Introduction to Γ -convergence

T. Muthukumar tmk@iitk.ac.in

Contents

1	Motivation	1
2	Direct Method of Calculus of Variation	2
3	Γ-Convergence	6
4	Integral Representation (One-Dimension)	10

1 Motivation

Let Ω be an open bounded subset of \mathbb{R}^n and let $\partial\Omega$ denote the boundary of Ω . For any given 0 < a < b, let $\mathcal{M} = \mathcal{M}(a, b, \Omega)$ denote the class of all $n \times n$ matrices, A = A(x), with $L^{\infty}(\Omega)$ entries such that,

$$|a|\xi|^2 \le A(x)\xi.\xi \le b|\xi|^2$$
 a.e. $x \quad \forall \xi \in \mathbb{R}^n.$

Recall the following result on variational inequality on a Hilbert space. Refer [6] for a complete theory on variational inequality.

Theorem 1.1. Let a(x, y) be a coercive bilinear form on $H, K \subset H$ be a closed and convex subset of H and $f \in H'$. Then there exists a unique solution $x \in K$ to

$$a(x, y - x) \ge \langle f, y - x \rangle, \quad \forall y \in K.$$
 (1.1)

The case K = H in the above result is popularly known as Lax-Milgram result. In fact, by choosing y = x + z and y = x - z for any $z \in H$ in (1.1), we have $a(x, z) = \langle f, z \rangle$ for all $z \in H$ and for every given $f \in H'$.

The Lax-Milgram result implies the existence of a weak solution to the following second order elliptic equation with Dirichlet boundary condition,

$$\begin{cases} -\operatorname{div}(A\nabla u) = f & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(1.2)

where $A \in \mathcal{M}(a, b, \Omega)$ and let $f \in H^{-1}(\Omega)$. In fact, one also has the estimate

$$\|u\|_{H^1_0(\Omega)} \le \frac{1}{a} \|f\|_{H^{-1}(\Omega)}.$$
(1.3)

The bounded elliptic operator $\mathcal{A} = -\operatorname{div}(A\nabla)$ from $H_0^1(\Omega)$ into $H^{-1}(\Omega)$ is an isomorphism and the norm of \mathcal{A}^{-1} is not larger than a^{-1} (cf. (1.3)).

Moreover, the weak solution u of (1.2) can also be characterized as the minimizer in $H_0^1(\Omega)$ of the functional

$$J(v) = \frac{1}{2} \int_{\Omega} A \nabla v \cdot \nabla v \, dx - \langle f, v \rangle_{H^{-1}(\Omega), H^1_0(\Omega)},$$

i.e.,

$$J(u) = \min_{v \in H_0^1(\Omega)} J(v).$$

Thus, the problem of studying the asymptotic behaviour of the second order elliptic problem

$$\begin{cases} -\operatorname{div}(A_{\varepsilon}\nabla u_{\varepsilon}) &= f \quad \text{in } \Omega\\ u_{\varepsilon} &= 0 \quad \text{on } \partial\Omega, \end{cases}$$
(1.4)

with $\{A_{\varepsilon}\} \subset \mathcal{M}$ is equivalent to finding a functional J on $H_0^1(\Omega)$ whose minimum is the solution of the homogenized elliptic equation such that both the minimizers and minima of J_{ε} converge to the minimizers and minima of J. Thus, we need to study the convergence of functionals such that the minimizers and minima converge.

2 Direct Method of Calculus of Variation

Definition 2.1. Let X be a topological space. A function $F : X \to \overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ is said to be lower semicontinuous (lsc) at a point $x \in X$ if

$$F(x) = \sup_{U \in N(x)} \inf_{y \in U} F(y).$$

F is lower semicontinuous on X if F is lower semicontinuous at each point $x \in X$.

Remark 2.1. Let X be a topological space satisfying first axiom of countability. Then a function $F : X \to \overline{\mathbb{R}}$ is lower semicontinuous at $x \in X$ iff

$$F(x) \le \liminf_{n \to \infty} F(x_n)$$

for every sequence $\{x_n\}$ converging to $x \in X$.

Exercise 1. Show that if F is lower semicontinuous then the sublevel set $\{F \leq \alpha\} := \{x \in X : F(x) \leq \alpha\}$ is closed for all $\alpha \in \mathbb{R}$.

Definition 2.2. A function $F : X \to \overline{\mathbb{R}}$ is coercive on X if the closure of the sublevel set $\{F \leq \alpha\} := \{x \in X : F(x) \leq \alpha\}$ is compact in X for every $\alpha \in \mathbb{R}$.

Exercise 2. Show that if F is a coercive functional on X and $G \ge F$, then G is coercive.

Exercise 3. If F is coercive then there is a non-empty compact set K such that

$$\inf_{x \in X} F(x) = \inf_{x \in K} F(x)$$

Theorem 2.1. Let X be a topological space. Assume that the function $F : X \to \overline{\mathbb{R}}$ is coercive and lower semicontinuous. Then F has a minimizer in X.

Proof. If F is identically $+\infty$ or $-\infty$, then every point of X is a minimum point for F. If F takes the value $-\infty$, then all those points are minimizers of F. Suppose now that F is not identically $+\infty$ and $F > -\infty$. Let $\{x_n\}$ be a sequence in X such that

$$\lim_{n \to \infty} F(x_n) = \inf_{y \in X} F(y) := d.$$

The existence of such a sequence is clear. Without loss of generality, we can assume that $F(x_n) < +\infty$ for all n. Let $\alpha := \sup_n F(x_n) < +\infty$. Moreover, since F is coercive, the sublevel set $\{F \leq \alpha\}$ is compact and hence there is a subsequence $\{x_k\}$ of $\{x_n\}$ which converges to a point $x \in X$. Since F is lsc we obtain

$$d = \inf_{y \in X} F(y) \le F(x) \le \liminf_{k \to \infty} F(x_k) = d.$$

Thus, F(x) = d and hence is the minimizer of F in X. which proves our theorem.

Definition 2.3. A family of functionals $\{F_n\}$ on X is said to be equicoercive, if for every $\alpha \in \mathbb{R}$, there is a compact set K_{α} of X such that the sublevel sets $\{F_n \leq \alpha\} \subseteq K_{\alpha}$ for all n.

Exercise 4. If $\{F_n\}$ is a family of equi-coercive, then there is a non-empty compact K (independent of n) such that

$$\inf_{x \in X} F_n(x) = \inf_{x \in K} F_n(x).$$

Proposition 2.1. A family of functions F_n on X is equi-coercive if and only if there exists a lower semicontinuous coercive function $\Psi : X \to \overline{\mathbb{R}}$ such that $F_n \geq \Psi$ on X, for every n.

Proof. Let $\Psi : X \to \overline{\mathbb{R}}$ be a lower semicontinuous coercive function such that $F_n \geq \Psi$ on X, for every n. Set $K_\alpha := \{\Psi \leq \alpha\}$. K_α is closed and compact because of the lsc and coercivity of Ψ , respectively. Moreover, $\{F_n \leq \alpha\} \subseteq K_\alpha$, for all n. Thus, F_n are equi-coercive.

Conversely, let F_n be equi-coercive. Then, for each $\alpha \in \mathbb{R}$, there is a compact set K_{α} such that $\{F_n \leq \alpha\} \subseteq K_{\alpha}$, for all n. We shall now define $\Psi: X \to \overline{\mathbb{R}}$ as

$$\Psi(x) = \begin{cases} +\infty, & \text{if } x \notin K_{\alpha}, \forall \alpha \in \mathbb{R} \\ \inf\{\alpha \mid x \in K_{\beta} \text{ for all } \beta > \alpha\}. \end{cases}$$

We now show that $\Psi \leq F_n$ for all n. Let $x \in X$. If $F_n(x) = +\infty$, for all n, then by definition, $\Psi(x) = F_n(x) = +\infty$. Otherwise, let F_k be a subfamily such that $F_k(x) = \beta_k < \infty$. Thus, $x \in K_{\beta_k}$ for all k and hence $\Psi(x) = \inf_k \{\beta_k\} \leq F_n(x)$. Thus, $\Psi(x) \leq F(x)$, for every $x \in X$. It now remains to show that Ψ is lsc and coercive. Note that any $x \in \{\Psi \leq \alpha\}$ implies $x \in K_\beta$ for all $\beta > \alpha$. Therefore, the sublevel

$$\{\Psi \le \alpha\} = \bigcap_{\beta > \alpha} K_{\beta}$$

is an arbitrary intersection compact sets and hence is closed and compact. \Box

Definition 2.4. Let X be a vector space. We say a function $F: X \to \overline{\mathbb{R}}$ is convex if

$$F(tx + (1 - t)y) \le tF(x) + (1 - t)F(y)$$

for every $t \in (0,1)$ and for every $x, y \in X$ such that $F(x) < +\infty$ and $F(y) < +\infty$. We say a function $F: X \to \overline{\mathbb{R}}$ is strictly convex if F is not identically $+\infty$ and

$$F(tx + (1 - t)y) < tF(x) + (1 - t)F(y)$$

for every $t \in (0,1)$ and for every $x, y \in X$ such that $x \neq y$, $F(x) < +\infty$ and $F(y) < +\infty$.

Remark 2.2 (Jensen Inequality). Let X be a real vector space and let $f: X \to \mathbb{R}$ be a convex function. Then for any given $x_1, x_2, \ldots, x_n \in X$ and $\lambda_1, \lambda_2, \ldots, \lambda_n \in [0, 1]$ such that $\sum_{i=1}^n \lambda_i = 1$, we have

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \le \sum_{i=1}^{n} \lambda_i f(x_i).$$
(2.1)

Furthermore, if f is strictly convex then equality holds in (2.1) iff $x_1 = x_2 = \ldots = x_n$. In fact, more generally, if X is a Banach space, (E, μ) is a probability measure space, $f: X \to [0, +\infty]$ is a lsc, convex function, then

$$f\left(\int_{E} g \, d\mu\right) \leq \int_{E} f \circ g \, d\mu,$$

for all μ -integrable $g: E \to X$.

Proposition 2.2. Let X be a vector space. Let $F : X \to \overline{\mathbb{R}}$ be a strictly convex function. Then F has at most one minimizer in X.

Proof. If x and y are two minimizers of F in X, then

$$F(x) = F(y) = d := \min_{z \in X} F(z) < +\infty.$$

If $x \neq y$, by strict convexity we have

$$F(tx + (1 - t)y) < tF(x) + (1 - t)F(y) = d, \quad \forall t \in (0, 1).$$

This contradicts the fact that d is a minimum of F. Therefore x = y.

Thus, combining Theorem 2.1 and Proposition 2.2, we have that on a topological vector space X, if F is a lower semicontinuous, coercive and strictly convex function, then F has a unique minimizer. We end this section with a definition from convex analysis.

Definition 2.5 (Convex Conjugate). Let X be a topological vector space and let X^* be its topological dual. If $F : X \to \mathbb{R}$, its convex conjugate $F^* : X^* \to \overline{\mathbb{R}}$ is defined as

$$F^{\star}(x^{\star}) = \sup_{x \in X} \{x^{\star}(x) - F(x)\}.$$

Exercise 5. If F is convex and lower semicontinuous then $F = (F^*)^*$.

Exercise 6. Let A be a $n \times n$ symmetric, positive definite matrix and $F : \mathbb{R}^n \to \mathbb{R}$ be defined as

$$F(x) = \frac{1}{2} \langle x, Ax \rangle.$$

Show that

$$F^{\star}(x^{\star}) = \frac{1}{2} \langle x^{\star}, A^{-1}x^{\star} \rangle.$$

3 Γ-Convergence

The notion of Γ -convergence was introduced by Ennio De Giorgi in a sequence of papers (cf. [5, 3, 4]). An excellent account of this concept is the book of Dal Maso [2] and A. Braides [1].

Definition 3.1. A function F is said to be the Γ -limit of F_n (denoted as $F_n \xrightarrow{\Gamma} F$) w.r.t the topology of X, if $F = F^+ = F^-$, where

(i)

$$F^{-}(x) = \sup_{U \in N(x)} \liminf_{n \to \infty} \inf_{y \in U} F_{n}(y).$$

(ii)

$$F^+(x) = \sup_{U \in N(x)} \limsup_{n \to \infty} \sup_{y \in U} F_n(y).$$

We say F^- is the Γ -lower limit and F^+ is the Γ -upper limit.

Remark 3.1. If X is a topological space satisfying first axiom of countability, the Γ -limit can be characterised as satisfying the following two conditions:

(i) For every $x \in X$ and for every sequence $\{x_n\}$ converging to x in X, we have

$$\liminf_{n \to \infty} F_n(x_n) \ge F(x).$$

(ii) For every $x \in X$, there exists a sequence $\{x_n\}$ converging to x in X (called the Γ -realising sequence) such that

$$\lim_{n \to \infty} F_n(x_n) = F(x).$$

Exercise 7. Show that if $F_n \xrightarrow{\Gamma} F$, $G_n \xrightarrow{\Gamma} G$ and $F_n \leq G_n$, for each n, then $F \leq G$.

Exercise 8. Show that if $F_n \Gamma$ -converges to F, then F is lower semicontinuous. *Exercise* 9. Let X be a topological vector space. Show that if $F_n : X \to \overline{\mathbb{R}}$ is convex for each n, then Γ -lim $\sup_n F_n$ is convex. Also show that the Γ -lim $\inf_n F_n$ is, in general, not convex.

Exercise 10. Compute the Γ -limit of a constant sequence $F_n = F$ on X.

Theorem 3.1. Let X be a topological space and F_n be a family functions on X.

1. If U is an open subset of X, then

$$\inf_{x \in U} F^+(x) \ge \limsup_{x \in U} \inf_{x \in U} F_n(x).$$

2. If K is a compact subset of X, then

$$\inf_{x \in K} F^{-}(x) \le \liminf_{n} \inf_{x \in K} F_{n}(x).$$

Proof. 1. Let $x \in U$. Then, from the definition of Γ -upper limit which says F(x) is sup over all neighbourhoods of x, we have

$$F^+(x) \ge \limsup_{n \to \infty} \inf_{y \in U} F_n(y).$$

Therefore,

$$\inf_{x \in U} F^+(x) \ge \limsup_{n \to \infty} \inf_{y \in U} F_n(y).$$

2. Since F^- is lsc and by the compactness of K, F^- attains its minimum on K (cf. Theorem 2.1). Set $d := \liminf_n \inf_{x \in K} F_n(x)$ and let x_n be a sequence (extracting subsequence, if necessary) in K such that $\lim_n F_n(x_n) = d$. Thus, there is a subsequence x_k which converges to some $x \in K$. Therefore, for every neighbourhood U of x, $\inf_{y \in U} F_k(y) \leq F_k(x_k)$ for infinitely many k. Now, taking lim inf both sides,

$$\liminf_{k} \inf_{y \in U} F_k(y) \le \liminf_{k} F_k(x_k) = d$$

and taking supremum over all neighbourhoods U of x, we still have

$$F^{-}(x) = \sup_{U} \liminf_{k} \inf_{y \in U} F_{k}(y) \le d$$

Now, since $x \in K$, $\inf_{x \in K} F^{-}(x) \leq d$.

Theorem 3.2 (Fundamental Theorem of Γ -convergence). Let X be a topological space. Let $\{F_n\}$ be a equi-coercive family of functions and let F_n Γ -converges to F in X, then

- (i) F is coercive.
- (ii) $\lim_{n\to\infty} d_n = d$, where $d_n = \inf_{x\in X} F_n(x)$ and $d = \inf_{x\in X} F(x)$. That is, the minima converges.
- (iii) The minimizers of F_n converge to a minimizer of F.

Proof. Since $\{F_n\}$ are equi-coercive, by Proposition 2.1, there is a lsc, coercive function Ψ on X such that $F_n \geq \Psi$. Now, by Exercise 7, $F \geq \Psi$ and by Exercise 2 F is coercive.

Now, by putting U = X in Theorem 3.1, we get $d \ge \limsup_n d_n$. We now need to show that $d \le \liminf_n d_n$. If F_n are all not identically $+\infty$, then $\liminf_n d_n < +\infty$. Set $\liminf_n d_n = \alpha$. By the equi-coercivity of F_n , there is a compact set K_α such that $\{F_n \le \alpha\} \subseteq K_\alpha$, for all n. Consider,

$$d \leq \inf_{y \in K_{\alpha}} F(y) \leq \liminf_{n} \inf_{y \in K_{\alpha}} F_{n}(y)$$

=
$$\liminf_{n} \inf_{y \in X} F_{n}(y)$$

=
$$\liminf_{x \in M} d_{n}.$$

Thus, $\limsup_n d_n \le d \le \liminf_n d_n$ and hence, $\lim_n d_n = d$.

Since F is coercive and lsc (Γ -limit is always lsc), then by Theorem 2.1, F attains its minimum. Let x_n^* be a minimizer of F_n , then since F_n are equi-coercive x_n^* belong to a compact set K of X and hence converges up to

a subsequence. Let $x_n^* \to x^*$ in X. We need to show that $F(x^*) = d$. By Γ -lower limit,

$$F(x^*) \le \liminf_n F_n(x_n^*) = \liminf_n d_n = d_n$$

But, $d \leq F(x^*)$. Hence $d = F(x^*)$.

Theorem 3.3 (Compactness). If X is a topological space satisfying second axiom of countability then any sequence of functionals $F_n : X \to \overline{\mathbb{R}}$ has a Γ -convergent subsequence.

Proof. Let $\{U_k\}_{k\in\mathbb{N}}$ be a countable base for the topology of X. For each k, let $d_k^n = \inf_{y\in U_k} F_n(y)$. Thus, $\{d_k^n\}_n$ is a sequence in \mathbb{R} which is compact, hence has a subsequence $\{d_k^m\}_m$ whose limit as $m \to \infty$ exists in \mathbb{R} . Thus, for each k, we have subsequence $\{d_k^m\}_m$ whose limit as $m \to \infty$ exists in \mathbb{R} . Thus, Choose the diagonal sequence d_k^k whose limit exists n \mathbb{R} as $k \to \infty$. In other words, we have chosen a subsequence F_k of F_n such that

$$\lim_{k \to \infty} d_k^k = \lim_{k \to \infty} \inf_{y \in U_k} F_k(y).$$

Now, define $F(x) = \sup_{U \in N(x)} \lim_{k \to \infty} \inf_{y \in U_k} F_k(y)$ and we have by definition F_k Γ -converges to F.

Example 3.1. Let $A_{\varepsilon} \stackrel{H}{\rightharpoonup} A_0$ then we wish to show that $J_{\varepsilon} \stackrel{\Gamma}{\rightharpoonup} J$ in the weak topology of $H_0^1(\Omega)$ where

$$J_{\varepsilon}(u) = \int_{\Omega} A_{\varepsilon} \nabla u . \nabla u \, dx$$

and

$$J(u) = \int_{\Omega} A_0 \nabla u . \nabla u \, dx$$

Let $u \in H_0^1(\Omega)$. We need to find a sequence $\{u_{\varepsilon}\}$ in $H_0^1(\Omega)$ such that u_{ε} converges to u weakly in $H_0^1(\Omega)$ and $\lim_{\varepsilon \to 0} J_{\varepsilon}(u_{\varepsilon}) = J(u)$. Let $u_{\varepsilon} \in H_0^1(\Omega)$ be the solution of

$$-\operatorname{div}(A_{\varepsilon}\nabla u_{\varepsilon}) = -\operatorname{div}(A_0\nabla u). \tag{3.1}$$

Then, it follows from *H*-convergence that $u_{\varepsilon} \rightharpoonup u$ weakly in $H_0^1(\Omega)$ and $\int_{\Omega} A_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla u_{\varepsilon} \, dx \rightarrow \int_{\Omega} A_0 \nabla u \cdot \nabla u \, dx$. Thus, we have shown the existence of a sequence $\{u_{\varepsilon}\}$ converging weakly to u in $H_0^1(\Omega)$ such that

$$\lim_{\varepsilon \to 0} J_{\varepsilon}(u_{\varepsilon}) = J(u)$$

Now, let $w_{\varepsilon} \in H_0^1(\Omega)$ be a sequence such that $w_{\varepsilon} \rightharpoonup u$ weakly in $H_0^1(\Omega)$. Then, the solution u_{ε} obtained in (3.1) minimizes the functional

$$\frac{1}{2}J_{\varepsilon}(v) - \int_{\Omega} A_0 \nabla u . \nabla v \, dx.$$

Hence, in particular, we have

$$\frac{1}{2} \int_{\Omega} A_{\varepsilon} \nabla w_{\varepsilon} \cdot \nabla w_{\varepsilon} \, dx - \int_{\Omega} A_{0} \nabla u \cdot \nabla w_{\varepsilon} \, dx \geq \frac{1}{2} \int_{\Omega} A_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla u_{\varepsilon} \, dx \\ - \int_{\Omega} A_{0} \nabla u \cdot \nabla u_{\varepsilon} \, dx$$

and taking liminf on both sides of above inequality we have

$$\liminf_{\varepsilon \to 0} J_{\varepsilon}(w_{\varepsilon}) \ge J(u).$$

Hence $J_{\varepsilon} \stackrel{\Gamma}{\rightharpoonup} J$ in the weak topology of $H_0^1(\Omega)$.

In the above example, we assume the *H*-convergence of the matrix coefficients to describe the Γ -limit. A general question of interest is the following: If for any sequence of functionals, by compactness, there is a Γ -limit, then under what conditions one can get an integral representation of Γ -limit. In the next section, we describe the situation in one-dimension.

4 Integral Representation (One-Dimension)

For any given $1 and <math>c_1, c_2, c_3 > 0$, let $\mathcal{F} = \mathcal{F}(p, c_1, c_2, c_3)$ be the class of all functionals $F : W^{1,p}(\Omega) \to [0, +\infty)$ such that

$$F(u) = \int_{\Omega} f(x, \nabla u(x)) \, dx$$

where $f: \Omega \times \mathbb{R}^n \to [0, +\infty)$

H 1. is a Borel function such that $\xi \mapsto f(x,\xi)$ is convex for all $x \in \Omega$,

H 2. and satisfies the growth conditions of order p

$$c_1|\xi|^p - c_2 \le f(x,\xi) \le c_3(1+|\xi|^p), \quad \forall x \in \Omega, \xi \in \mathbb{R}^n.$$

Exercise 11. If f satisfies H1 and H2, then f satisfies the local Lipschitz condition

$$|f(x,\xi) - f(x,\zeta)| \le k(1+|\xi|^{p-1}+|\zeta|^{p-1})|\xi-\zeta| \quad \forall \xi, \zeta \in \mathbb{R}^n.$$

The constant k depends only on c_3 and p.

We take n = 1 in the dimension of Euclidean space and set $\Omega = (a, b)$. Observe that any functional in \mathcal{F} is invariant by addition of a constant c, i.e., F(u + c) = F(u). Thus, it is sufficient to characterize in the space

$$X = \{ u \in W^{1,p}(\Omega) \mid u(b) = 0 \}$$

equipped with L^p norm instead of $W^{1,p}(\Omega)$. Since X is embedded in $L^{\infty}(a, b)$, $L^1(a, b) \subset X^{\star}$.

Proposition 4.1. Let $X = \{u \in W^{1,p}(\Omega) \mid u(b) = 0\}$ equipped with L^p norm. Let $F \in \mathcal{F}$ and consider its integrand f as a function on X, then $F^*: X^* \to \mathbb{R}$ is given as

$$F^{\star}(\phi) = \int_{a}^{b} f^{\star}\left(x, -\int_{a}^{x} \phi(t) \, dt\right) \, dx, \quad \forall \phi \in L^{1}(a, b)$$

Proof. Let us assume $f(x, \cdot) \in C^1(\mathbb{R})$ for all $x \in (a, b)$. Due to the growth conditions and continuity of f,

$$f^{\star}(x,\xi^{\star}) = \sup_{\xi \in \mathbb{R}} \{\xi^{\star} \cdot \xi - f(x,\xi)\} = \max_{\xi \in \mathbb{R}} \{\xi^{\star} \cdot \xi - f(x,\xi)\}.$$

Thus, if ζ is the point at which maximum is attained, then

$$f^{\star}(x,\zeta^{\star}) = \zeta^{\star} \cdot \zeta - f(x,\zeta)$$
 if and only if $\zeta^{\star} - \frac{\partial f}{\partial \zeta}(x,\zeta) = 0.$ (4.1)

Let $\phi \in L^1(a, b)$, define $\Phi \in W^{1,1}(a, b)$ as,

$$\Phi(x) = -\int_{a}^{x} \phi(t) \, dt.$$

Note that $\Phi' = -\phi$ and $\Phi(a) = 0$. Thus, the convex conjugate of F is given as

$$F^{\star}(\phi) = \sup_{v \in X} \left\{ \int_{a}^{b} \left(\phi(x)v(x) - f(x, v'(x)) \, dx \right\} \right\}$$

= $\sup_{v \in X} \left\{ \int_{a}^{b} \left(\Phi(x)v'(x) - f(x, v'(x)) \, dx \right\}$ (using integration by parts)
= $\max_{v \in X} \left\{ \int_{a}^{b} \left(\Phi(x)v'(x) - f(x, v'(x)) \, dx \right\} \right\}$
= $\int_{a}^{b} \left(\Phi(x)u'(x) - f(x, u'(x)) \, dx \right\}$

By computing Euler equations, we have $\Phi - \frac{\partial f}{\partial u}(x, u') = c$, for some constant c. But $\Phi(a) = 0$ and $\frac{\partial f}{\partial u}(a, u'(a)) = 0$, implies that c = 0 and thus, $\Phi = \frac{\partial f}{\partial u}(x, u')$ a.e. on (a, b). By choosing $\zeta^* = \Phi(x)$ and $\zeta = u'(x)$ in (4.1), we have

 $\Phi(x) = \frac{\partial f}{\partial u}(x, u'(x)) \quad \text{if and only if } f^{\star}(x, \Phi(x)) = \Phi(x)u'(x) - f(x, u'(x)).$

Hence,

$$F^{\star}(\phi) = \int_{a}^{b} \left(\Phi(x)u'(x) - f(x, u'(x))\right) dx$$
$$= \int_{a}^{b} f^{\star}(x, \Phi(x)) dx$$
$$= \int_{a}^{b} f^{\star}\left(x, -\int_{a}^{x} \phi(t) dt\right) dx$$

Now, for a general f satisfying hypotheses **H1** and **H2**, we define $f_{\varepsilon}(x,\xi) = \int_{a}^{b} \rho_{\varepsilon}(x-y)f(y,\xi) dy$, where ρ_{ε} are the sequence of mollifiers. Observe that f_{ε} are convex in the second variable and, by Jensen's inequality, $f_{\varepsilon} \geq f$. Also, observe that $\lim_{\varepsilon} f_{\varepsilon}^{*}(x,\xi^{*}) = f^{*}(x,\xi^{*})$ for all $x \in (a,b)$ and $\xi^{*} \in \mathbb{R}$. We have, for each ε ,

$$F_{\varepsilon}^{\star}(\phi) = \int_{a}^{b} f_{\varepsilon}^{\star}\left(x, -\int_{a}^{x} \phi(t) \, dt\right) \, dx \quad \forall \phi \in L^{1}(a, b).$$

Now, by dominated convergence theorem and $F^{\star} \geq F_{\varepsilon}^{\star}$, we get

$$F^{\star}(\phi) \ge \lim_{k} F_{\varepsilon}^{\star}(\phi) = \int_{a}^{b} f^{\star}\left(x, -\int_{a}^{x} \phi(t) dt\right) dx.$$

Also, by the convex conjugate definition, $f^*(x,\xi^*) \geq \xi^*\xi - f(x,\xi)$ for all x,ξ,ξ^* . Now, choose $\xi^* = \Phi(x), \xi = v'$, where $v \in X$ and integrate both sides of above inequality,

$$\int_{a}^{b} f^{\star}(x, \Phi(x)) dx \geq \int_{a}^{b} (\Phi(x)v'(x) - f(x, v'(x))) dx$$
$$= \int_{a}^{b} (\phi(x)v(x) - f(x, v'(x))) dx.$$

Taking supremum over $v \in V$, we have $F^{\star}(\phi) \leq \int_{a}^{b} f^{\star}(x, \Phi(x)) dx$.

Proposition 4.2. Let $g_n : \Omega \times \mathbb{R}^n \to [0, +\infty)$ satisfy hypotheses H1 and H2, for all n. If $g_n(\cdot, \xi)$ weak* converges to $g(\cdot, \xi)$ for all $\xi \in \mathbb{R}$, then $g_n(\cdot, v(\cdot))$ weak* converges to $g(\cdot, v(\cdot))$, for all $v \in C([a, b])$.

Proof. Let $v \in C([a, b])$ and $\phi \in L^1(a, b)$. Also, let (x_{i-1}, x_i) be k number of partitions of (a, b) for i = 1, 2, ..., k such that $x_0 = a$ and $x_k = b$. Consider,

$$\begin{aligned} \left| \int_{a}^{b} \left(g_{n}(x,v) - g(x,v) \right) \phi \, dx \right| &\leq \sum_{i=1}^{k} \left| \int_{(x_{i-1},x_{i})} \left(g_{n}(x,v(x)) - g_{n}(x,v(x_{i})) \right) \phi \, dx \right| \\ &+ \sum_{i=1}^{k} \left| \int_{(x_{i-1},x_{i})} \left(g_{n}(x,v(x_{i})) - g(x,v(x_{i})) \right) \phi \, dx \right| \\ &+ \sum_{i=1}^{k} \left| \int_{(x_{i-1},x_{i})} \left(g(x,v(x_{i})) - g(x,v(x)) \right) \phi \, dx \right| \end{aligned}$$

The second term converges to zero, by hypothesis, and by uniform local Lipschitz continuity (cf. Exercise 11 of g_n and g, we have the result. \Box

Lemma 4.1. Let $g_n : \Omega \times \mathbb{R}^n \to [0, +\infty)$ satisfy hypotheses H1 and H2, for all n. Then, there exists a subsequence of $\{g_n\}$ and a $g : (a, b) \times \mathbb{R} \to [0, +\infty)$ such that $g_n(\cdot, \xi)$ weak* converges to $g(\cdot, \xi)$ for all $\xi \in \mathbb{R}$.

Theorem 4.1. Let $\{F_n\}$ be a sequence in \mathcal{F} with integrand f_n and $F \in \mathcal{F}$ with integrand f. Then the following statements are equivalent:

1. $F_n(\cdot, I)$ Γ -converges to $F(\cdot, I)$ in $W^{1,p}(I)$, for all open intervals I of (a, b).

2. $f_n^{\star}(\cdot, \xi^{\star})$ weak^{*} converges to $f^{\star}(\cdot, \xi^{\star})$, for all $\xi^{\star} \in \mathbb{R}$.

The proof of above lemma and theorem are being skipped and can be found in [1].

Example 4.1. Let $0 < \alpha \leq a_{\varepsilon}(x) \leq \beta < +\infty$ and $g \in L^2(a, b)$. Let $F_{\varepsilon} : H^1_0(a, b) \to \mathbb{R}$ be defined as

$$F_{\varepsilon}(u) = \int_{a}^{b} \left\{ \frac{1}{2} a_{\varepsilon}(x) |u'|^{2} - gu \right\} dx.$$

The Euler-Lagrange equations yields that the minimizers u_{ε} ,

$$\begin{cases} -\frac{d}{dx} \left(a_{\varepsilon}(x) \frac{du_{\varepsilon}}{dx} \right) = g \text{ in } (a, b) \\ u_{\varepsilon}(a) = u_{\varepsilon}(b) = 0. \end{cases}$$

Now, set $f_{\varepsilon}(x,\xi) := a_{\varepsilon}(x)|\xi|^2$. Then, $f_{\varepsilon}^{\star}(x,\xi^{\star}) = \frac{\xi^2}{4a_{\varepsilon}(x)}$. But, for each $\xi^{\star} \in \mathbb{R}^n$, $f_{\varepsilon}^{\star}(\cdot,\xi^{\star})$ converges weak^{*} in $L^{\infty}(a,b)$ to $f^{\star}(\cdot,\xi^{\star})$, where $f^{\star}(x,\xi^{\star}) = \frac{\xi^2}{4b(x)}$ and

$$\frac{1}{a_{\varepsilon}(x)} \rightharpoonup \frac{1}{b(x)}.$$

References

- [1] A. BRAIDES, Γ-Convergence for Beginners, vol. 22 of Oxford Lecture series in Mathematics and its Applications, Oxford University Press, 2002.
- [2] G. DAL MASO, An Introduction to Γ-Convergence, vol. 8 of Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser Boston, 1993.
- [3] E. DE GIORGI, Sulla convergenza di alcune successioni di integrali del tipo dell'area, Rendi Condi di Mat., 8 (1975), pp. 277–294.
- [4] E. DE GIORGI AND T. FRANZONI, Su un tipo di convergenza variazionale, Atti Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 58 (1975), pp. 842–850.

- [5] E. DE GIORGI AND S. SPAGNOLO, Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine, Boll. Un. Mat. It., 8 (1973), pp. 391–411.
- [6] D. KINDERLEHRER AND G. STAMPACCHIA, An Introduction to Variational Inequalities and their applications, vol. 31 of Classics in Applied Mathematics, SIAM, 2000.