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1 Raison d’être

1.1 Fourier Transform

Recall that −∆ : H2(Rn) ⊂ L2(Rn) → L2(Rn) is an unbounded, self-adjoint operator whose
spectral decomposition is well-known. The “generalised” eigenfunctions1 are the plane or Fourier
waves eıξ·x, for each ξ ∈ Rn, and |ξ|2 is an eigenvalue, for each ξ ∈ Rn, giving the spectrum to be
[0,∞). Further, −∆(eıx·ξ) = |ξ|2eıx·ξ.

Theorem 1.1. Given any f ∈ L2(Rn) there is a unique f̂ ∈ L2(Rn) such that

f(x) =
1

(2π)n/2

∫
Rn
f̂(ξ)eıξ·x dξ.

Also, for any f, g ∈ L2(Rn), ∫
Rn
f(x)g(x) dx =

∫
Rn
f̂(ξ)ĝ(ξ) dξ.

In particular, the Fourier transform f 7→ f̂ is an isometry from L2(Rn) to L2(Rn).

1For each ξ ∈ Rn, eıξ·x are not elements of L2(Rn) but they span L2(Rn)
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The Fourier transform will change a differential equation in to an algebraic equation. For
instance, −∆u = f tranforms to, on applying Fourier transform,

f̂(ξ) =
1

(2π)n/2

∫
Rn
f(x)e−ıx·ξ dx = − 1

(2π)n/2

n∑
j=1

∫
Rn

∂2u(x)

∂x2j
e−ıx·ξ dx

=
1

(2π)n/2

n∑
j=1

(−ıξj)
∫
Rn

∂u(x)

∂xj
e−ıx·ξ dx (Integration by parts)

= −
n∑
j=1

(−ıξj)2
1

(2π)n/2

∫
Rn
u(x)e−ıx·ξ dx (Integration by parts)

= |ξ|2û(ξ).

More generally, any m-th order linear differential equation with constant coefficients P (D)u = f
where P (D) =

∑
|α|≤m aαD

α will transform in to an algebraic eqaution P (ıξ)û(ξ) = f̂(ξ).
The Laplacian is a particular case of the elliptic operator −∆+ c(x) with c ≡ 0. For c(x) 6= 0

(without loss of generality assume c(x) ≥ 0), the Bloch theorem gives the generalised eigenfunction
for −∆+ c(x) when c is Y -periodic, for any given reference cell Y ⊂ Rn.

1.2 Schrödinger Operator with Periodic Potential

Definition 1.2. Let {ei} be the canonical basis for Rn. Let Y = Πn
i=1[0, `i) be a reference cell (or

period) in Rn. A function f : Rn → R is said to be Y -periodic if f(x + eipi`i) = f(x) for a.e.
x ∈ Rn and all p ∈ Zn, for all i = 1, 2, . . . , n.

Consider the Schrödinger operator −∆ + c(x) where c is a periodic function, i.e., for some
` = (`i) ∈ Rn and p ∈ Zn, c(x+ei`ipi) = c(x). Let L : S(R)→ S(R) be the operator L := −∆+c(x).

To begin, let us consider the one dimension situation with c ∈ C∞c (R) with bounded derivatives
and L : S(R)→ S(R) defined as

L := − d2

dx2
+ c(x).

If c is 2π-periodic and, hence, c admits a uniformly convergent Fourier series

c(x) =
∑
η∈Z

cηe
ıηx

where

cη =
1

2π

∫ π

−π
c(x)e−ıηx dx.
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If u ∈ S(R) then

L̂u(x)(ξ) = ξ2û(ξ) +
1√
2π

∫
R
c(x)u(x)e−ıξx dx

= ξ2û(ξ) +
1√
2π

∫
R

∑
η∈Z

cηe
ıηx

u(x)e−ıξx dx

= ξ2û(ξ) +
∑
η∈Z

cη
1√
2π

∫
R
u(x)e−ı(ξ−η)x dx

= ξ2û(ξ) +
∑
η∈Z

cηû(ξ − η).

Thus, L̂u(ξ) depends only on the values û(ξ−η) for all η ∈ Z. But recall that û(ξ−η) = ̂eıxηu(x)(ξ).
This suggests that the operator L depends on the modulation by all η ∈ Z.

1.3 Direct Integral Decomposition

Let H be a separable Hilbert space and (X,µ) be a σ-finite measure space. Let L2(X,µ;H) is the
Hilbert space of square integrable H-valued functions. If µ is a sum of point measures at finite
set of points x1, . . . , xk then, any f ∈ L2(X,µ;H), is determined by the k-tuple (f(x1), . . . , f(xk)).
Thus, L2(X,µ;H) is isomorphic to the direct sum ⊕ki=1H. For more general µ, one may define a
kind of “continuous direct sum” called the constant fiber direct integral and write

L2(X,µ;H) =

∫ ⊕
X
H dµ.

Definition 1.3. A function T (·) : X → L(H) is measurable iff, for each φ, ψ ∈ H, 〈φ, T (·)ψ〉 is
measurable. L∞(X,µ;L(H)) denotes the equivalence class (with a.e.) of measurable functions from
X to L(H) with

‖T‖∞ = ess sup‖T (x)‖L(H) <∞.

Definition 1.4. A bounded operator T on H =
∫ ⊕
X H dµ is said to be decomposed by the direct

integral decomposition iff there is T (·) ∈ L∞(X,µ;L(H)) such that, for all ψ ∈ H,

(Tψ)(x) = T (x)ψ(x).

We then say T is decomposable and

T =

∫ ⊕
X
T (x) dµ(x).

The T (x) are called the fibers of T .

Theorem 1.5. Let H = l2 and

H =

∫ ⊕
(− 1

2
, 1
2
]
H dx.
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For η ∈
(
−1

2 ,
1
2

]
, let Lη : l2 → l2 be defined as

(Lη(z))k = (η + k)2zk +
∑
m∈Z

cmzk−m.

Define T : L2(R)→ H by
[(Tf)(η)]k = f̂(η + k).

For L = − d2

dx2
+ c(x) on L2(R),

TLT−1 =

∫ ⊕
(− 1

2
, 1
2
]
Lη dη.

When c ≡ 0, the eigenvalues and eigenfunctions of Lη are (η + k)2 and the Fourier transform

of eı(η+k)x, respectively. This suggests that Lη is related to − d2

dx2
on [0, 2π) with the boundary

condition u(2π) = eı2πηu(0) and u′(2π) = eı2πηu′(0).

Lemma 1.6. Let H = L2[0, 2π) and

H =

∫ ⊕
(− 1

2
, 1
2
]
H dη.

Then T : S(R)→ H given by

(Tf)η(x) =
∑
m∈Z

eı2πmηf(x+ 2πm) η ∈ (−1

2
,
1

2
]x ∈ [0, 2π)

which extends uniquely to an unitary operator on L2(R). Moreover,

T

(
− d2

dx2

)
T−1 =

∫ ⊕
(− 1

2
, 1
2
]

(
− d2

dx2

)
η

dη (1.1)

where
(
− d2

dx2

)
η

is the operator − d2

dx2
on L2[0, 2π) with boundary condition

u(2π) = eı2πηu(0) u′(2π) = eı2πηu′(0).

Proof. Let us note that T is well defined. For any f ∈ S(R), the series in RHS is convergent. For
any f ∈ S(R), Tf ∈ S(R) because

∫ 1
2

− 1
2

∫ 2π

0

∣∣∣∣∣
∞∑

m=−∞
e−ı2πmηf(x+ 2πm)

∣∣∣∣∣
2

dx

 dη

=

∫ 2π

0

 ∑
m,p∈Z

f(x+ 2πm)f(x+ 2πp)

∫ 1
2

− 1
2

e−ı2π(p−m)η dη

 dx
( by Fubini’s Theorem)

=

∫ 2π

0

(∑
m∈Z
|f(x+ 2πm)|2

)
dx =

∫
R
|f(x)|2 dx.
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Thus, T is well defined and admits a unique isometry extension. To see that T is onto H, we
compute T ?. For any g ∈ H, x ∈ [0, 2π] and m ∈ Z

(T ?g)(x+ 2πm) =

∫ 1
2

− 1
2

eı2πmηgη(x) dη.

Further,

‖T ?g‖22 =

∫
R
|(T ?g)(y)|2 dy

=

∫ 2π

0

(∑
m∈Z
|(T ?g)(2πm+ x)|2

)
dx

=

∫ 2π

0

(∑
m∈Z

∣∣∣∣∫ 2π

0
eı2πmηgη(x) dθ

∣∣∣∣2
)
dx

=

∫ 2π

0

(∫ 2π

0
|gη(x)|2 dθ

)
dx (Parseval’s Identity)

= ‖g‖2.

Finally, to prove (1.1), let G be the operator on the right-hand side of (1.1). We shall show
that if f ∈ S(R), then Tf ∈ D(G) and T (−f ′′) = G(Tf). Since −d2/dx2 is essentially self-adjoint
on S(R) and G is self-adjoint, (1.1) will follow. So, suppose f ∈ S(Rn), then Tf is given by the
convergent sum as in the statement. Thus, Tf ∈ C∞(0, 2π) with (Tf)′η(x) = (Tf ′η(x) and similarly
for higher derivatives. Further, it is clear that

(Tf)θ(2π) =
∑
m∈Z

e−ı2πmηf(2π(m+ 1))

=
∑
m∈Z

e−ı2π(m−1)ηf(2πm) = eı2πη(Tf)η(0).

Similarly, (Tf)′η(2π) = eı2πη(Tfη)
′(0). Thus, for each η, (Tf)η ∈ D((− d2

dx2
)η) and(

− d2

dx2

)
η

(Tf) = U(−f ′′)η.

We conclude that Tf ∈ D(G) and G(Tf) = U(−f ′′). This proves (1.1).

Theorem 1.7 (Direct Integral Decomposition of Periodic Schrödinger operator). Let c be a bounded
measurable function on R with period 2π. For η ∈

(
−1

2 ,
1
2

]
, let

Lη =

(
− d2

dx2

)
η

+ c(x)

be an operator on L2[0, 2π]. Let T be given by

(Tf)η(x) =
∑
m∈Z

eı2πmηf(x+ 2πm) η ∈
(
−1

2
,
1

2

]
x ∈ [0, 2π).
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Then

T

(
− d2

dx2
+ c

)
T−1 =

∫ ⊕
(− 1

2
, 1
2
]
Lη dη.

Proof. Let c be the η-independent operator acting on the fiber H = L2[0, 2π) by (cηf)(x) =
c(x)f(x) for 0 ≤ x ≤ 2π. It is sufficient to prove that

TcT−1 =

∫ ⊕
(− 1

2
, 1
2
]
cη dη.

For f ∈ S(R),

(Tcf)η(x) =
∑
m∈Z

e−ı2πmηc(x+ 2πm)f(x+ 2πm)

= c(x)
∑
m∈Z

e−ı2πmηf(x+ 2πm)

= cη(Tf)η(x).

The second last equality is due to the periodicity of c.

1.4 Bloch Periodic Functions

The Bloch transform is a generalization of Fourier transform that leaves the periodic functions
invariant, in some sense. Let us begin by considering a generalization of periodic functions.

Definition 1.8. Let Y = Πn
i=1[0, `i) be a reference cell (or period) in Rn. For each η ∈ Rn, a

function f : Rn → R is said to be (η, Y )-Bloch periodic if f(x+ ` · p) = eı2πp·ηf(x) for a.e. x ∈ Rn
and for all p ∈ Zn.

Note that the case η = 0 corresponds to the usual notion of Y -periodic functions. Note that
the boundary condition remains unchanged if η is replaced with η+ k, for any k ∈ Zn. Hence, it is
sufficient to consider η ∈ Y ? where Y ? = (−1

2 ,
1
2 ]n. The cell Y ? is called the reciprocal cell and, in

Physics literature, Y ? is known as the first Brillouin zone.
We shall assume that Y = [0, 2π)n and, for j, k = 1, 2, . . . , n, ajk : Y → R is such that

ajk ∈ L∞per(Y ). Let A(y) = (ajk(y)) ∈ M(α, β, Y ) and is a symmetric matrix, i.e., ajk(y) = akj(y).
One can extend ajk to entire Rn as a Y -periodic function. Also, c is a Y -periodic function such
that c(y) ≥ c3 > 0. We are interested in the spectral resolution of closure of the operator A =
−div(A(y)∇) + c(y) in L2(Rn).

By Bloch Theorem, it is enough to study the (η, Y )-Bloch periodic eigenvalue problem, for each
η ∈ Rn, i.e.,

Definition 1.9. For any fixed (momentum) vector η ∈ Y ?, consider the eigenvalue problem: given
a symmetric A ∈M(α, β, Y ), find λ(η) ∈ C and non-zero ψ(·; η) : Rn → R such that{

Aψ(y; η)) = λ(η)ψ(y; η) in Rn
ψ(y + 2π`) = e2πı`·ηψ(y) ` ∈ Zn, y ∈ Rn. (1.2)

The eigenvalues ψ are known as Bloch waves associated with A and the eigenvalues λ are called
Bloch eigenvalues.
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Suppose η ∈ Y ? have rational components and η = (η1, . . . , ηn). Recall that there is a homeo-
morphism from Y ? to S1. Thus, eı2πηj ∈ S1. In this sense, the Bloch periodicity condition has the
form e2πıp·η = ωp where ω ∈ [S1]n and ωp = ωp11 ω

p2
2 . . . ωpnn . For any m ∈ Zn, let Dm ⊂ [S1]n be the

collection of all ω ∈ [S1]n such that its j-th component is the mj-th root of unity. Thus, ωm = 1
for all ω ∈ Dm. The spectral problem (1.2) may be seen as a sequence of spectral problems, i.e.,
for each m ∈ Zn, we define ψm as{

Aψm(y) = λmψm(y) in Rn
ψm(y + 2πm) = ψ(y) y ∈ Rn.

Note that in the above boundary condition ψ is Ym-periodic where Ym =
∏n
i=1[0, 2πmi). The space

of spectral decomposition is L2
per(Ym) which admits the orthogonal decomposition L2

per(Ym) =
⊕ω∈DmL2

per(ω, Y ) where

L2
per(ω, Y ) = {ψ ∈ L2

loc(Rn) | ψ(y + 2π`) = ω`ψ(y) ∀` ∈ Zn, y ∈ Rn}.

Thus, we observe that the above space consists of (η, Y )-Bloch Periodic functions. For any irrational
η can be approximated by rationals by varying m and noting that the sets of roots of unity is dense
in S1.

2 Bloch Transform

Theorem 2.1 (Bloch Decomposition). Let Y = [0, 2π)n and Y ? =
(
−1

2 ,
1
2

]n
. Given a f ∈ L2(Rn)

there is a unique function, called Bloch Transform, fb ∈ L2(Y × Y ?) such that

f(y) =

∫
Y ?
fb(y, η)eıη·y dη.

Also, for any f, g ∈ L2(Rn), the Plancherel formula holds, i.e.,∫
Rn
f(y)g(y) dy =

∫
Y

∫
Y ?
fb(y, η)gb(y, η) dy dη.

In particular, the Bloch transform f 7→ fb is an isometry from L2(Rn) to L2(Y × Y ?).

Proof. For any f ∈ D(Rn) and for each η ∈ Y ?, define

fb(y; η) :=
∑
p∈Zn

f(y + 2πp)e−ı(y+2πp)·η.

The sum is well defined because it has finite number of terms because f has compact support. Note
that fb(y; η) is Y -periodic in y variable because

fb(y + 2π; η) :=
∑

p+1∈Zn
f(y + 2πp)e−ı(y+2πp)·η = fb(y; η).
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Similarly, eıy·ηfb(y; η) is Y ?-periodic in η variable because, for k ∈ Zn,

eıy·(η+k)fb(y; η + k) = eıy·(η+k)
∑
p∈Zn

f(y + 2πp)e−ı(y+2πp)·(η+k)

= eıy·(η+k)
∑
p∈Zn

f(y + 2πp)e−ı(y+2πp)·ηe−ı(y+2πp)·k

= eıy·(η+k)e−ıy·k
∑
p∈Zn

f(y + 2πp)e−ı(y+2πp)·ηe−ı2πp·k

= eıy·ηfb(y; η).

In the above relation we have used the fact that eı2πp·k = 1. Observe that

eıy·ηfb(y; η) =
∑
p∈Zn

f(y + 2πp)e−2ıπp·η.

Thus, ∫
Y ?
eıy·ηfb(y; η) dη = f(y) +

∑
p∈Zn
p 6=0

f(y + 2πp)

∫
Y ?
e−2ıπp·η dy

= f(y)−
∑
p∈Zn
p 6=0

f(y + 2πp)

[
e−ıπp − eıπp

2ıπp1 . . . pn

]
dy

= f(y).

Therefore, we have proved the results for all functions in D(Rn). Similarly, one can prove the
Plancherel’s formula for functions in D(Rn). The Bloch transform is a linear map on D(Rn)
bounded on L2(Rn). Thus, by density of D(Rn) in L2(Rn), the Bloch transform extends to L2(Rn)
and Plancherel’s formula holds true.

Remark 2.2. Note that, for each fixed η ∈ Y ?, y 7→ fb(y, η) is extended Y -periodic to Rn and, for
each fixed y ∈ Y , η 7→ eıη·yfb(y, η) is extended Y ?-periodic to Rn. Thus, the Bloch transform may
be seen as an isometry from L2(Rn) to L2(Rn × Rn).

Remark 2.3. The Bloch transform is a “modulation” of Zak transform. The Zak transform for
any f ∈ D(Rn) is defined as

fz(y; η) :=
∑
p∈Zn

f(y + 2πp)e−ı2πp·η

and extended unitarily to to L2(Rn). Further, fb(y; η) = e−ıy·ηfz(y; η) for all f ∈ D(Rn).

The following theorem explains the sense in which the Bloch transform leaves the periodic
functions invariant.

Theorem 2.4 (Invariance of Periodic Functions). Let Y = [0, 2π)n and c : Y → C be such that
c ∈ L∞(Y ) extended Y -periodically to Rn. For any f ∈ L2(Rn), (cf)b(y; η) = c(y)fb(y; η).
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Proof. It is enough to prove the result for f ∈ D(Rn). Consider

(cf)b(y; η) =
∑
p∈Zn

c(y + 2πp)f(y + 2πp)e−ı(y+2πp)·η

= c(y)
∑
p∈Zn

f(y + 2πp)e−ı(y+2πp)·η

= c(y)fb(y; η).

By density the result is true for any f ∈ L2(Rn).

Theorem 2.5. For any f ∈ H1(Rn), (∇yf)b(y; η) = (∇y + ıη)fb(y; η).

Proof. It is enough to prove the result for f ∈ D(Rn). Consider

(∇yf)b(y; η) =
∑
p∈Zn

[∇yf(y + 2πp)] e−ı(y+2πp)·η

=
∑
p∈Zn

∇y
[
f(y + 2πp)e−ı(y+2πp)·η

]
+ıη

∑
p∈Zn

f(y + 2πp)e−ı(y+2πp)·η

= [∇y + ıη] fb(y; η).

For any f ∈ L2(Rn), consider the equation Au = f in Rn. Applying Bloch transform to this
equation, using Theorems 2.4 and 2.5, we obtain a family of equations, indexed by η ∈ Y ?, with
periodic boundary conditions:{

A(η)ub(y; η) = fb(y; η) in Rn
ub(y + 2π`; η) = ub(y; η) ` ∈ Zn y ∈ Rn, (2.1)

where A(η) is the shifted operator, denoted as

A(η) := −
n∑

j,k=1

(
∂

∂yj
+ ıηj

)[
ajk(y)

(
∂

∂yk
+ ıηk

)]
+ c(y).

The shifted operator equation admits a solution (being a periodic problem) in H1
per(Y ) and a

corresponding Poincaré inequality holds true, i.e., for all u ∈ H1
per(Y ) and η ∈ Y ?,

c (‖∇u‖2,Y + |η|‖u‖2,Y ) ≤ ‖∇u+ ıuη‖2,Y ≤ ‖∇u‖2,Y + |η|‖u‖2,Y .

2.1 Spectrum of Elliptic Operator

The spectral decomposition of A, in one dimension periodic media, was first studied by Floquet
(1883) and much later, in crystal lattice, by Bloch (1928). We shall compute the spectral decom-
position of A in L2(Rn) via the spectral decomposition of the shifted operator A(η). Consider the
eigenvalue problem {

A(η)φ(y; η) = λ(η)φ(y; η) in Rn
φ(y + 2π`) = φ(y) ` ∈ Zn, y ∈ Rn (2.2)
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Theorem 2.6 (Periodic Eigen Value problem). There exists a sequence of pairs (λm, φm) satisfying{
Aφ(y) = λφ(y) in Rn

φ(y + 2π`) = φ(y) ` ∈ Zn, y ∈ Rn (2.3)

where {λm} are positive real eigenvalues and {φm(y)} are the corresponding eigenvectors, for each
m ∈ N, such that {φm} form an orthonormal basis of L2

per(Y ) and 0 ≤ λ1 ≤ λ2 ≤ . . . diverges and
each eigenvalue has finite multiplicity.

Remark 2.7. By Theorem 2.6, for each fixed η ∈ Y ?, there exists a sequence of pairs (λm, φm)
satisfying (2.2) where {λm(η)} are positive real eigenvalues and {φm(y; η)} are the corresponding
eigenvectors, for each m ∈ N, such that {φm(·; η)} form an orthonormal basis of L2

per(Y ) and
0 ≤ λ1(η) ≤ λ2(η) ≤ . . . diverges and each eigenvalue has finite multiplicity. By varying η ∈ Y ?,
we obtain the spectral resolution of A in L2(Rn). The set {eıy·ηφm(y, η);m ∈ N, η ∈ Y ?}forms
a ‘generalised’ basis of L2(Rn). As a consequence, L2(Rn) can be identified with L2(Y ?; `2(N)).
A acts as a multiplication operator: A[eıy·ηφm(y, η)] = λm(η)eıy·ηφm(y, η). The spectrum of A,
denoted as σ(A), coincides with the Bloch spectrum and denoted as σb. The Bloch spectrum is
defined as the union of the images of all the mappings λm(η), i.e.,

σb := ∪∞m=1

[
inf
η∈Y ?

λm(η), sup
η∈Y ?

λm(η)

]
.

The spectrum has a band structure. In contrast to the homogeneous case, σ(A) need not fill up
the entire [0,∞) and there may be gaps.

Theorem 2.8. For any f ∈ L2(Rn), its Bloch transform is given as

fb(y; η) =
∞∑
m=1

fmb (η)φm(y; η)

where, {φm} are the eigenfunctions corresponding to the shifted operator A(η) and fmb (η), for each
η ∈ Y ?, is the m-th Bloch coefficient of f defined as

fmb (η) :=

∫
Rn
f(y)e−ıy·ηφm(y; η) dy.

Proof. It is enough to prove the result for f ∈ D(Rn). Recall that, for each η ∈ Y ?, fb(·; η) ∈
L2
per(Y ). Hence, by spectral decomposition of A(η),

fb(y; η) =

∞∑
m=1

fmb (η)φm(y; η),

where

fmb (η) =

∫
Y
fb(y; η)φm(y; η) dy.

10



But,

fmb (η) =

∫
Y

∑
p∈Zn

f(y + 2πp)e−ı(y+2πp)·ηφm(y; η) dy

=

∫
Y

∑
p∈Zn

f(y + 2πp)e−ı(y+2πp)·ηφm(y + 2πp); η) dy

=

∫
Rn
f(y)e−ıy·ηφm(y; η) dy.

Remark 2.9. The Bloch inversion formula can rewritten as:

f(y) =

∫
Y ?
eıy·ηfb(y; η) dη =

∫
Y ?
eıy·η

∞∑
m=1

fmb (η)φm(y; η) dη.

Further, the Parseval formula holds:∫
Rn
|f(y)|2 dy =

∫
Y ?

∞∑
m=1

|fmb (η)|2 dη. (2.4)

Remark 2.10 (Algebraic Formula for Solution). For each m ∈ N and η ∈ Y ?, multiply φm(y; η)
on both sides of (2.1) to obtain∫

Y
A(η)

[ ∞∑
k=1

ukb (η)φk(y; η)

]
φm(y; η) dy =

∫
Y

∞∑
k=1

fkb (η)φk(y; η)φm(y; η) dy

∫
Y

∞∑
k=1

ukb (η)φk(y; η)λm(η)φm(y; η) dy = fmb (η)

umb (η)λm(η) = fmb (η)

umb (η) =
fmb (η)

λm(η)
.

Set ψm(y; η) := {eıy·ηφm(y; η)}. Then, for each η ∈ Y ?, ψm(·; η) forms a basis of L2(Rn). Thus,
L2(Rn) can be identified with L2(Y ?; `2(N)). Let us compute ψ(y + 2π`):

ψm(y + 2π`) = eıy·ηe2πı`·ηφm(y + 2π`)

= eıy·ηe2πı`·ηφm(y)

= e2πı`·ηψm(y).

2.2 Regularity of λm(η) and φ1(·, η)

Theorem 2.11. For all m ≥ 1, η 7→ λm(η) is a Lipschitz function.

Proof. Consider the quadratic form associated with A(η):

a(v, v; η) =

∫
Y
ajk(y)

(
∂v

∂yk
+ ıηkv

)(
∂v

∂yj
+ ıηjv

)
dy.

11



The quadratic form admits a decomposition as follows:

a(v, v; η) = a(v, v; η0) +R(v, v; η, η0)

where

R =

∫
Y
ajk(y)

∂v

∂yk
(ıηj − ıη0j )v dy +

∫
Y
ajk(y)(ıηk − ıη0k)v

∂v

∂yj
dy

+

∫
Y
ajk(y)(ηkηj − η0kη0j )|v|2 dy.

By Cauchy-Schwarz’s inequality,

|R| ≤ C0|η − η0|
∫
Y

(|∇v|2 + |v|2) dy.

By min-max principle,

λm(η) = min
W⊂H1

per(Y )
max
v∈W

a(v, v; η)

‖v‖22,Y
where W is a m-dimensional subspace of H1

per(Y ). Using the estimate on R, we deduce that

λm(η) ≤ λm(η0) + C0|η − η0|

for a suitable constant C0. Interchanging η and η0, we obtain

|λm(η)− λm(η0)| ≤ C0|η − η0|.

Theorem 2.12 (Analyticity). There is a δ > 0 such that λ1(η) is analytic in the open ball Bδ(0)
centred at origin and radius δ. Further, one can choose a corresponding unit eigenvector φ1(y; η)
satisfying

(i) η 7→ φ1(·; η) from Y ? to H1
per(Y ) is analytic on Bδ(0).

(ii) φ1(y; 0) := |Y |−1/2 := (2π)−n/2.

(iii) ‖φ1(·; η)‖2,Y = 1 and
∫
Y φ1(y; η) dy = 0 for each η ∈ Bδ.

2.3 Taylor Expansion of Ground State

Observe that (2.1) is a polynomial of degree two w.r.t η variable. Let Tm(η) : L2(Y ) → L2(Y ) be
defined as

Tm(η)(φ) = A(η)φ− λmφ.

For a fixed m ∈ N, let us compute the j-th first partial derivative of (2.2) w.r.t η to get

A(η)
∂φm
∂ηj

+
∂A(η)

∂ηj
φm = λm

∂φm
∂ηj

+ φm
∂λm
∂ηj

.

12



Thus,

Tm(η)
∂φm
∂ηj

= −∂A(η)

∂ηj
φm + φm

∂λm
∂ηj

= ıejA(∇y + ıη)φm + (∇y + ıη) · (ıAejφm) + φm
∂λm
∂ηj

.

There exists a solution to the above equation which is unique upto an additive multiple of φm.
Hence, the RHS satisfies the compatibility condition or Fredhölm alternative. Therefore,∫

Y
Tm(η)

∂φm
∂ηj

φm dy = 0

yields a formula for ∇ηλm(ηm) in terms of φm. Thus,

∂λm
∂ηj

(η) =

〈
∂A(η)

∂ηj
φm(·; η), φm(·; η)

〉
.

Similarly, by computing the j-th second partial derivative of (2.2) w.r.t η, we get

Tm(η)
∂2φm
∂ηj∂ηk

= ıejA(∇y + ıη)
∂φm
∂ηk

+ (∇y + ıη) ·
(
ıAej

∂φm
∂ηk

)
+ıekA(∇y + ıη)

∂φm
∂ηj

+ (∇y + ıη) ·
(
ıAek

∂φm
∂ηj

)
+
∂λm
∂ηj

∂λm
∂ηk

+
∂λm
∂ηk

∂λm
∂ηj

− ejAekφm − ekAejφm

+
∂2λm
∂ηk∂ηj

φm.

There exists a solution to the above equation which is unique upto an additive multiple of φm.
Hence, the RHS satisfies the compatibility condition or Fredhölm alternative. Therefore,∫

Y
Tm(η)

∂2φm
∂ηj∂ηk

φm dy = 0

yields a formula for the Hessian matrix D2
ηλm(ηm) in terms of φm. Thus,

1

2

∂2λm
∂ηj∂ηk

(η) = 〈ajkφm, φm〉+
1

2

〈[
∂A(η)

∂ηj
− ∂λm

∂ηj

]
∂φm
∂ηk

, φm

〉
+

1

2

〈[
∂A(η)

∂ηk
− ∂λm
∂ηk

]
∂φm
∂ηj

, φm

〉
.

Let us summarise the properties of the eigenvalues λm(η) and eigenvectors φm(y; η).

(a) All odd order derivatives of λ1(η) at η = 0 vanish.

(b) All odd order derivatives of φ1(·, η) at η = 0 are purely imaginary. For instance, the first order
derivatives at η = 0 are given by

∂φ1
∂ηj

(y; 0) = ı|Y |−1/2wj(y),
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where wj ∈ H1
per(Y ) is the unique solution of the cell problem{

Awj =
∑n

k=1
∂ajk
∂yk

in Rn,
1
|Y |
∫
Y wj(y) dy = 0.

(c) All even order derivatives of φ1(·; η) at η = 0 are real.

(d) Second order derivatives of λ1(η) at η = 0 are given by

1

2

∂2λ1
∂ηj∂ηk

(0) = a0jk, ∀j, k = 1, ..., n,

where a0jk are the homogenized coefficients defined by

1

|Y |

∫
Y

[
ajk +

n∑
m=1

ajm
∂wm
∂ym

]
.

Theorem 2.13. The origin is a critical point of the first Bloch eigenvalue, i.e., ∂λ1
∂ηj

(0) = 0 for all

j = 1, ..., n.Further, the Hessian of λ1 at η = 0 is given by

1

2

∂2λ1
∂ηj∂ηk

(0) = a0jk ∀j, k = 1, ..., n.

The derivatives of the first Bloch mode can also be calculated and they are as follows:

∂φ1
∂ηj

(y; 0) = ı|Y |−
1
2wj(y) ∀j = 1, ..., n.

Proof. Use the information λ1(0) = 0 and φ1(y; 0) = |Y |−
1
2 in the Taylor expansion with η = 0.

3 Homogenization of Second order Elliptic Operator

Let Aε = −divx(A(x/ε)∇x) be the elliptic opertor with periodically oscillating coefficients. If ξ
corresponds to the Fourier variable corresponding to x then εξ corresponds to the Fourier variable
corresponding to x/ε. Recall that, for each m ∈ N, {λm(η)} and {eıy·ηφm(y; η)} are the eigenvalues
and eigenvectors, respectively, of A = −divy(A(y)∇y). We employ the change of variables, y = x/ε
and η = εξ, in the equation A[eıy·ηφm(y; η)] = λm(η)eıy·ηφm(y; η) to obtain

ε2Aε
[
eıx·ξφm

(x
ε

; εξ
)]

= λm(εξ)eıx·ξφm

(x
ε

; εξ
)
.

Thus, the eigenvalues and eigenvectors of Aε are ε−2λm(εξ) and eıx·ξφm(x/ε; εξ). Set λεm(ξ) :=
ε−2λm(εξ) and φεm(x; ξ) := φm(x/ε; εξ). Hence, the Bloch transform of f ∈ L2(Rn), for each x ∈ Rn
and ε > 0, is

f εb (x; ξ) =

∞∑
m=1

fm,εb (ξ)φεm(x; ξ)

14



where, for each m ∈ N, ε > 0 and ξ ∈ ε−1Y ?, the m-th Bloch coefficient of f is

fm,εb (ξ) = ε−n/2
∫
Rn
f(x)e−ıx·ξφεm(x; ξ) dx.

Thus, the inverse formula is

f(x) = εn/2
∫
ε−1Y ?

∞∑
m=1

fm,εb (ξ)eıx·ξφεm(x; ξ) dξ.

The εn/2 is a normalising factor appearing because the Lebesgue measure of ε−1Y ? is ε−n. The
Plancherel identity holds: for any f, g ∈ L2(Rn)

ε−n
∫
Rn
f(x)g(x) dx =

∫
ε−1Y ?

∞∑
m=1

fm,εb (ξ)gm,εb (ξ) dξ.

Applying the Bloch transform, the equation Aεuε = f transforms in to a set of algebraic
equations, indexed by m ≥ 1, λεm(ξ)um,εb (ξ) = fm,εb (ξ) for all ξ ∈ ε−1Y ? (cf. Remark 2.10). Our
aim is to pass to the limit in the system of algebraic equations. We first claim that one can neglect
all the equations corresponding to m ≥ 2.

Proposition 3.1. Let

vε(x) = εn/2
∫
ε−1Y ?

∞∑
m=2

um,εb (ξ)eıx·ξφεm(x; ξ) dξ.

Then ‖vε‖2,Rn ≤ C0ε.

Proof. Since ∫
Rn
Aεuεuε dx =

∫
Rn
f(x)uε(x) dx.

The LHS is bounded and, applying Plancherel Identity, we get

β

∫
Rn
|∇uε|2 dx ≥ εn

∫
ε−1Y ?

∞∑
m=1

fm,εb (ξ)um,εb (ξ) dξ

= εn
∫
ε−1Y ?

∞∑
m=1

λεm(ξ)|um,εb (ξ)|2 dξ

= εn−2
∫
ε−1Y ?

∞∑
m=1

λm(η)|um,εb (ξ)|2 dξ

≥ εn−2
∫
ε−1Y ?

∞∑
m=2

λm(η)|um,εb (ξ)|2 dξ

≥ εn−2λ
(N)
2

∫
ε−1Y ?

∞∑
m=2

|um,εb (ξ)|2 dξ.

The last inequality is a consequence of the min-max principle yielding, for m ≥ 2,

λm(η) ≥ λ2(η) ≥ λ(N)
2 > 0 ∀η ∈ Y ?,

15



where λ
(N)
2 is the second eigenvalue of the eigenvalue problem for A in the cell Y with Neumann

boundary condition on ∂Y . Then

εn
∫
ε−1Y ?

∞∑
m=2

|um,εb (ξ)|2 dξ ≤ C0ε
2.

By Parseval’s Identity, the left side is equal to ‖vε‖2,Rn .

Remark 3.2. Consider the algebraic equation corresponding to m = 1, i.e.,

λε1(ξ)u
1,ε
b (ξ) = f1,εb (ξ) ∀ξ ∈ ε−1Y ?.

Multiplying both sides by εn/2, we get

ε−2λ1(εξ)ε
n/2u1,εb (ξ) = εn/2f1,εb (ξ) ∀ξ ∈ ε−1Y ?.

Expanding λ1(εξ) by Taylor’s formula around ξ = 0, we get1

2

n∑
j,k=1

∂2λ1
∂ηjηk

(0)ξjξk +O(εξ3)

 εn/2u1,εb (ξ) = εn/2f1,εb (ξ)

Passing to the limit as ε→ 0 to get

1

2

n∑
j,k=1

∂2λ1
∂ηjηk

(0)ξjξkû0(ξ) = f̂(ξ).

Setting

a0jk =
1

2

∂2λ1
∂ηjηk

(0)

Then
∑n

j,k=1 a
0
jkξkξj û0(ξ) = f̂(ξ) and A0u0 := −

∑n
j,k=1 a

0
jk

∂2u0
∂xj∂xk

= f(x). The only flaw in the

above argument is that in passing to limit we have not checked uniform compact support of the
sequence. To overcome this difficulty we use cut-off function technique to localize the equation.

Proposition 3.3 (First Bloch Transform tends to Fourier Transform). Let {gε} ⊂ L2(Rn) be a
sequence such that there is a fixed compact set K ⊂ Rn such that supp(gε) ⊆ K for all ε. If gε ⇀ g
weakly in L2(Rn) then ε

n
2 g1,εb ⇀ ĝ weakly in L2

loc(Rn).

Proof. The first Bloch transform g1,εb (ξ), a priori defined for

ξ ∈ ε−1Y ? = (−ε
−1

2
,
ε−1

2
)n

can be extended by zero outside ε−1Y ?. We write

ε
n
2 g1,εb (ξ) =

∫
Rn
gε(x)e−ıx·ξφ1(

x

ε
; 0) dx

+

∫
K
gε(x)e−ıx·ξ

(
φ1(

x

ε
; εξ)− φ1(

x

ε
; 0)

)
dx.
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Since φ1(y; 0) = |Y |
−1
2 = (2π)−n/2, the first term is nothing but the Fourier transform of gε and

so it converges weakly to ĝ(ξ) in L2(Rn). By Cauchy-Schwarz inequality and the regularity of the
first Bloch eigenfunction η 7→ φ1(·, η) ∈ L2

per(Y ) at η = 0, the second term is bounded by

‖gε‖2,Rn
[∫

K
|φ1(

x

ε
; εξ)− φ1(

x

ε
; 0)|2 dx

] 1
2

≤ C0‖φ1(y; εξ)− φ1(y; 0)‖2,Y .

By Lipschitz continuity of η 7→ φ1(·, η), the second term in the right side is bounded above by C0εξ.
Thus, if |ξ| ≤ M then it is bounded above by cMε and so, in particular, it converges to zero in
L∞loc(Rn).

Theorem 3.4. Let Ω ⊂ Rn be an arbitrary, not necessarily bounded, domain. Consider a sequence
uε ⇀ u0 weakly in H1(Ω) and Aεu0 = f in Ω with f ∈ L2(Ω). Then u0 satisfies A0u0 = f in Ω.
In fact, Aε∇uε ⇀ A0∇u0 weakly in L2(Ω).

Proof. Let φ ∈ D(Ω) be arbitrary. If uε satisfies Aεuε = f in Ω then consider its localization φuε
satisfies

Aε(φuε) = φf + gε + hε in Rn,

where

gε = −2
n∑
j=1

σεj
∂φ

∂xj
−

n∑
j,k=1

aεjk
∂2φ

∂xj∂xk
uε,

σεj (x) =

n∑
k=1

aεjk
∂uε
∂xk

,

hε = −
n∑

j,k=1

∂aεjk
∂xj

∂φ

∂xk
uε.

Using the arguments given in the remark above, we can pass to the limit above, since φuε is bounded
in H1(Rn). Neglecting all the harmonics corresponding to m ≥ 2 and considering only the m = 1
yields at the limit

1

2

n∑
j,k=1

∂2λ1
∂ηj∂ηk

(0)ξjξk (̂φu0)(ξ) = (̂φf)(ξ) + lim
ε→0

ε
n
2 g1,εb (ξ) + lim

ε→0
ε
n
2 ĥ1,εb (ξ). (3.1)

The sequence σεj is bounded in L2(Ω). Therefore, we can extract a subsequence (still denoted by

ε) which is weakly convergent in L2(Ω). Let σ0j denote its limit and its extension by zero outside
Ω. Using this convergence and the definition of gε, we see that

gε ⇀ g0 := −2
n∑
j=1

σ0j
∂φ

∂xj
−

n∑
j,k=1

M(ajk)
∂2φ

∂xj∂xk
u0 weakly in L2(Rn),

where M(ajk) is the average of ajk on Y . Therefore,

ε
n
2 g1,εb (ξ) ⇀ ĝ0(ξ) weakly in L2

loc(Rn).
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A similar argument fails for {h1,εb } because hε is not bounded in L2(Rn). We decompose

ε
n
2 h1,εb (ξ) =

∫
Rn
hε(x)e−ıx·ξφ1

(x
ε
, 0
)
dx

+

∫
Rn
hε(x)e−ıx·ξ

(
φ1

(x
ε

; εξ
)
− φ1

(x
ε

; 0
))

dx.

Using the Taylor expansion of φ1(y; η) at η = 0, the second term is equal to

−ε−1
n∑

j,k=1

∫
Rn

∂ajk
∂yj

(x
ε

) ∂φ

∂xk
(x)uε(x)e−ıx·ξ

[
ε

n∑
`=1

∂φ1
∂η`

(x
ε

; 0
)
ξ` +O(ε2ξ2)

]
dx,

which evidently converges to

−
n∑

j,k,`=1

M
(
∂ajk
∂yj

∂φ1
∂η`

(y; 0)

)
ξ`

∫
Rn

∂φ

∂xk
u0e
−ıx·ξ dx.

strongly in L∞loc(Rn). On the other hand, after integraing by parts, the first term in the RHS of the

decomposition of εn/2h1,εb becomes

n∑
j,k=1

∫
Rn
aεjk

[
∂2φ

∂xj∂xk
uε +

∂φ

∂xk

∂uε

∂xj
− ıξj

∂φ

∂xk
uε

]
e−ıx·ξφ1

(x
ε

; 0
)
dx.

Choosing φ1(y; 0) = |Y |−
1
2 , it is easily seen that the above integral converges weakly in L2(Rn) to

|Y |−
1
2

n∑
j,k=1

∫
Rn

[
M(ajk)

∂2φ

∂xj∂xk
u0 − ıξjM(ajk)

∂φ

∂xk
u0

]
e−ıx·ξ dx

+ |Y |−
1
2

n∑
k=1

∫
Rn
σ0k

∂φ

∂xk
e−ıx·ξ dx.

Using this information in (3.1) and using Theorem 2.13, we conclude that

n∑
j,k=1

a0jkξjξk (̂φu0)(ξ) = (̂φf)(ξ)− |Y |−
1
2

n∑
k=1

∫
Rn
σ0k

∂φ

∂xk
e−ıx·ξ dx

−ı
n∑

j,k=1

ξj |Y |−
1
2a0jk

∫
Rn

∂φ

∂xk
u0e
−ıx·ξ dx.

This can be rewritten as

[Â0(φu0)](ξ) = (̂φf)(ξ)− |Y |−
1
2

n∑
k=1

∫
Rn
σ0k

∂φ

∂xk
e−ıx·ξ dx

−ı
n∑

j,k=1

ξj |Y |−
1
2a0jk

∫
Rn

∂φ

∂xk
u0e
−ıx·ξ dx.
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This is the localized homogenized equation in the Fourier space. Taking inverse Fourier transform
of the above equation, we obtain

A0(φu0) = φf −
n∑
k=1

σ0k
∂φ

∂xk
−

n∑
j,k=1

a0jk
∂

∂xj

(
∂φ

∂xk
u0

)
in Rn.

On the other hand, we can calculate A0(φu0) directly:

A0(φu0) = −
n∑

j,k=1

[
a0jk

∂2φ

∂xj∂xk
u0 + 2a0jk

∂φ

∂xj

∂u0
∂xk

]
+ φA0u0 in Rn.

A comparison of the above two equation yields

φ(A0u0 − f) =
n∑
j=1

(
n∑
k=1

a0jk
∂u0
∂xk
− σ0j

)
∂φ

∂xj
in Rn.

Since the above relation is true for all φ in D(Ω), the desired conclusions follow. In fact, let us
choose φ(x) = φ0(x)eımx·ν , where ν is a unit vector in Rn and φ0(x) ∈ D(Ω) is fixed. Letting
m → ∞ in the resuling relation and varying the unit vector ν, we can easily deduce, successively,
that σ0j =

∑n
k=1 a

0
jk
∂u0
∂xk

in Ω and A0u0 = f in Ω.
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