Introduction to Γ-convergence

T. Muthukumar
tmk@iitk.ac.in

Contents

1 Motivation

2 Direct Method of Calculus of Variation 2
3 Г-Convergence 6
4 Integral Representation (One-Dimension) 10

1 Motivation

Let Ω be an open bounded subset of \mathbb{R}^{n} and let $\partial \Omega$ denote the boundary of Ω. For any given $0<a<b$, let $\mathcal{M}=\mathcal{M}(a, b, \Omega)$ denote the class of all $n \times n$ matrices, $A=A(x)$, with $L^{\infty}(\Omega)$ entries such that,

$$
a|\xi|^{2} \leq A(x) \xi . \xi \leq b|\xi|^{2} \quad \text { a.e. } x \quad \forall \xi \in \mathbb{R}^{n} .
$$

Recall the following result on variational inequality on a Hilbert space. Refer [6] for a complete theory on variational inequality.

Theorem 1.1. Let $a(x, y)$ be a coercive bilinear form on $H, K \subset H$ be a closed and convex subset of H and $f \in H^{\prime}$. Then there exists a unique solution $x \in K$ to

$$
\begin{equation*}
a(x, y-x) \geq\langle f, y-x\rangle, \quad \forall y \in K . \tag{1.1}
\end{equation*}
$$

The case $K=H$ in the above result is popularly known as Lax-Milgram result. In fact, by choosing $y=x+z$ and $y=x-z$ for any $z \in H$ in (1.1), we have $a(x, z)=\langle f, z\rangle$ for all $z \in H$ and for every given $f \in H^{\prime}$.

The Lax-Milgram result implies the existence of a weak solution to the following second order elliptic equation with Dirichlet boundary condition,

$$
\left\{\begin{array}{rll}
-\operatorname{div}(A \nabla u) & =f & \text { in } \Omega \tag{1.2}\\
u & =0 & \text { on } \partial \Omega
\end{array}\right.
$$

where $A \in \mathcal{M}(a, b, \Omega)$ and let $f \in H^{-1}(\Omega)$. In fact, one also has the estimate

$$
\begin{equation*}
\|u\|_{H_{0}^{1}(\Omega)} \leq \frac{1}{a}\|f\|_{H^{-1}(\Omega)} . \tag{1.3}
\end{equation*}
$$

The bounded elliptic operator $\mathcal{A}=-\operatorname{div}(A \nabla)$ from $H_{0}^{1}(\Omega)$ into $H^{-1}(\Omega)$ is an isomorphism and the norm of \mathcal{A}^{-1} is not larger than a^{-1} (cf. (1.3)).

Moreover, the weak solution u of (1.2) can also be characterized as the minimizer in $H_{0}^{1}(\Omega)$ of the functional

$$
J(v)=\frac{1}{2} \int_{\Omega} A \nabla v \cdot \nabla v d x-\langle f, v\rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)},
$$

i.e.,

$$
J(u)=\min _{v \in H_{0}^{1}(\Omega)} J(v)
$$

Thus, the problem of studying the asymptotic behaviour of the second order elliptic problem

$$
\left\{\begin{array}{rll}
-\operatorname{div}\left(A_{\varepsilon} \nabla u_{\varepsilon}\right) & =f & \text { in } \Omega \tag{1.4}\\
u_{\varepsilon} & =0 & \text { on } \partial \Omega,
\end{array}\right.
$$

with $\left\{A_{\varepsilon}\right\} \subset \mathcal{M}$ is equivalent to finding a functional J on $H_{0}^{1}(\Omega)$ whose minimum is the solution of the homogenized elliptic equation such that both the minimizers and minima of J_{ε} converge to the minimizers and minima of J. Thus, we need to study the convergence of functionals such that the minimizers and minima converge.

2 Direct Method of Calculus of Variation

Definition 2.1. Let X be a topological space. A function $F: X \rightarrow \overline{\mathbb{R}}=$ $\mathbb{R} \cup\{-\infty,+\infty\}$ is said to be lower semicontinuous (lsc) at a point $x \in X$ if

$$
F(x)=\sup _{U \in N(x)} \inf _{y \in U} F(y) .
$$

F is lower semicontinuous on X if F is lower semicontinuous at each point $x \in X$.

Remark 2.1. Let X be a topological space satisfying first axiom of countability. Then a function $F: X \rightarrow \overline{\mathbb{R}}$ is lower semicontinuous at $x \in X$ iff

$$
F(x) \leq \liminf _{n \rightarrow \infty} F\left(x_{n}\right)
$$

for every sequence $\left\{x_{n}\right\}$ converging to $x \in X$.
Exercise 1. Show that if F is lower semicontinuous then the sublevel set $\{F \leq \alpha\}:=\{x \in X: F(x) \leq \alpha\}$ is closed for all $\alpha \in \mathbb{R}$.
Definition 2.2. A function $F: X \rightarrow \overline{\mathbb{R}}$ is coercive on X if the closure of the sublevel set $\{F \leq \alpha\}:=\{x \in X: F(x) \leq \alpha\}$ is compact in X for every $\alpha \in \mathbb{R}$.

Exercise 2. Show that if F is a coercive functional on X and $G \geq F$, then G is coercive.

Exercise 3. If F is coercive then there is a non-empty compact set K such that

$$
\inf _{x \in X} F(x)=\inf _{x \in K} F(x) .
$$

Theorem 2.1. Let X be a topological space. Assume that the function F : $X \rightarrow \overline{\mathbb{R}}$ is coercive and lower semicontinuous. Then F has a minimizer in X.

Proof. If F is identically $+\infty$ or $-\infty$, then every point of X is a minimum point for F. If F takes the value $-\infty$, then all those points are minimizers of F. Suppose now that F is not identically $+\infty$ and $F>-\infty$. Let $\left\{x_{n}\right\}$ be a sequence in X such that

$$
\lim _{n \rightarrow \infty} F\left(x_{n}\right)=\inf _{y \in X} F(y):=d
$$

The existence of such a sequence is clear. Without loss of generality, we can assume that $F\left(x_{n}\right)<+\infty$ for all n. Let $\alpha:=\sup _{n} F\left(x_{n}\right)<+\infty$. Moreover, since F is coercive, the sublevel set $\{F \leq \alpha\}$ is compact and hence there is a subsequence $\left\{x_{k}\right\}$ of $\left\{x_{n}\right\}$ which converges to a point $x \in X$. Since F is lsc we obtain

$$
d=\inf _{y \in X} F(y) \leq F(x) \leq \liminf _{k \rightarrow \infty} F\left(x_{k}\right)=d
$$

Thus, $F(x)=d$ and hence is the minimizer of F in X. which proves our theorem.

Definition 2.3. A family of functionals $\left\{F_{n}\right\}$ on X is said to be equicoercive, if for every $\alpha \in \mathbb{R}$, there is a compact set K_{α} of X such that the sublevel sets $\left\{F_{n} \leq \alpha\right\} \subseteq K_{\alpha}$ for all n.

Exercise 4. If $\left\{F_{n}\right\}$ is a family of equi-coercive, then there is a non-empty compact K (independent of n) such that

$$
\inf _{x \in X} F_{n}(x)=\inf _{x \in K} F_{n}(x)
$$

Proposition 2.1. A family of functions F_{n} on X is equi-coercive if and only if there exists a lower semicontinuous coercive function $\Psi: X \rightarrow \overline{\mathbb{R}}$ such that $F_{n} \geq \Psi$ on X, for every n.

Proof. Let $\Psi: X \rightarrow \overline{\mathbb{R}}$ be a lower semicontinuous coercive function such that $F_{n} \geq \Psi$ on X, for every n. Set $K_{\alpha}:=\{\Psi \leq \alpha\} . K_{\alpha}$ is closed and compact because of the lsc and coercivity of Ψ, respectively. Moreover, $\left\{F_{n} \leq \alpha\right\} \subseteq$ K_{α}, for all n. Thus, F_{n} are equi-coercive.

Conversely, let F_{n} be equi-coercive. Then, for each $\alpha \in \mathbb{R}$, there is a compact set K_{α} such that $\left\{F_{n} \leq \alpha\right\} \subseteq K_{\alpha}$, for all n. We shall now define $\Psi: X \rightarrow \overline{\mathbb{R}}$ as

$$
\Psi(x)=\left\{\begin{array}{l}
+\infty, \quad \text { if } x \notin K_{\alpha}, \forall \alpha \in \mathbb{R} \\
\inf \left\{\alpha \mid x \in K_{\beta} \text { for all } \beta>\alpha\right\}
\end{array}\right.
$$

We now show that $\Psi \leq F_{n}$ for all n. Let $x \in X$. If $F_{n}(x)=+\infty$, for all n, then by definition, $\Psi(x)=F_{n}(x)=+\infty$. Otherwise, let F_{k} be a subfamily such that $F_{k}(x)=\beta_{k}<\infty$. Thus, $x \in K_{\beta_{k}}$ for all k and hence $\Psi(x)=\inf _{k}\left\{\beta_{k}\right\} \leq F_{n}(x)$. Thus, $\Psi(x) \leq F(x)$, for every $x \in X$. It now remains to show that Ψ is lsc and coercive. Note that any $x \in\{\Psi \leq \alpha\}$ implies $x \in K_{\beta}$ for all $\beta>\alpha$. Therefore, the sublevel

$$
\{\Psi \leq \alpha\}=\cap_{\beta>\alpha} K_{\beta}
$$

is an arbitrary intersection compact sets and hence is closed and compact.
Definition 2.4. Let X be a vector space. We say a function $F: X \rightarrow \overline{\mathbb{R}}$ is convex if

$$
F(t x+(1-t) y) \leq t F(x)+(1-t) F(y)
$$

for every $t \in(0,1)$ and for every $x, y \in X$ such that $F(x)<+\infty$ and $F(y)<+\infty$. We say a function $F: X \rightarrow \overline{\mathbb{R}}$ is strictly convex if F is not identically $+\infty$ and

$$
F(t x+(1-t) y)<t F(x)+(1-t) F(y)
$$

for every $t \in(0,1)$ and for every $x, y \in X$ such that $x \neq y, F(x)<+\infty$ and $F(y)<+\infty$.

Remark 2.2 (Jensen Inequality). Let X be a real vector space and let $f: X \rightarrow \mathbb{R}$ be a convex function. Then for any given $x_{1}, x_{2}, \ldots, x_{n} \in X$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in[0,1]$ such that $\sum_{i=1}^{n} \lambda_{i}=1$, we have

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right) \leq \sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right) . \tag{2.1}
\end{equation*}
$$

Furthermore, if f is strictly convex then equality holds in (2.1) iff $x_{1}=$ $x_{2}=\ldots=x_{n}$. In fact, more generally, if X is a Banach space, (E, μ) is a probability measure space, $f: X \rightarrow[0,+\infty]$ is a lsc, convex function, then

$$
f\left(\int_{E} g d \mu\right) \leq \int_{E} f \circ g d \mu
$$

for all μ-integrable $g: E \rightarrow X$.
Proposition 2.2. Let X be a vector space. Let $F: X \rightarrow \overline{\mathbb{R}}$ be a strictly convex function. Then F has at most one minimizer in X.

Proof. If x and y are two minimizers of F in X, then

$$
F(x)=F(y)=d:=\min _{z \in X} F(z)<+\infty .
$$

If $x \neq y$, by strict convexity we have

$$
F(t x+(1-t) y)<t F(x)+(1-t) F(y)=d, \quad \forall t \in(0,1) .
$$

This contradicts the fact that d is a minimum of F. Therefore $x=y$.
Thus, combining Theorem 2.1 and Proposition 2.2, we have that on a topological vector space X, if F is a lower semicontinuous, coercive and strictly convex function, then F has a unique minimizer. We end this section with a definition from convex analysis.

Definition 2.5 (Convex Conjugate). Let X be a topological vector space and let X^{\star} be its topological dual. If $F: X \rightarrow \mathbb{R}$, its convex conjugate $F^{\star}: X^{\star} \rightarrow \overline{\mathbb{R}}$ is defined as

$$
F^{\star}\left(x^{\star}\right)=\sup _{x \in X}\left\{x^{\star}(x)-F(x)\right\} .
$$

Exercise 5. If F is convex and lower semicontinuous then $F=\left(F^{\star}\right)^{\star}$.
Exercise 6. Let A be a $n \times n$ symmetric, positive definite matrix and F : $\mathbb{R}^{n} \rightarrow \mathbb{R}$ be defined as

$$
F(x)=\frac{1}{2}\langle x, A x\rangle .
$$

Show that

$$
F^{\star}\left(x^{\star}\right)=\frac{1}{2}\left\langle x^{\star}, A^{-1} x^{\star}\right\rangle .
$$

3 Г-Convergence

The notion of Γ-convergence was introduced by Ennio De Giorgi in a sequence of papers (cf. [5, 3, 4]). An excellent account of this concept is the book of Dal Maso [2] and A. Braides [1].

Definition 3.1. A function F is said to be the Γ-limit of F_{n} (denoted as $\left.F_{n} \xrightarrow{\Gamma} F\right)$ w.r.t the topology of X, if $F=F^{+}=F^{-}$, where
(i)

$$
F^{-}(x)=\sup _{U \in N(x)} \liminf _{n \rightarrow \infty} \inf _{y \in U} F_{n}(y) .
$$

(ii)

$$
F^{+}(x)=\sup _{U \in N(x)} \limsup _{n \rightarrow \infty} \inf _{y \in U} F_{n}(y)
$$

We say F^{-}is the Γ-lower limit and F^{+}is the Γ-upper limit.
Remark 3.1. If X is a topological space satisfying first axiom of countability, the Γ-limit can be characterised as satisfying the following two conditions:
(i) For every $x \in X$ and for every sequence $\left\{x_{n}\right\}$ converging to x in X, we have

$$
\liminf _{n \rightarrow \infty} F_{n}\left(x_{n}\right) \geq F(x)
$$

(ii) For every $x \in X$, there exists a sequence $\left\{x_{n}\right\}$ converging to x in X (called the Γ-realising sequence) such that

$$
\lim _{n \rightarrow \infty} F_{n}\left(x_{n}\right)=F(x) .
$$

Exercise 7. Show that if $F_{n} \xrightarrow{\Gamma} F, G_{n} \xrightarrow{\Gamma} G$ and $F_{n} \leq G_{n}$, for each n, then $F \leq G$.
Exercise 8. Show that if $F_{n} \Gamma$-converges to F, then F is lower semicontinuous.
Exercise 9. Let X be a topological vector space. Show that if $F_{n}: X \rightarrow \overline{\mathbb{R}}$ is convex for each n, then Γ-limsup ${ }_{n} F_{n}$ is convex. Also show that the Γ $\liminf _{n} F_{n}$ is, in general, not convex.
Exercise 10. Compute the Γ-limit of a constant sequence $F_{n}=F$ on X.
Theorem 3.1. Let X be a topological space and F_{n} be a family functions on X.

1. If U is an open subset of X, then

$$
\inf _{x \in U} F^{+}(x) \geq \limsup _{n} \inf _{x \in U} F_{n}(x) .
$$

2. If K is a compact subset of X, then

$$
\inf _{x \in K} F^{-}(x) \leq \liminf _{n} \inf _{x \in K} F_{n}(x) .
$$

Proof. 1. Let $x \in U$. Then, from the definition of Γ-upper limit which says $F(x)$ is sup over all neighbourhoods of x, we have

$$
F^{+}(x) \geq \limsup _{n \rightarrow \infty} \inf _{y \in U} F_{n}(y) .
$$

Therefore,

$$
\inf _{x \in U} F^{+}(x) \geq \limsup _{n \rightarrow \infty} \inf _{y \in U} F_{n}(y) .
$$

2. Since F^{-}is lsc and by the compactness of K, F^{-}attains its minimum on K (cf. Theorem 2.1). Set $d:=\liminf _{n} \inf _{x \in K} F_{n}(x)$ and let x_{n} be a sequence (extracting subsequence, if necessary) in K such that $\lim _{n} F_{n}\left(x_{n}\right)=d$. Thus, there is a subsequence x_{k} which converges to
some $x \in K$. Therefore, for every neighbourhood U of $x, \inf _{y \in U} F_{k}(y) \leq$ $F_{k}\left(x_{k}\right)$ for infinitely many k. Now, taking liminf both sides,

$$
\liminf _{k} \inf _{y \in U} F_{k}(y) \leq \liminf _{k} F_{k}\left(x_{k}\right)=d
$$

and taking supremum over all neighbourhoods U of x, we still have

$$
F^{-}(x)=\sup _{U} \lim _{k} \inf _{y \in U} \inf _{y \in U} F_{k}(y) \leq d .
$$

Now, since $x \in K, \inf _{x \in K} F^{-}(x) \leq d$.

Theorem 3.2 (Fundamental Theorem of Γ-convergence). Let X be a topological space. Let $\left\{F_{n}\right\}$ be a equi-coercive family of functions and let F_{n} Γ-converges to F in X, then
(i) F is coercive.
(ii) $\lim _{n \rightarrow \infty} d_{n}=d$, where $d_{n}=\inf _{x \in X} F_{n}(x)$ and $d=\inf _{x \in X} F(x)$. That is, the minima converges.
(iii) The minimizers of F_{n} converge to a minimizer of F.

Proof. Since $\left\{F_{n}\right\}$ are equi-coercive, by Proposition 2.1, there is a lsc, coercive function Ψ on X such that $F_{n} \geq \Psi$. Now, by Exercise 7, $F \geq \Psi$ and by Exercise $2 F$ is coercive.

Now, by putting $U=X$ in Theorem 3.1, we get $d \geq \lim \sup _{n} d_{n}$. We now need to show that $d \leq \liminf _{n} d_{n}$. If F_{n} are all not identically $+\infty$, then $\liminf _{n} d_{n}<+\infty$. Set $\liminf _{n} d_{n}=\alpha$. By the equi-coercivity of F_{n}, there is a compact set K_{α} such that $\left\{F_{n} \leq \alpha\right\} \subseteq K_{\alpha}$, for all n. Consider,

$$
\begin{aligned}
d \leq \inf _{y \in K_{\alpha}} F(y) & \leq \liminf _{n} \inf _{y \in K_{\alpha}} F_{n}(y) \\
& =\liminf _{n} \inf _{y \in X} F_{n}(y) \\
& =\liminf _{n} d_{n} .
\end{aligned}
$$

Thus, $\lim \sup _{n} d_{n} \leq d \leq \lim \inf _{n} d_{n}$ and hence, $\lim _{n} d_{n}=d$.
Since F is coercive and lsc (Γ-limit is always lsc), then by Theorem 2.1, F attains its minimum. Let x_{n}^{*} be a minimizer of F_{n}, then since F_{n} are equi-coercive x_{n}^{*} belong to a compact set K of X and hence converges up to
a subsequence. Let $x_{n}^{*} \rightarrow x^{*}$ in X. We need to show that $F\left(x^{*}\right)=d$. By Γ-lower limit,

$$
F\left(x^{*}\right) \leq \liminf _{n} F_{n}\left(x_{n}^{*}\right)=\liminf _{n} d_{n}=d
$$

But, $d \leq F\left(x^{*}\right)$. Hence $d=F\left(x^{*}\right)$.
Theorem 3.3 (Compactness). If X is a topological space satisfying second axiom of countability then any sequence of functionals $F_{n}: X \rightarrow \overline{\mathbb{R}}$ has a Γ-convergent subsequence.

Proof. Let $\left\{U_{k}\right\}_{k \in \mathbb{N}}$ be a countable base for the topology of X. For each k, let $d_{k}^{n}=\inf _{y \in U_{k}} F_{n}(y)$. Thus, $\left\{d_{k}^{n}\right\}_{n}$ is a sequence in $\overline{\mathbb{R}}$ which is compact, hence has a subsequence $\left\{d_{k}^{m}\right\}_{m}$ whose limit as $m \rightarrow \infty$ exists in $\overline{\mathbb{R}}$. Thus, for each k, we have subsequence $\left\{d_{k}^{m}\right\}_{m}$ whose limit as $m \rightarrow \infty$ exists in $\overline{\mathbb{R}}$. Choose the diagonal sequence d_{k}^{k} whose limit exists $\mathrm{n} \overline{\mathbb{R}}$ as $k \rightarrow \infty$. In other words, we have chosen a subsequence F_{k} of F_{n} such that

$$
\lim _{k \rightarrow \infty} d_{k}^{k}=\lim _{k \rightarrow \infty} \inf _{y \in U_{k}} F_{k}(y)
$$

Now, define $F(x)=\sup _{U \in N(x)} \lim _{k \rightarrow \infty} \inf _{y \in U_{k}} F_{k}(y)$ and we have by definition $F_{k} \Gamma$-converges to F.
Example 3.1. Let $A_{\varepsilon} \stackrel{H}{\sim} A_{0}$ then we wish to show that $J_{\varepsilon} \stackrel{\Gamma}{\rightharpoonup} J$ in the weak topology of $H_{0}^{1}(\Omega)$ where

$$
J_{\varepsilon}(u)=\int_{\Omega} A_{\varepsilon} \nabla u \cdot \nabla u d x
$$

and

$$
J(u)=\int_{\Omega} A_{0} \nabla u \cdot \nabla u d x
$$

Let $u \in H_{0}^{1}(\Omega)$. We need to find a sequence $\left\{u_{\varepsilon}\right\}$ in $H_{0}^{1}(\Omega)$ such that u_{ε} converges to u weakly in $H_{0}^{1}(\Omega)$ and $\lim _{\varepsilon \rightarrow 0} J_{\varepsilon}\left(u_{\varepsilon}\right)=J(u)$. Let $u_{\varepsilon} \in H_{0}^{1}(\Omega)$ be the solution of

$$
\begin{equation*}
-\operatorname{div}\left(A_{\varepsilon} \nabla u_{\varepsilon}\right)=-\operatorname{div}\left(A_{0} \nabla u\right) \tag{3.1}
\end{equation*}
$$

Then, it follows from H-convergence that $u_{\varepsilon} \rightharpoonup u$ weakly in $H_{0}^{1}(\Omega)$ and $\int_{\Omega} A_{\varepsilon} \nabla u_{\varepsilon} . \nabla u_{\varepsilon} d x \rightarrow \int_{\Omega} A_{0} \nabla u . \nabla u d x$. Thus, we have shown the existence of a sequence $\left\{u_{\varepsilon}\right\}$ converging weakly to u in $H_{0}^{1}(\Omega)$ such that

$$
\lim _{\varepsilon \rightarrow 0} J_{\varepsilon}\left(u_{\varepsilon}\right)=J(u)
$$

Now, let $w_{\varepsilon} \in H_{0}^{1}(\Omega)$ be a sequence such that $w_{\varepsilon} \rightharpoonup u$ weakly in $H_{0}^{1}(\Omega)$. Then, the solution u_{ε} obtained in (3.1) minimizes the functional

$$
\frac{1}{2} J_{\varepsilon}(v)-\int_{\Omega} A_{0} \nabla u . \nabla v d x .
$$

Hence, in particular, we have

$$
\begin{aligned}
\frac{1}{2} \int_{\Omega} A_{\varepsilon} \nabla w_{\varepsilon} \cdot \nabla w_{\varepsilon} d x-\int_{\Omega} A_{0} \nabla u \cdot \nabla w_{\varepsilon} d x \geq & \frac{1}{2} \int_{\Omega} A_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla u_{\varepsilon} d x \\
& -\int_{\Omega} A_{0} \nabla u \cdot \nabla u_{\varepsilon} d x
\end{aligned}
$$

and taking liminf on both sides of above inequality we have

$$
\liminf _{\varepsilon \rightarrow 0} J_{\varepsilon}\left(w_{\varepsilon}\right) \geq J(u)
$$

Hence $J_{\varepsilon} \stackrel{\Gamma}{\rightharpoonup} J$ in the weak topology of $H_{0}^{1}(\Omega)$.
In the above example, we assume the H-convergence of the matrix coefficients to describe the Γ-limit. A general question of interest is the following: If for any sequence of functionals, by compactness, there is a Γ-limit, then under what conditions one can get an integral representation of Γ-limit. In the next section, we describe the situation in one-dimension.

4 Integral Representation (One-Dimension)

For any given $1<p<\infty$ and $c_{1}, c_{2}, c_{3}>0$, let $\mathcal{F}=\mathcal{F}\left(p, c_{1}, c_{2}, c_{3}\right)$ be the class of all functionals $F: W^{1, p}(\Omega) \rightarrow[0,+\infty)$ such that

$$
F(u)=\int_{\Omega} f(x, \nabla u(x)) d x
$$

where $f: \Omega \times \mathbb{R}^{n} \rightarrow[0,+\infty)$
H 1. is a Borel function such that $\xi \mapsto f(x, \xi)$ is convex for all $x \in \Omega$,
H 2. and satisfies the growth conditions of order p

$$
c_{1}|\xi|^{p}-c_{2} \leq f(x, \xi) \leq c_{3}\left(1+|\xi|^{p}\right), \quad \forall x \in \Omega, \xi \in \mathbb{R}^{n}
$$

Exercise 11. If f satisfies $\mathbf{H} 1$ and $\mathbf{H} 2$, then f satisfies the local Lipschitz condition

$$
|f(x, \xi)-f(x, \zeta)| \leq k\left(1+|\xi|^{p-1}+|\zeta|^{p-1}\right)|\xi-\zeta| \quad \forall \xi, \zeta \in \mathbb{R}^{n} .
$$

The constant k depends only on c_{3} and p.
We take $n=1$ in the dimension of Euclidean space and set $\Omega=(a, b)$. Observe that any functional in \mathcal{F} is invariant by addition of a constant c, i.e., $F(u+c)=F(u)$. Thus, it is sufficient to characterize in the space

$$
X=\left\{u \in W^{1, p}(\Omega) \mid u(b)=0\right\}
$$

equipped with L^{p} norm instead of $W^{1, p}(\Omega)$. Since X is embedded in $L^{\infty}(a, b)$, $L^{1}(a, b) \subset X^{\star}$.

Proposition 4.1. Let $X=\left\{u \in W^{1, p}(\Omega) \mid u(b)=0\right\}$ equipped with L^{p} norm. Let $F \in \mathcal{F}$ and consider its integrand f as a function on X, then $F^{\star}: X^{\star} \rightarrow \mathbb{R}$ is given as

$$
F^{\star}(\phi)=\int_{a}^{b} f^{\star}\left(x,-\int_{a}^{x} \phi(t) d t\right) d x, \quad \forall \phi \in L^{1}(a, b) .
$$

Proof. Let us assume $f(x, \cdot) \in C^{1}(\mathbb{R})$ for all $x \in(a, b)$. Due to the growth conditions and continuity of f,

$$
f^{\star}\left(x, \xi^{\star}\right)=\sup _{\xi \in \mathbb{R}}\left\{\xi^{\star} \cdot \xi-f(x, \xi)\right\}=\max _{\xi \in \mathbb{R}}\left\{\xi^{\star} \cdot \xi-f(x, \xi)\right\} .
$$

Thus, if ζ is the point at which maximum is attained, then

$$
\begin{equation*}
f^{\star}\left(x, \zeta^{\star}\right)=\zeta^{\star} \cdot \zeta-f(x, \zeta) \quad \text { if and only if } \zeta^{\star}-\frac{\partial f}{\partial \zeta}(x, \zeta)=0 \tag{4.1}
\end{equation*}
$$

Let $\phi \in L^{1}(a, b)$, define $\Phi \in W^{1,1}(a, b)$ as,

$$
\Phi(x)=-\int_{a}^{x} \phi(t) d t
$$

Note that $\Phi^{\prime}=-\phi$ and $\Phi(a)=0$. Thus, the convex conjugate of F is given as

$$
\begin{aligned}
F^{\star}(\phi) & =\sup _{v \in X}\left\{\int_{a}^{b}\left(\phi(x) v(x)-f\left(x, v^{\prime}(x)\right) d x\right\}\right. \\
& =\sup _{v \in X}\left\{\int_{a}^{b}\left(\Phi(x) v^{\prime}(x)-f\left(x, v^{\prime}(x)\right) d x\right\} \quad\right. \text { (using integration by parts) } \\
& =\max _{v \in X}\left\{\int_{a}^{b}\left(\Phi(x) v^{\prime}(x)-f\left(x, v^{\prime}(x)\right) d x\right\}\right. \\
& =\int_{a}^{b}\left(\Phi(x) u^{\prime}(x)-f\left(x, u^{\prime}(x)\right) d x .\right.
\end{aligned}
$$

By computing Euler equations, we have $\Phi-\frac{\partial f}{\partial u}\left(x, u^{\prime}\right)=c$, for some constant c. But $\Phi(a)=0$ and $\frac{\partial f}{\partial u}\left(a, u^{\prime}(a)\right)=0$, implies that $c=0$ and thus, $\Phi=\frac{\partial f}{\partial u}\left(x, u^{\prime}\right)$ a.e. on (a, b). By choosing $\zeta^{\star}=\Phi(x)$ and $\zeta=u^{\prime}(x)$ in (4.1), we have

$$
\Phi(x)=\frac{\partial f}{\partial u}\left(x, u^{\prime}(x)\right) \quad \text { if and only if } f^{\star}(x, \Phi(x))=\Phi(x) u^{\prime}(x)-f\left(x, u^{\prime}(x)\right)
$$

Hence,

$$
\begin{aligned}
F^{\star}(\phi) & =\int_{a}^{b}\left(\Phi(x) u^{\prime}(x)-f\left(x, u^{\prime}(x)\right) d x\right. \\
& =\int_{a}^{b} f^{\star}(x, \Phi(x) d x \\
& =\int_{a}^{b} f^{\star}\left(x,-\int_{a}^{x} \phi(t) d t\right) d x
\end{aligned}
$$

Now, for a general f satisfying hypotheses $\mathbf{H} 1$ and $\mathbf{H} 2$, we define $f_{\varepsilon}(x, \xi)=$ $\int_{a}^{b} \rho_{\varepsilon}(x-y) f(y, \xi) d y$, where ρ_{ε} are the sequence of mollifiers. Observe that f_{ε} are convex in the second variable and, by Jensen's inequality, $f_{\varepsilon} \geq f$. Also, observe that $\lim _{\varepsilon} f_{\varepsilon}^{\star}\left(x, \xi^{\star}\right)=f^{\star}\left(x, \xi^{\star}\right)$ for all $x \in(a, b)$ and $\xi^{\star} \in \mathbb{R}$. We have, for each ε,

$$
F_{\varepsilon}^{\star}(\phi)=\int_{a}^{b} f_{\varepsilon}^{\star}\left(x,-\int_{a}^{x} \phi(t) d t\right) d x \quad \forall \phi \in L^{1}(a, b) .
$$

Now, by dominated convergence theorem and $F^{\star} \geq F_{\varepsilon}^{\star}$, we get

$$
F^{\star}(\phi) \geq \lim _{k} F_{\varepsilon}^{\star}(\phi)=\int_{a}^{b} f^{\star}\left(x,-\int_{a}^{x} \phi(t) d t\right) d x
$$

Also, by the convex conjugate definition, $f^{\star}\left(x, \xi^{\star}\right) \geq \xi^{\star} \xi-f(x, \xi)$ for all x, ξ, ξ^{\star}. Now, choose $\xi^{\star}=\Phi(x), \xi=v^{\prime}$, where $v \in X$ and integrate both sides of above inequality,

$$
\begin{aligned}
\int_{a}^{b} f^{\star}(x, \Phi(x)) d x & \geq \int_{a}^{b}\left(\Phi(x) v^{\prime}(x)-f\left(x, v^{\prime}(x)\right)\right) d x \\
& =\int_{a}^{b}\left(\phi(x) v(x)-f\left(x, v^{\prime}(x)\right)\right) d x
\end{aligned}
$$

Taking supremum over $v \in V$, we have $F^{\star}(\phi) \leq \int_{a}^{b} f^{\star}(x, \Phi(x)) d x$.
Proposition 4.2. Let $g_{n}: \Omega \times \mathbb{R}^{n} \rightarrow[0,+\infty)$ satisfy hypotheses $\mathbf{H} 1$ and \mathbf{H} 2, for all n. If $g_{n}(\cdot, \xi)$ weak ${ }^{*}$ converges to $g(\cdot, \xi)$ for all $\xi \in \mathbb{R}$, then $g_{n}(\cdot, v(\cdot))$ weak* converges to $g(\cdot, v(\cdot))$, for all $v \in C([a, b])$.

Proof. Let $v \in C([a, b])$ and $\phi \in L^{1}(a, b)$. Also, let $\left(x_{i-1}, x_{i}\right)$ be k number of partitions of (a, b) for $i=1,2, \ldots, k$ such that $x_{0}=a$ and $x_{k}=b$. Consider,

$$
\begin{aligned}
\left|\int_{a}^{b}\left(g_{n}(x, v)-g(x, v)\right) \phi d x\right| \leq & \sum_{i=1}^{k}\left|\int_{\left(x_{i-1}, x_{i}\right)}\left(g_{n}(x, v(x))-g_{n}\left(x, v\left(x_{i}\right)\right)\right) \phi d x\right| \\
& +\sum_{i=1}^{k}\left|\int_{\left(x_{i-1}, x_{i}\right)}\left(g_{n}\left(x, v\left(x_{i}\right)\right)-g\left(x, v\left(x_{i}\right)\right)\right) \phi d x\right| \\
& +\sum_{i=1}^{k}\left|\int_{\left(x_{i-1}, x_{i}\right)}\left(g\left(x, v\left(x_{i}\right)\right)-g(x, v(x))\right) \phi d x\right|
\end{aligned}
$$

The second term converges to zero, by hypothesis, and by uniform local Lipschitz continuity (cf. Exercise 11 of g_{n} and g, we have the result.

Lemma 4.1. Let $g_{n}: \Omega \times \mathbb{R}^{n} \rightarrow[0,+\infty)$ satisfy hypotheses $\mathbf{H} 1$ and \mathbf{H} 2, for all n. Then, there exists a subsequence of $\left\{g_{n}\right\}$ and $a g:(a, b) \times \mathbb{R} \rightarrow[0,+\infty)$ such that $g_{n}(\cdot, \xi)$ weak* converges to $g(\cdot, \xi)$ for all $\xi \in \mathbb{R}$.

Theorem 4.1. Let $\left\{F_{n}\right\}$ be a sequence in \mathcal{F} with integrand f_{n} and $F \in \mathcal{F}$ with integrand f. Then the following statements are equivalent:

1. $F_{n}(\cdot, I) \Gamma$-converges to $F(\cdot, I)$ in $W^{1, p}(I)$, for all open intervals I of (a, b).
2. $f_{n}^{\star}\left(\cdot, \xi^{\star}\right)$ weak ${ }^{*}$ converges to $f^{\star}\left(\cdot, \xi^{\star}\right)$, for all $\xi^{\star} \in \mathbb{R}$.

The proof of above lemma and theorem are being skipped and can be found in [1].
Example 4.1. Let $0<\alpha \leq a_{\varepsilon}(x) \leq \beta<+\infty$ and $g \in L^{2}(a, b)$. Let F_{ε} : $H_{0}^{1}(a, b) \rightarrow \mathbb{R}$ be defined as

$$
F_{\varepsilon}(u)=\int_{a}^{b}\left\{\frac{1}{2} a_{\varepsilon}(x)\left|u^{\prime}\right|^{2}-g u\right\} d x .
$$

The Euler-Lagrange equations yields that the minimizers u_{ε},

$$
\left\{\begin{array}{l}
-\frac{d}{d x}\left(a_{\varepsilon}(x) \frac{d u_{\varepsilon}}{d x}\right)=g \text { in }(a, b) \\
u_{\varepsilon}(a)=u_{\varepsilon}(b)=0 .
\end{array}\right.
$$

Now, set $f_{\varepsilon}(x, \xi):=a_{\varepsilon}(x)|\xi|^{2}$. Then, $f_{\varepsilon}^{\star}\left(x, \xi^{\star}\right)=\frac{\xi^{2}}{4 a_{\varepsilon}(x)}$. But, for each $\xi^{\star} \in$ $\mathbb{R}^{n}, f_{\varepsilon}^{\star}\left(\cdot, \xi^{\star}\right)$ converges weak ${ }^{*}$ in $L^{\infty}(a, b)$ to $f^{\star}\left(\cdot, \xi^{\star}\right)$, where $f^{\star}\left(x, \xi^{\star}\right)=\frac{\xi^{2}}{4 b(x)}$ and

$$
\frac{1}{a_{\varepsilon}(x)} \rightharpoonup \frac{1}{b(x)} .
$$

References

[1] A. Braides, Γ-Convergence for Beginners, vol. 22 of Oxford Lecture series in Mathematics and its Applications, Oxford University Press, 2002.
[2] G. Dal Maso, An Introduction to Γ-Convergence, vol. 8 of Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser Boston, 1993.
[3] E. De Giorgi, Sulla convergenza di alcune successioni di integrali del tipo dell'area, Rendi Condi di Mat., 8 (1975), pp. 277-294.
[4] E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale, Atti Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 58 (1975), pp. 842-850.
[5] E. De Giorgi and S. Spagnolo, Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine, Boll. Un. Mat. It., 8 (1973), pp. 391-411.
[6] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their applications, vol. 31 of Classics in Applied Mathematics, SIAM, 2000.

