + 2\pi p) \cdot \eta} \overline{\phi_m(y;\eta)} \, dy \\ &= \int_Y \sum_{p \in \mathbb{Z}^n} f(y + 2\pi p) e^{-i(y + 2\pi p) \cdot \eta} \overline{\phi_m(y + 2\pi p);\eta)} \, dy \\ &= \int_{\mathbb{R}^n} f(y) e^{-iy \cdot \eta} \overline{\phi_m(y;\eta)} \, dy. \end{split}$$

Remark 2.9. The Bloch inversion formula can rewritten as:

$$f(y) = \int_{Y^{\star}} e^{iy \cdot \eta} f_b(y;\eta) \, d\eta = \int_{Y^{\star}} e^{iy \cdot \eta} \sum_{m=1}^{\infty} f_b^m(\eta) \phi_m(y;\eta) \, d\eta.$$

Further, the Parseval formula holds:

$$\int_{\mathbb{R}^n} |f(y)|^2 \, dy = \int_{Y^*} \sum_{m=1}^\infty |f_b^m(\eta)|^2 \, d\eta.$$
(2.4)

Remark 2.10 (Algebraic Formula for Solution). For each $m \in \mathbb{N}$ and $\eta \in Y^*$, multiply $\phi_m(y;\eta)$ on both sides of (2.1) to obtain

$$\begin{split} \int_{Y} \mathcal{A}(\eta) \left[\sum_{k=1}^{\infty} u_{b}^{k}(\eta) \phi_{k}(y;\eta) \right] \phi_{m}(y;\eta) \, dy &= \int_{Y} \sum_{k=1}^{\infty} f_{b}^{k}(\eta) \phi_{k}(y;\eta) \phi_{m}(y;\eta) \, dy \\ \int_{Y} \sum_{k=1}^{\infty} u_{b}^{k}(\eta) \phi_{k}(y;\eta) \lambda_{m}(\eta) \phi_{m}(y;\eta) \, dy &= f_{b}^{m}(\eta) \\ u_{b}^{m}(\eta) \lambda_{m}(\eta) &= f_{b}^{m}(\eta) \\ u_{b}^{m}(\eta) &= \frac{f_{b}^{m}(\eta)}{\lambda_{m}(\eta)}. \end{split}$$

Set $\psi_m(y;\eta) := \{e^{iy\cdot\eta}\phi_m(y;\eta)\}$. Then, for each $\eta \in Y^*$, $\psi_m(\cdot;\eta)$ forms a basis of $L^2(\mathbb{R}^n)$. Thus, $L^2(\mathbb{R}^n)$ can be identified with $L^2(Y^*;\ell^2(\mathbb{N}))$. Let us compute $\psi(y+2\pi\ell)$:

$$\psi_m(y+2\pi\ell) = e^{iy\cdot\eta}e^{2\pi\imath\ell\cdot\eta}\phi_m(y+2\pi\ell)$$
$$= e^{iy\cdot\eta}e^{2\pi\imath\ell\cdot\eta}\phi_m(y)$$
$$= e^{2\pi\imath\ell\cdot\eta}\psi_m(y).$$

2.2 Regularity of $\lambda_m(\eta)$ and $\phi_1(\cdot, \eta)$

Theorem 2.11. For all $m \ge 1$, $\eta \mapsto \lambda_m(\eta)$ is a Lipschitz function.

Proof. Consider the quadratic form associated with $\mathcal{A}(\eta)$:

$$a(v,v;\eta) = \int_{Y} a_{jk}(y) \left(\frac{\partial v}{\partial y_k} + i\eta_k v\right) \left(\frac{\partial v}{\partial y_j} + i\eta_j v\right) dy$$

The quadratic form admits a decomposition as follows:

$$a(v, v; \eta) = a(v, v; \eta^0) + R(v, v; \eta, \eta^0)$$

where

$$\begin{split} R &= \int_{Y} a_{jk}(y) \frac{\partial v}{\partial y_k} (\overline{\imath \eta_j - \imath \eta_j^0}) v \, dy \quad + \quad \int_{Y} a_{jk}(y) (\imath \eta_k - \imath \eta_k^0) v \overline{\frac{\partial v}{\partial y_j}} \, dy \\ &+ \quad \int_{Y} a_{jk}(y) (\eta_k \eta_j - \eta_k^0 \eta_j^0) |v|^2 \, dy. \end{split}$$

By Cauchy-Schwarz's inequality,

$$|R| \le C_0 |\eta - \eta^0| \int_Y (|\nabla v|^2 + |v|^2) \, dy.$$

By min-max principle,

$$\lambda_m(\eta) = \min_{W \subset H^1_{\text{per}}(Y)} \max_{v \in W} \frac{a(v, v; \eta)}{\|v\|_{2, Y}^2}$$

where W is a m-dimensional subspace of $H^1_{per}(Y)$. Using the estimate on R, we deduce that

$$\lambda_m(\eta) \le \lambda_m(\eta^0) + C_0 |\eta - \eta^0|$$

for a suitable constant C_0 . Interchanging η and η^0 , we obtain

$$|\lambda_m(\eta) - \lambda_m(\eta^0)| \le C_0 |\eta - \eta^0|.$$

Theorem 2.12 (Analyticity). There is a $\delta > 0$ such that $\lambda_1(\eta)$ is analytic in the open ball $B_{\delta}(0)$ centred at origin and radius δ . Further, one can choose a corresponding unit eigenvector $\phi_1(y;\eta)$ satisfying

(i) $\eta \mapsto \phi_1(\cdot; \eta)$ from Y^* to $H^1_{per}(Y)$ is analytic on $B_{\delta}(0)$.

(*ii*)
$$\phi_1(y;0) := |Y|^{-1/2} := (2\pi)^{-n/2}$$

(iii) $\|\phi_1(\cdot;\eta)\|_{2,Y} = 1$ and $\int_Y \phi_1(y;\eta) \, dy = 0$ for each $\eta \in B_{\delta}$.

2.3 Taylor Expansion of Ground State

Observe that (2.1) is a polynomial of degree two w.r.t η variable. Let $T_m(\eta) : L^2(Y) \to L^2(Y)$ be defined as

$$T_m(\eta)(\phi) = \mathcal{A}(\eta)\phi - \lambda_m\phi.$$

For a fixed $m \in \mathbb{N}$, let us compute the *j*-th first partial derivative of (2.2) w.r.t η to get

$$\mathcal{A}(\eta)\frac{\partial\phi_m}{\partial\eta_j} + \frac{\partial\mathcal{A}(\eta)}{\partial\eta_j}\phi_m = \lambda_m\frac{\partial\phi_m}{\partial\eta_j} + \phi_m\frac{\partial\lambda_m}{\partial\eta_j}.$$

Thus,

$$T_m(\eta)\frac{\partial\phi_m}{\partial\eta_j} = -\frac{\partial\mathcal{A}(\eta)}{\partial\eta_j}\phi_m + \phi_m\frac{\partial\lambda_m}{\partial\eta_j}$$
$$= ie_jA(\nabla_y + i\eta)\phi_m + (\nabla_y + i\eta)\cdot(iAe_j\phi_m) + \phi_m\frac{\partial\lambda_m}{\partial\eta_j}$$

There exists a solution to the above equation which is unique up to an additive multiple of ϕ_m . Hence, the RHS satisfies the compatibility condition or Fredhölm alternative. Therefore,

$$\int_{Y} T_m(\eta) \frac{\partial \phi_m}{\partial \eta_j} \overline{\phi}_m \, dy = 0$$

yields a formula for $\nabla_{\eta}\lambda_m(\eta^m)$ in terms of ϕ_m . Thus,

$$\frac{\partial \lambda_m}{\partial \eta_j}(\eta) = \left\langle \frac{\partial \mathcal{A}(\eta)}{\partial \eta_j} \phi_m(\cdot;\eta), \phi_m(\cdot;\eta) \right\rangle.$$

Similarly, by computing the *j*-th second partial derivative of (2.2) w.r.t η , we get

$$T_{m}(\eta)\frac{\partial^{2}\phi_{m}}{\partial\eta_{j}\partial\eta_{k}} = \imath e_{j}A(\nabla_{y}+\imath\eta)\frac{\partial\phi_{m}}{\partial\eta_{k}} + (\nabla_{y}+\imath\eta)\cdot\left(\imath Ae_{j}\frac{\partial\phi_{m}}{\partial\eta_{k}}\right)$$
$$+\imath e_{k}A(\nabla_{y}+\imath\eta)\frac{\partial\phi_{m}}{\partial\eta_{j}} + (\nabla_{y}+\imath\eta)\cdot\left(\imath Ae_{k}\frac{\partial\phi_{m}}{\partial\eta_{j}}\right)$$
$$+\frac{\partial\lambda_{m}}{\partial\eta_{j}}\frac{\partial\lambda_{m}}{\partial\eta_{k}} + \frac{\partial\lambda_{m}}{\partial\eta_{k}}\frac{\partial\lambda_{m}}{\partial\eta_{j}} - e_{j}Ae_{k}\phi_{m} - e_{k}Ae_{j}\phi_{m}$$
$$+\frac{\partial^{2}\lambda_{m}}{\partial\eta_{k}\partial\eta_{j}}\phi_{m}.$$

There exists a solution to the above equation which is unique up to an additive multiple of ϕ_m . Hence, the RHS satisfies the compatibility condition or Fredhölm alternative. Therefore,

$$\int_{Y} T_m(\eta) \frac{\partial^2 \phi_m}{\partial \eta_j \partial \eta_k} \overline{\phi}_m \, dy = 0$$

yields a formula for the Hessian matrix $D_{\eta}^2 \lambda_m(\eta^m)$ in terms of ϕ_m . Thus,

$$\frac{1}{2} \frac{\partial^2 \lambda_m}{\partial \eta_j \partial \eta_k}(\eta) = \langle a_{jk} \phi_m, \phi_m \rangle + \frac{1}{2} \left\langle \left[\frac{\partial \mathcal{A}(\eta)}{\partial \eta_j} - \frac{\partial \lambda_m}{\partial \eta_j} \right] \frac{\partial \phi_m}{\partial \eta_k}, \phi_m \right\rangle \\ + \frac{1}{2} \left\langle \left[\frac{\partial \mathcal{A}(\eta)}{\partial \eta_k} - \frac{\partial \lambda_m}{\partial \eta_k} \right] \frac{\partial \phi_m}{\partial \eta_j}, \phi_m \right\rangle.$$

Let us summarise the properties of the eigenvalues $\lambda_m(\eta)$ and eigenvectors $\phi_m(y;\eta)$.

- (a) All odd order derivatives of $\lambda_1(\eta)$ at $\eta = 0$ vanish.
- (b) All odd order derivatives of $\phi_1(\cdot, \eta)$ at $\eta = 0$ are purely imaginary. For instance, the first order derivatives at $\eta = 0$ are given by

$$\frac{\partial \phi_1}{\partial \eta_j}(y;0) = i|Y|^{-1/2} w_j(y),$$

where $w_j \in H^1_{per}(Y)$ is the unique solution of the cell problem

$$\begin{cases} \mathcal{A}w_j = \sum_{k=1}^n \frac{\partial a_{jk}}{\partial y_k} & \text{in } \mathbb{R}^n, \\ \frac{1}{|Y|} \int_Y w_j(y) \, dy = 0. \end{cases}$$

- (c) All even order derivatives of $\phi_1(\cdot; \eta)$ at $\eta = 0$ are real.
- (d) Second order derivatives of $\lambda_1(\eta)$ at $\eta = 0$ are given by

$$\frac{1}{2}\frac{\partial^2 \lambda_1}{\partial \eta_j \partial \eta_k}(0) = a_{jk}^0, \quad \forall j, k = 1, ..., n,$$

where a_{jk}^0 are the homogenized coefficients defined by

$$\frac{1}{|Y|} \int_{Y} \left[a_{jk} + \sum_{m=1}^{n} a_{jm} \frac{\partial w_m}{\partial y_m} \right].$$

Theorem 2.13. The origin is a critical point of the first Bloch eigenvalue, i.e., $\frac{\partial \lambda_1}{\partial \eta_j}(0) = 0$ for all j = 1, ..., n. Further, the Hessian of λ_1 at $\eta = 0$ is given by

$$\frac{1}{2} \frac{\partial^2 \lambda_1}{\partial \eta_j \partial \eta_k}(0) = a_{jk}^0 \quad \forall j, k = 1, ..., n.$$

The derivatives of the first Bloch mode can also be calculated and they are as follows:

$$\frac{\partial \phi_1}{\partial \eta_j}(y;0) = \imath |Y|^{-\frac{1}{2}} w_j(y) \quad \forall j = 1, ..., n.$$

Proof. Use the information $\lambda_1(0) = 0$ and $\phi_1(y;0) = |Y|^{-\frac{1}{2}}$ in the Taylor expansion with $\eta = 0$. \Box

3 Homogenization of Second order Elliptic Operator

Let $\mathcal{A}_{\varepsilon} = -\operatorname{div}_x(A(x/\varepsilon)\nabla_x)$ be the elliptic opertor with periodically oscillating coefficients. If ξ corresponds to the Fourier variable corresponding to x then $\varepsilon\xi$ corresponds to the Fourier variable corresponding to x/ε . Recall that, for each $m \in \mathbb{N}$, $\{\lambda_m(\eta)\}$ and $\{e^{iy\cdot\eta}\phi_m(y;\eta)\}$ are the eigenvalues and eigenvectors, respectively, of $\mathcal{A} = -\operatorname{div}_y(A(y)\nabla_y)$. We employ the change of variables, $y = x/\varepsilon$ and $\eta = \varepsilon\xi$, in the equation $\mathcal{A}[e^{iy\cdot\eta}\phi_m(y;\eta)] = \lambda_m(\eta)e^{iy\cdot\eta}\phi_m(y;\eta)$ to obtain

$$\varepsilon^2 \mathcal{A}_{\varepsilon} \left[e^{ix \cdot \xi} \phi_m \left(\frac{x}{\varepsilon}; \varepsilon \xi \right) \right] = \lambda_m(\varepsilon \xi) e^{ix \cdot \xi} \phi_m \left(\frac{x}{\varepsilon}; \varepsilon \xi \right).$$

Thus, the eigenvalues and eigenvectors of $\mathcal{A}_{\varepsilon}$ are $\varepsilon^{-2}\lambda_m(\varepsilon\xi)$ and $e^{ix\cdot\xi}\phi_m(x/\varepsilon;\varepsilon\xi)$. Set $\lambda_m^{\varepsilon}(\xi) := \varepsilon^{-2}\lambda_m(\varepsilon\xi)$ and $\phi_m^{\varepsilon}(x;\xi) := \phi_m(x/\varepsilon;\varepsilon\xi)$. Hence, the Bloch transform of $f \in L^2(\mathbb{R}^n)$, for each $x \in \mathbb{R}^n$ and $\varepsilon > 0$, is

$$f_b^{\varepsilon}(x;\xi) = \sum_{m=1}^{\infty} f_b^{m,\varepsilon}(\xi) \phi_m^{\varepsilon}(x;\xi)$$

where, for each $m \in \mathbb{N}$, $\varepsilon > 0$ and $\xi \in \varepsilon^{-1}Y^{\star}$, the *m*-th Bloch coefficient of f is

$$f_b^{m,\varepsilon}(\xi) = \varepsilon^{-n/2} \int_{\mathbb{R}^n} f(x) e^{-ix \cdot \xi} \overline{\phi_m^\varepsilon(x;\xi)} \, dx.$$

Thus, the inverse formula is

$$f(x) = \varepsilon^{n/2} \int_{\varepsilon^{-1}Y^{\star}} \sum_{m=1}^{\infty} f_b^{m,\varepsilon}(\xi) e^{ix \cdot \xi} \phi_m^{\varepsilon}(x;\xi) \, d\xi.$$

The $\varepsilon^{n/2}$ is a normalising factor appearing because the Lebesgue measure of $\varepsilon^{-1}Y^*$ is ε^{-n} . The Plancherel identity holds: for any $f, g \in L^2(\mathbb{R}^n)$

$$\varepsilon^{-n} \int_{\mathbb{R}^n} f(x)\overline{g(x)} \, dx = \int_{\varepsilon^{-1}Y^\star} \sum_{m=1}^\infty f_b^{m,\varepsilon}(\xi) \overline{g_b^{m,\varepsilon}(\xi)} \, d\xi.$$

Applying the Bloch transform, the equation $\mathcal{A}_{\varepsilon}u_{\varepsilon} = f$ transforms in to a set of algebraic equations, indexed by $m \geq 1$, $\lambda_m^{\varepsilon}(\xi)u_b^{m,\varepsilon}(\xi) = f_b^{m,\varepsilon}(\xi)$ for all $\xi \in \varepsilon^{-1}Y^*$ (cf. Remark 2.10). Our aim is to pass to the limit in the system of algebraic equations. We first claim that one can neglect all the equations corresponding to $m \geq 2$.

Proposition 3.1. Let

$$v_{\varepsilon}(x) = \varepsilon^{n/2} \int_{\varepsilon^{-1}Y^{\star}} \sum_{m=2}^{\infty} u_b^{m,\varepsilon}(\xi) e^{ix \cdot \xi} \phi_m^{\varepsilon}(x;\xi) \, d\xi.$$

Then $||v_{\varepsilon}||_{2,\mathbb{R}^n} \leq C_0 \varepsilon$.

Proof. Since

$$\int_{\mathbb{R}^n} \mathcal{A}_{\varepsilon} u_{\varepsilon} \overline{u_{\varepsilon}} \, dx = \int_{\mathbb{R}^n} f(x) \overline{u_{\varepsilon}}(x) \, dx.$$

The LHS is bounded and, applying Plancherel Identity, we get

$$\begin{split} \beta \int_{\mathbb{R}^n} |\nabla u_{\varepsilon}|^2 \, dx &\geq \varepsilon^n \int_{\varepsilon^{-1}Y^{\star}} \sum_{m=1}^{\infty} f_b^{m,\varepsilon}(\xi) \overline{u_b^{m,\varepsilon}}(\xi) \, d\xi \\ &= \varepsilon^n \int_{\varepsilon^{-1}Y^{\star}} \sum_{m=1}^{\infty} \lambda_m^{\varepsilon}(\xi) |u_b^{m,\varepsilon}(\xi)|^2 \, d\xi \\ &= \varepsilon^{n-2} \int_{\varepsilon^{-1}Y^{\star}} \sum_{m=1}^{\infty} \lambda_m(\eta) |u_b^{m,\varepsilon}(\xi)|^2 \, d\xi \\ &\geq \varepsilon^{n-2} \int_{\varepsilon^{-1}Y^{\star}} \sum_{m=2}^{\infty} \lambda_m(\eta) |u_b^{m,\varepsilon}(\xi)|^2 \, d\xi \\ &\geq \varepsilon^{n-2} \lambda_2^{(N)} \int_{\varepsilon^{-1}Y^{\star}} \sum_{m=2}^{\infty} |u_b^{m,\varepsilon}(\xi)|^2 \, d\xi. \end{split}$$

The last inequality is a consequence of the min-max principle yielding, for $m \ge 2$,

$$\lambda_m(\eta) \ge \lambda_2(\eta) \ge \lambda_2^{(N)} > 0 \quad \forall \eta \in Y^\star,$$

where $\lambda_2^{(N)}$ is the second eigenvalue of the eigenvalue problem for \mathcal{A} in the cell Y with Neumann boundary condition on ∂Y . Then

$$\varepsilon^n \int_{\varepsilon^{-1}Y^{\star}} \sum_{m=2}^{\infty} |u_b^{m,\varepsilon}(\xi)|^2 d\xi \le C_0 \varepsilon^2.$$

By Parseval's Identity, the left side is equal to $||v_{\varepsilon}||_{2,\mathbb{R}^n}$.

Remark 3.2. Consider the algebraic equation corresponding to m = 1, i.e.,

$$\lambda_1^{\varepsilon}(\xi)u_b^{1,\varepsilon}(\xi) = f_b^{1,\varepsilon}(\xi) \quad \forall \xi \in \varepsilon^{-1}Y^{\star}.$$

Multiplying both sides by $\varepsilon^{n/2}$, we get

$$\varepsilon^{-2}\lambda_1(\varepsilon\xi)\varepsilon^{n/2}u_b^{1,\varepsilon}(\xi) = \varepsilon^{n/2}f_b^{1,\varepsilon}(\xi) \quad \forall \xi \in \varepsilon^{-1}Y^\star.$$

Expanding $\lambda_1(\varepsilon\xi)$ by Taylor's formula around $\xi = 0$, we get

$$\left\lfloor \frac{1}{2} \sum_{j,k=1}^{n} \frac{\partial^2 \lambda_1}{\partial \eta_j \eta_k}(0) \xi_j \xi_k + O(\varepsilon \xi^3) \right\rfloor \varepsilon^{n/2} u_b^{1,\varepsilon}(\xi) = \varepsilon^{n/2} f_b^{1,\varepsilon}(\xi)$$

Passing to the limit as $\varepsilon \to 0$ to get

$$\frac{1}{2}\sum_{j,k=1}^{n}\frac{\partial^2\lambda_1}{\partial\eta_j\eta_k}(0)\xi_j\xi_k\hat{u}_0(\xi) = \hat{f}(\xi).$$

Setting

$$a_{jk}^0 = \frac{1}{2} \frac{\partial^2 \lambda_1}{\partial \eta_j \eta_k} (0)$$

Then $\sum_{j,k=1}^{n} a_{jk}^{0} \xi_{k} \xi_{j} \hat{u}_{0}(\xi) = \hat{f}(\xi)$ and $\mathcal{A}_{0} u_{0} := -\sum_{j,k=1}^{n} a_{jk}^{0} \frac{\partial^{2} u_{0}}{\partial x_{j} \partial x_{k}} = f(x)$. The only flaw in the above argument is that in passing to limit we have not checked uniform compact support of the sequence. To overcome this difficulty we use cut-off function technique to localize the equation.

Proposition 3.3 (First Bloch Transform tends to Fourier Transform). Let $\{g_{\varepsilon}\} \subset L^2(\mathbb{R}^n)$ be a sequence such that there is a fixed compact set $K \subset \mathbb{R}^n$ such that $supp(g_{\varepsilon}) \subseteq K$ for all ε . If $g_{\varepsilon} \rightharpoonup g$ weakly in $L^2(\mathbb{R}^n)$ then $\varepsilon^{\frac{n}{2}}g_b^{1,\varepsilon} \rightharpoonup \hat{g}$ weakly in $L^2_{loc}(\mathbb{R}^n)$.

Proof. The first Bloch transform $g_b^{1,\varepsilon}(\xi)$, a priori defined for

$$\xi \in \varepsilon^{-1} Y^{\star} = (-\frac{\varepsilon^{-1}}{2}, \frac{\varepsilon^{-1}}{2})^n$$

can be extended by zero outside $\varepsilon^{-1}Y^{\star}$. We write

$$\varepsilon^{\frac{n}{2}}g_{b}^{1,\varepsilon}(\xi) = \int_{\mathbb{R}^{n}} g_{\varepsilon}(x)e^{-ix\cdot\xi}\overline{\phi_{1}(\frac{x}{\varepsilon};0)} dx + \int_{K} g_{\varepsilon}(x)e^{-ix\cdot\xi} \left(\overline{\phi_{1}(\frac{x}{\varepsilon};\varepsilon\xi)} - \overline{\phi_{1}(\frac{x}{\varepsilon};0)}\right) dx.$$

1		
1		

Since $\phi_1(y;0) = |Y|^{\frac{-1}{2}} = (2\pi)^{-n/2}$, the first term is nothing but the Fourier transform of g_{ε} and so it converges weakly to $\hat{g}(\xi)$ in $L^2(\mathbb{R}^n)$. By Cauchy-Schwarz inequality and the regularity of the first Bloch eigenfunction $\eta \mapsto \phi_1(\cdot, \eta) \in L^2_{\text{per}}(Y)$ at $\eta = 0$, the second term is bounded by

$$\|g_{\varepsilon}\|_{2,\mathbb{R}^n} \left[\int_K |\phi_1(\frac{x}{\varepsilon};\varepsilon\xi) - \phi_1(\frac{x}{\varepsilon};0)|^2 \, dx \right]^{\frac{1}{2}} \le C_0 \|\phi_1(y;\varepsilon\xi) - \phi_1(y;0)\|_{2,Y}$$

By Lipschitz continuity of $\eta \mapsto \phi_1(\cdot, \eta)$, the second term in the right side is bounded above by $C_0 \varepsilon \xi$. Thus, if $|\xi| \leq M$ then it is bounded above by $cM\varepsilon$ and so, in particular, it converges to zero in $L^{\infty}_{\text{loc}}(\mathbb{R}^n)$.

Theorem 3.4. Let $\Omega \subset \mathbb{R}^n$ be an arbitrary, not necessarily bounded, domain. Consider a sequence $u_{\varepsilon} \rightarrow u_0$ weakly in $H^1(\Omega)$ and $A_{\varepsilon}u_0 = f$ in Ω with $f \in L^2(\Omega)$. Then u_0 satisfies $A_0u_0 = f$ in Ω . In fact, $A_{\varepsilon}\nabla u_{\varepsilon} \rightarrow A_0\nabla u_0$ weakly in $L^2(\Omega)$.

Proof. Let $\phi \in D(\Omega)$ be arbitrary. If u_{ε} satisfies $\mathcal{A}_{\varepsilon}u_{\varepsilon} = f$ in Ω then consider its localization ϕu_{ε} satisfies

$$\mathcal{A}_{\varepsilon}(\phi u_{\varepsilon}) = \phi f + g_{\varepsilon} + h_{\varepsilon} \text{ in } \mathbb{R}^n,$$

where

$$g_{\varepsilon} = -2\sum_{j=1}^{n} \sigma_{j}^{\varepsilon} \frac{\partial \phi}{\partial x_{j}} - \sum_{j,k=1}^{n} a_{jk}^{\varepsilon} \frac{\partial^{2} \phi}{\partial x_{j} \partial x_{k}} u_{\varepsilon},$$

$$\sigma_{j}^{\varepsilon}(x) = \sum_{k=1}^{n} a_{jk}^{\varepsilon} \frac{\partial u_{\varepsilon}}{\partial x_{k}},$$

$$h_{\varepsilon} = -\sum_{j,k=1}^{n} \frac{\partial a_{jk}^{\varepsilon}}{\partial x_{j}} \frac{\partial \phi}{\partial x_{k}} u_{\varepsilon}.$$

Using the arguments given in the remark above, we can pass to the limit above, since ϕu_{ε} is bounded in $H^1(\mathbb{R}^n)$. Neglecting all the harmonics corresponding to $m \ge 2$ and considering only the m = 1yields at the limit

$$\frac{1}{2}\sum_{j,k=1}^{n}\frac{\partial^{2}\lambda_{1}}{\partial\eta_{j}\partial\eta_{k}}(0)\xi_{j}\xi_{k}\widehat{(\phi u_{0})}(\xi) = \widehat{(\phi f)}(\xi) + \lim_{\varepsilon \to 0}\varepsilon^{\frac{n}{2}}g_{b}^{1,\varepsilon}(\xi) + \lim_{\varepsilon \to 0}\varepsilon^{\frac{n}{2}}\hat{h}_{b}^{1,\varepsilon}(\xi).$$
(3.1)

The sequence σ_j^{ε} is bounded in $L^2(\Omega)$. Therefore, we can extract a subsequence (still denoted by ε) which is weakly convergent in $L^2(\Omega)$. Let σ_j^0 denote its limit and its extension by zero outside Ω . Using this convergence and the definition of g_{ε} , we see that

$$g_{\varepsilon} \rightharpoonup g_0 := -2\sum_{j=1}^n \sigma_j^0 \frac{\partial \phi}{\partial x_j} - \sum_{j,k=1}^n \mathcal{M}(a_{jk}) \frac{\partial^2 \phi}{\partial x_j \partial x_k} u_0 \text{ weakly in } L^2(\mathbb{R}^n),$$

where $\mathcal{M}(a_{jk})$ is the average of a_{jk} on Y. Therefore,

$$\varepsilon^{\frac{n}{2}}g_b^{1,\varepsilon}(\xi) \rightharpoonup \hat{g}_0(\xi)$$
 weakly in $L^2_{\text{loc}}(\mathbb{R}^n)$.

A similar argument fails for $\{h_b^{1,\varepsilon}\}$ because h_{ε} is not bounded in $L^2(\mathbb{R}^n)$. We decompose

$$\varepsilon^{\frac{n}{2}} h_b^{1,\varepsilon}(\xi) = \int_{\mathbb{R}^n} h_{\varepsilon}(x) e^{-\imath x \cdot \xi} \overline{\phi_1\left(\frac{x}{\varepsilon},0\right)} \, dx \\ + \int_{\mathbb{R}^n} h_{\varepsilon}(x) e^{-\imath x \cdot \xi} \left(\overline{\phi_1\left(\frac{x}{\varepsilon};\varepsilon\xi\right)} - \overline{\phi_1\left(\frac{x}{\varepsilon};0\right)}\right) \, dx.$$

Using the Taylor expansion of $\phi_1(y;\eta)$ at $\eta = 0$, the second term is equal to

$$-\varepsilon^{-1}\sum_{j,k=1}^{n}\int_{\mathbb{R}^{n}}\frac{\partial a_{jk}}{\partial y_{j}}\left(\frac{x}{\varepsilon}\right)\frac{\partial\phi}{\partial x_{k}}(x)u_{\varepsilon}(x)e^{-ix\cdot\xi}\left[\varepsilon\sum_{\ell=1}^{n}\frac{\partial\overline{\phi_{1}}}{\partial\eta_{\ell}}\left(\frac{x}{\varepsilon};0\right)\xi_{\ell}+O(\varepsilon^{2}\xi^{2})\right]\,dx,$$

which evidently converges to

$$-\sum_{j,k,\ell=1}^{n} \mathcal{M}\left(\frac{\partial a_{jk}}{\partial y_{j}} \frac{\partial \overline{\phi_{1}}}{\partial \eta_{\ell}}(y;0)\right) \xi_{\ell} \int_{\mathbb{R}^{n}} \frac{\partial \phi}{\partial x_{k}} u_{0} e^{-ix \cdot \xi} dx$$

strongly in $L^{\infty}_{loc}(\mathbb{R}^n)$. On the other hand, after integraing by parts, the first term in the RHS of the decomposition of $\varepsilon^{n/2} h_b^{1,\varepsilon}$ becomes

$$\sum_{j,k=1}^{n} \int_{\mathbb{R}^{n}} a_{jk}^{\varepsilon} \left[\frac{\partial^{2} \phi}{\partial x_{j} \partial x_{k}} u_{\varepsilon} + \frac{\partial \phi}{\partial x_{k}} \frac{\partial u^{\varepsilon}}{\partial x_{j}} - \imath \xi_{j} \frac{\partial \phi}{\partial x_{k}} u_{\varepsilon} \right] e^{-\imath x \cdot \xi} \overline{\phi_{1}} \left(\frac{x}{\varepsilon}; 0 \right) dx.$$

Choosing $\phi_1(y;0) = |Y|^{-\frac{1}{2}}$, it is easily seen that the above integral converges weakly in $L^2(\mathbb{R}^n)$ to

$$|Y|^{-\frac{1}{2}} \sum_{j,k=1}^{n} \int_{\mathbb{R}^{n}} \left[\mathcal{M}(a_{jk}) \frac{\partial^{2} \phi}{\partial x_{j} \partial x_{k}} u_{0} - \imath \xi_{j} \mathcal{M}(a_{jk}) \frac{\partial \phi}{\partial x_{k}} u_{0} \right] e^{-\imath x \cdot \xi} dx$$

+
$$|Y|^{-\frac{1}{2}} \sum_{k=1}^{n} \int_{\mathbb{R}^{n}} \sigma_{k}^{0} \frac{\partial \phi}{\partial x_{k}} e^{-\imath x \cdot \xi} dx.$$

Using this information in (3.1) and using Theorem 2.13, we conclude that

$$\sum_{j,k=1}^{n} a_{jk}^{0} \xi_{j} \xi_{k} \widehat{(\phi u_{0})}(\xi) = \widehat{(\phi f)}(\xi) - |Y|^{-\frac{1}{2}} \sum_{k=1}^{n} \int_{\mathbb{R}^{n}} \sigma_{k}^{0} \frac{\partial \phi}{\partial x_{k}} e^{-ix \cdot \xi} dx$$
$$-i \sum_{j,k=1}^{n} \xi_{j} |Y|^{-\frac{1}{2}} a_{jk}^{0} \int_{\mathbb{R}^{n}} \frac{\partial \phi}{\partial x_{k}} u_{0} e^{-ix \cdot \xi} dx.$$

This can be rewritten as

$$[\widehat{\mathcal{A}_{0}(\phi u_{0})}](\xi) = (\widehat{\phi f})(\xi) - |Y|^{-\frac{1}{2}} \sum_{k=1}^{n} \int_{\mathbb{R}^{n}} \sigma_{k}^{0} \frac{\partial \phi}{\partial x_{k}} e^{-ix \cdot \xi} dx$$
$$-i \sum_{j,k=1}^{n} \xi_{j} |Y|^{-\frac{1}{2}} a_{jk}^{0} \int_{\mathbb{R}^{n}} \frac{\partial \phi}{\partial x_{k}} u_{0} e^{-ix \cdot \xi} dx.$$

This is the *localized homogenized equation* in the Fourier space. Taking inverse Fourier transform of the above equation, we obtain

$$\mathcal{A}_0(\phi u_0) = \phi f - \sum_{k=1}^n \sigma_k^0 \frac{\partial \phi}{\partial x_k} - \sum_{j,k=1}^n a_{jk}^0 \frac{\partial}{\partial x_j} \left(\frac{\partial \phi}{\partial x_k} u_0 \right) \text{ in } \mathbb{R}^n.$$

On the other hand, we can calculate $\mathcal{A}_0(\phi u_0)$ directly:

$$\mathcal{A}_0(\phi u_0) = -\sum_{j,k=1}^n \left[a_{jk}^0 \frac{\partial^2 \phi}{\partial x_j \partial x_k} u_0 + 2a_{jk}^0 \frac{\partial \phi}{\partial x_j} \frac{\partial u_0}{\partial x_k} \right] + \phi \mathcal{A}_0 u_0 \text{ in } \mathbb{R}^n.$$

A comparison of the above two equation yields

$$\phi(\mathcal{A}_0 u_0 - f) = \sum_{j=1}^n \left(\sum_{k=1}^n a_{jk}^0 \frac{\partial u_0}{\partial x_k} - \sigma_j^0 \right) \frac{\partial \phi}{\partial x_j} \text{ in } \mathbb{R}^n.$$

Since the above relation is true for all ϕ in $\mathcal{D}(\Omega)$, the desired conclusions follow. In fact, let us choose $\phi(x) = \phi_0(x)e^{imx\cdot\nu}$, where ν is a unit vector in \mathbb{R}^n and $\phi_0(x) \in \mathcal{D}(\Omega)$ is fixed. Letting $m \to \infty$ in the resuling relation and varying the unit vector ν , we can easily deduce, successively, that $\sigma_j^0 = \sum_{k=1}^n a_{jk}^0 \frac{\partial u_0}{\partial x_k}$ in Ω and $\mathcal{A}_0 u_0 = f$ in Ω .