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1 Motivation

Let Ω be an open bounded subset of R
n and let ∂Ω denote the boundary of

Ω. For any given 0 < a < b, let M = M(a, b, Ω) denote the class of all n×n

matrices, A = A(x), with L∞(Ω) entries such that,

a|ξ|2 ≤ A(x)ξ.ξ ≤ b|ξ|2 a.e. x ∀ξ ∈ R
n.

Recall the following result on variational inequality on a Hilbert space.
Refer [6] for a complete theory on variational inequality.

Theorem 1.1. Let a(x, y) be a coercive bilinear form on H, K ⊂ H be
a closed and convex subset of H and f ∈ H ′. Then there exists a unique
solution x ∈ K to

a(x, y − x) ≥ 〈f, y − x〉, ∀y ∈ K. (1.1)
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The case K = H in the above result is popularly known as Lax-Milgram
result. In fact, by choosing y = x + z and y = x − z for any z ∈ H in (1.1),
we have a(x, z) = 〈f, z〉 for all z ∈ H and for every given f ∈ H ′.

The Lax-Milgram result implies the existence of a weak solution to the
following second order elliptic equation with Dirichlet boundary condition,

{

−div(A∇u) = f in Ω
u = 0 on ∂Ω,

(1.2)

where A ∈ M(a, b, Ω) and let f ∈ H−1(Ω). In fact, one also has the estimate

‖u‖H1

0
(Ω) ≤

1

a
‖f‖H−1(Ω). (1.3)

The bounded elliptic operator A = −div(A∇) from H1
0 (Ω) into H−1(Ω) is

an isomorphism and the norm of A−1 is not larger than a−1 (cf. (1.3)).
Moreover, the weak solution u of (1.2) can also be characterized as the

minimizer in H1
0 (Ω) of the functional

J(v) =
1

2

∫

Ω

A∇v.∇v dx − 〈f, v〉H−1(Ω),H1

0
(Ω) ,

i.e.,
J(u) = min

v∈H1

0
(Ω)

J(v).

Thus, the problem of studying the asymptotic behaviour of the second order
elliptic problem

{

−div(Aε∇uε) = f in Ω
uε = 0 on ∂Ω,

(1.4)

with {Aε} ⊂ M is equivalent to finding a functional J on H1
0 (Ω) whose

minimum is the solution of the homogenized elliptic equation such that both
the minimizers and minima of Jε converge to the minimizers and minima
of J . Thus, we need to study the convergence of functionals such that the
minimizers and minima converge.

2 Direct Method of Calculus of Variation

Definition 2.1. Let X be a topological space. A function F : X → R =
R ∪ {−∞, +∞} is said to be lower semicontinuous (lsc) at a point x ∈ X if

F (x) = sup
U∈N(x)

inf
y∈U

F (y).
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F is lower semicontinuous on X if F is lower semicontinuous at each point
x ∈ X.

Remark 2.1. Let X be a topological space satisfying first axiom of count-
ability. Then a function F : X → R is lower semicontinuous at x ∈ X

iff
F (x) ≤ lim inf

n→∞

F (xn)

for every sequence {xn} converging to x ∈ X.

Exercise 1. Show that if F is lower semicontinuous then the sublevel set
{F ≤ α} := {x ∈ X : F (x) ≤ α} is closed for all α ∈ R.

Definition 2.2. A function F : X → R is coercive on X if the closure of
the sublevel set {F ≤ α} := {x ∈ X : F (x) ≤ α} is compact in X for every
α ∈ R.

Exercise 2. Show that if F is a coercive functional on X and G ≥ F , then
G is coercive.

Exercise 3. If F is coercive then there is a non-empty compact set K such
that

inf
x∈X

F (x) = inf
x∈K

F (x).

Theorem 2.1. Let X be a topological space. Assume that the function F :
X → R is coercive and lower semicontinuous. Then F has a minimizer in
X.

Proof. If F is identically +∞ or −∞, then every point of X is a minimum
point for F . If F takes the value −∞, then all those points are minimizers
of F . Suppose now that F is not identically +∞ and F > −∞. Let {xn} be
a sequence in X such that

lim
n→∞

F (xn) = inf
y∈X

F (y) := d.

The existence of such a sequence is clear. Without loss of generality, we can
assume that F (xn) < +∞ for all n. Let α := supn F (xn) < +∞. Moreover,
since F is coercive, the sublevel set {F ≤ α} is compact and hence there is a
subsequence {xk} of {xn} which converges to a point x ∈ X. Since F is lsc
we obtain

d = inf
y∈X

F (y) ≤ F (x) ≤ lim inf
k→∞

F (xk) = d.
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Thus, F (x) = d and hence is the minimizer of F in X. which proves our
theorem.

Definition 2.3. A family of functionals {Fn} on X is said to be equi-
coercive, if for every α ∈ R, there is a compact set Kα of X such that
the sublevel sets {Fn ≤ α} ⊆ Kα for all n.

Exercise 4. If {Fn} is a family of equi-coercive, then there is a non-empty
compact K (independent of n) such that

inf
x∈X

Fn(x) = inf
x∈K

Fn(x).

Proposition 2.1. A family of functions Fn on X is equi-coercive if and only
if there exists a lower semicontinuous coercive function Ψ : X → R such that
Fn ≥ Ψ on X, for every n.

Proof. Let Ψ : X → R be a lower semicontinuous coercive function such that
Fn ≥ Ψ on X, for every n. Set Kα := {Ψ ≤ α}. Kα is closed and compact
because of the lsc and coercivity of Ψ, respectively. Moreover, {Fn ≤ α} ⊆
Kα, for all n. Thus, Fn are equi-coercive.

Conversely, let Fn be equi-coercive. Then, for each α ∈ R, there is a
compact set Kα such that {Fn ≤ α} ⊆ Kα, for all n. We shall now define
Ψ : X → R as

Ψ(x) =

{

+∞, if x 6∈ Kα,∀α ∈ R

inf{α | x ∈ Kβ for all β > α}.

We now show that Ψ ≤ Fn for all n. Let x ∈ X. If Fn(x) = +∞, for
all n, then by definition, Ψ(x) = Fn(x) = +∞. Otherwise, let Fk be a
subfamily such that Fk(x) = βk < ∞. Thus, x ∈ Kβk

for all k and hence
Ψ(x) = infk{βk} ≤ Fn(x). Thus, Ψ(x) ≤ F (x), for every x ∈ X. It now
remains to show that Ψ is lsc and coercive. Note that any x ∈ {Ψ ≤ α}
implies x ∈ Kβ for all β > α. Therefore, the sublevel

{Ψ ≤ α} = ∩β>αKβ

is an arbitrary intersection compact sets and hence is closed and compact.

Definition 2.4. Let X be a vector space. We say a function F : X → R is
convex if

F (tx + (1 − t)y) ≤ tF (x) + (1 − t)F (y)
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for every t ∈ (0, 1) and for every x, y ∈ X such that F (x) < +∞ and
F (y) < +∞. We say a function F : X → R is strictly convex if F is not
identically +∞ and

F (tx + (1 − t)y) < tF (x) + (1 − t)F (y)

for every t ∈ (0, 1) and for every x, y ∈ X such that x 6= y, F (x) < +∞ and
F (y) < +∞.

Remark 2.2 (Jensen Inequality). Let X be a real vector space and let
f : X → R be a convex function. Then for any given x1, x2, . . . , xn ∈ X and
λ1, λ2, . . . , λn ∈ [0, 1] such that

∑n

i=1 λi = 1, we have

f

(

n
∑

i=1

λixi

)

≤
n
∑

i=1

λif(xi). (2.1)

Furthermore, if f is strictly convex then equality holds in (2.1) iff x1 =
x2 = . . . = xn. In fact, more generally, if X is a Banach space, (E, µ) is a
probability measure space, f : X → [0, +∞] is a lsc, convex function, then

f

(
∫

E

g dµ

)

≤

∫

E

f ◦ g dµ,

for all µ-integrable g : E → X.

Proposition 2.2. Let X be a vector space. Let F : X → R be a strictly
convex function. Then F has at most one minimizer in X.

Proof. If x and y are two minimizers of F in X, then

F (x) = F (y) = d := min
z∈X

F (z) < +∞.

If x 6= y, by strict convexity we have

F (tx + (1 − t)y) < tF (x) + (1 − t)F (y) = d, ∀t ∈ (0, 1).

This contradicts the fact that d is a minimum of F . Therefore x = y.

Thus, combining Theorem 2.1 and Proposition 2.2, we have that on a
topological vector space X, if F is a lower semicontinuous, coercive and
strictly convex function, then F has a unique minimizer. We end this section
with a definition from convex analysis.
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Definition 2.5 (Convex Conjugate). Let X be a topological vector space
and let X⋆ be its topological dual. If F : X → R, its convex conjugate
F ⋆ : X⋆ → R is defined as

F ⋆(x⋆) = sup
x∈X

{x⋆(x) − F (x)}.

Exercise 5. If F is convex and lower semicontinuous then F = (F ⋆)⋆.

Exercise 6. Let A be a n × n symmetric, positive definite matrix and F :
R

n → R be defined as

F (x) =
1

2
〈x,Ax〉.

Show that

F ⋆(x⋆) =
1

2
〈x⋆, A−1x⋆〉.

3 Γ-Convergence

The notion of Γ-convergence was introduced by Ennio De Giorgi in a sequence
of papers (cf. [5, 3, 4]). An excellent account of this concept is the book of
Dal Maso [2] and A. Braides [1].

Definition 3.1. A function F is said to be the Γ-limit of Fn (denoted as

Fn
Γ
→ F ) w.r.t the topology of X, if F = F+ = F−, where

(i)
F−(x) = sup

U∈N(x)

lim inf
n→∞

inf
y∈U

Fn(y).

(ii)
F+(x) = sup

U∈N(x)

lim sup
n→∞

inf
y∈U

Fn(y).

We say F− is the Γ-lower limit and F+ is the Γ-upper limit.

Remark 3.1. If X is a topological space satisfying first axiom of countability,
the Γ-limit can be characterised as satisfying the following two conditions:

(i) For every x ∈ X and for every sequence {xn} converging to x in X, we
have

lim inf
n→∞

Fn(xn) ≥ F (x).
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(ii) For every x ∈ X, there exists a sequence {xn} converging to x in X

(called the Γ-realising sequence) such that

lim
n→∞

Fn(xn) = F (x).

Exercise 7. Show that if Fn
Γ
→ F , Gn

Γ
→ G and Fn ≤ Gn, for each n, then

F ≤ G.

Exercise 8. Show that if Fn Γ-converges to F , then F is lower semicontinuous.

Exercise 9. Let X be a topological vector space. Show that if Fn : X → R

is convex for each n, then Γ-lim supn Fn is convex. Also show that the Γ-
lim infn Fn is, in general, not convex.

Exercise 10. Compute the Γ-limit of a constant sequence Fn = F on X.

Theorem 3.1. Let X be a topological space and Fn be a family functions on
X.

1. If U is an open subset of X, then

inf
x∈U

F+(x) ≥ lim sup
n

inf
x∈U

Fn(x).

2. If K is a compact subset of X, then

inf
x∈K

F−(x) ≤ lim inf
n

inf
x∈K

Fn(x).

Proof. 1. Let x ∈ U . Then, from the definition of Γ-upper limit which
says F (x) is sup over all neighbourhoods of x, we have

F+(x) ≥ lim sup
n→∞

inf
y∈U

Fn(y).

Therefore,
inf
x∈U

F+(x) ≥ lim sup
n→∞

inf
y∈U

Fn(y).

2. Since F− is lsc and by the compactness of K, F− attains its minimum
on K (cf. Theorem 2.1). Set d := lim infn infx∈K Fn(x) and let xn

be a sequence (extracting subsequence, if necessary) in K such that
limn Fn(xn) = d. Thus, there is a subsequence xk which converges to
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some x ∈ K. Therefore, for every neighbourhood U of x, infy∈U Fk(y) ≤
Fk(xk) for infinitely many k. Now, taking lim inf both sides,

lim inf
k

inf
y∈U

Fk(y) ≤ lim inf
k

Fk(xk) = d

and taking supremum over all neighbourhoods U of x, we still have

F−(x) = sup
U

lim inf
k

inf
y∈U

Fk(y) ≤ d.

Now, since x ∈ K, infx∈K F−(x) ≤ d.

Theorem 3.2 (Fundamental Theorem of Γ-convergence). Let X be a topo-
logical space. Let {Fn} be a equi-coercive family of functions and let Fn

Γ-converges to F in X, then

(i) F is coercive.

(ii) limn→∞ dn = d, where dn = infx∈X Fn(x) and d = infx∈X F (x). That
is, the minima converges.

(iii) The minimizers of Fn converge to a minimizer of F .

Proof. Since {Fn} are equi-coercive, by Proposition 2.1, there is a lsc, coer-
cive function Ψ on X such that Fn ≥ Ψ. Now, by Exercise 7, F ≥ Ψ and by
Exercise 2 F is coercive.

Now, by putting U = X in Theorem 3.1, we get d ≥ lim supn dn. We now
need to show that d ≤ lim infn dn. If Fn are all not identically +∞, then
lim infn dn < +∞. Set lim infn dn = α. By the equi-coercivity of Fn, there is
a compact set Kα such that {Fn ≤ α} ⊆ Kα, for all n. Consider,

d ≤ inf
y∈Kα

F (y) ≤ lim inf
n

inf
y∈Kα

Fn(y)

= lim inf
n

inf
y∈X

Fn(y)

= lim inf
n

dn.

Thus, lim supn dn ≤ d ≤ lim infn dn and hence, limn dn = d.
Since F is coercive and lsc (Γ-limit is always lsc), then by Theorem 2.1,

F attains its minimum. Let x∗

n be a minimizer of Fn, then since Fn are
equi-coercive x∗

n belong to a compact set K of X and hence converges up to
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a subsequence. Let x∗

n → x∗ in X. We need to show that F (x∗) = d. By
Γ-lower limit,

F (x∗) ≤ lim inf
n

Fn(x∗

n) = lim inf
n

dn = d.

But, d ≤ F (x∗). Hence d = F (x∗).

Theorem 3.3 (Compactness). If X is a topological space satisfying second
axiom of countability then any sequence of functionals Fn : X → R has a
Γ-convergent subsequence.

Proof. Let {Uk}k∈N be a countable base for the topology of X. For each k,
let dn

k = infy∈Uk
Fn(y). Thus, {dn

k}n is a sequence in R which is compact,
hence has a subsequence {dm

k }m whose limit as m → ∞ exists in R. Thus,
for each k, we have subsequence {dm

k }m whose limit as m → ∞ exists in R.
Choose the diagonal sequence dk

k whose limit exists n R as k → ∞. In other
words, we have chosen a subsequence Fk of Fn such that

lim
k→∞

dk
k = lim

k→∞

inf
y∈Uk

Fk(y).

Now, define F (x) = supU∈N(x) limk→∞ infy∈Uk
Fk(y) and we have by definition

Fk Γ-converges to F .

Example 3.1. Let Aε
H
⇀ A0 then we wish to show that Jε

Γ
⇀ J in the weak

topology of H1
0 (Ω) where

Jε(u) =

∫

Ω

Aε∇u.∇u dx

and

J(u) =

∫

Ω

A0∇u.∇u dx.

Let u ∈ H1
0 (Ω). We need to find a sequence {uε} in H1

0 (Ω) such that uε

converges to u weakly in H1
0 (Ω) and limε→0 Jε(uε) = J(u). Let uε ∈ H1

0 (Ω)
be the solution of

−div(Aε∇uε) = −div(A0∇u). (3.1)

Then, it follows from H-convergence that uε ⇀ u weakly in H1
0 (Ω) and

∫

Ω
Aε∇uε.∇uε dx →

∫

Ω
A0∇u.∇u dx. Thus, we have shown the existence of

a sequence {uε} converging weakly to u in H1
0 (Ω) such that

lim
ε→0

Jε(uε) = J(u).
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Now, let wε ∈ H1
0 (Ω) be a sequence such that wε ⇀ u weakly in H1

0 (Ω).
Then, the solution uε obtained in (3.1) minimizes the functional

1

2
Jε(v) −

∫

Ω

A0∇u.∇v dx.

Hence, in particular, we have

1

2

∫

Ω

Aε∇wε.∇wε dx −

∫

Ω

A0∇u.∇wε dx ≥
1

2

∫

Ω

Aε∇uε.∇uε dx

−

∫

Ω

A0∇u.∇uε dx

and taking liminf on both sides of above inequality we have

lim inf
ε→0

Jε(wε) ≥ J(u).

Hence Jε
Γ
⇀ J in the weak topology of H1

0 (Ω).

In the above example, we assume the H-convergence of the matrix coeffi-
cients to describe the Γ-limit. A general question of interest is the following:
If for any sequence of functionals, by compactness, there is a Γ-limit, then
under what conditions one can get an integral representation of Γ-limit. In
the next section, we describe the situation in one-dimension.

4 Integral Representation (One-Dimension)

For any given 1 < p < ∞ and c1, c2, c3 > 0, let F = F(p, c1, c2, c3) be the
class of all functionals F : W 1,p(Ω) → [0, +∞) such that

F (u) =

∫

Ω

f(x,∇u(x)) dx

where f : Ω × R
n → [0, +∞)

H 1. is a Borel function such that ξ 7→ f(x, ξ) is convex for all x ∈ Ω,

H 2. and satisfies the growth conditions of order p

c1|ξ|
p − c2 ≤ f(x, ξ) ≤ c3(1 + |ξ|p), ∀x ∈ Ω, ξ ∈ R

n.
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Exercise 11. If f satisfies H1 and H2, then f satisfies the local Lipschitz
condition

|f(x, ξ) − f(x, ζ)| ≤ k(1 + |ξ|p−1 + |ζ|p−1)|ξ − ζ| ∀ξ, ζ ∈ R
n.

The constant k depends only on c3 and p.

We take n = 1 in the dimension of Euclidean space and set Ω = (a, b).
Observe that any functional in F is invariant by addition of a constant c,
i.e., F (u + c) = F (u). Thus, it is sufficient to characterize in the space

X = {u ∈ W 1,p(Ω) | u(b) = 0}

equipped with Lp norm instead of W 1,p(Ω). Since X is embedded in L∞(a, b),
L1(a, b) ⊂ X⋆.

Proposition 4.1. Let X = {u ∈ W 1,p(Ω) | u(b) = 0} equipped with Lp

norm. Let F ∈ F and consider its integrand f as a function on X, then
F ⋆ : X⋆ → R is given as

F ⋆(φ) =

∫ b

a

f ⋆

(

x,−

∫ x

a

φ(t) dt

)

dx, ∀φ ∈ L1(a, b).

Proof. Let us assume f(x, ·) ∈ C1(R) for all x ∈ (a, b). Due to the growth
conditions and continuity of f ,

f ⋆(x, ξ⋆) = sup
ξ∈R

{ξ⋆ · ξ − f(x, ξ)} = max
ξ∈R

{ξ⋆ · ξ − f(x, ξ)}.

Thus, if ζ is the point at which maximum is attained, then

f ⋆(x, ζ⋆) = ζ⋆ · ζ − f(x, ζ) if and only if ζ⋆ −
∂f

∂ζ
(x, ζ) = 0. (4.1)

Let φ ∈ L1(a, b), define Φ ∈ W 1,1(a, b) as,

Φ(x) = −

∫ x

a

φ(t) dt.
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Note that Φ′ = −φ and Φ(a) = 0. Thus, the convex conjugate of F is given
as

F ⋆(φ) = sup
v∈X

{
∫ b

a

(

φ(x)v(x) − f(x, v′(x)
)

dx

}

= sup
v∈X

{
∫ b

a

(

Φ(x)v′(x) − f(x, v′(x)
)

dx

}

(using integration by parts)

= max
v∈X

{
∫ b

a

(

Φ(x)v′(x) − f(x, v′(x)
)

dx

}

=

∫ b

a

(

Φ(x)u′(x) − f(x, u′(x)
)

dx.

By computing Euler equations, we have Φ− ∂f

∂u
(x, u′) = c, for some constant c.

But Φ(a) = 0 and ∂f

∂u
(a, u′(a)) = 0, implies that c = 0 and thus, Φ = ∂f

∂u
(x, u′)

a.e. on (a, b). By choosing ζ⋆ = Φ(x) and ζ = u′(x) in (4.1), we have

Φ(x) =
∂f

∂u
(x, u′(x)) if and only if f ⋆(x, Φ(x)) = Φ(x)u′(x) − f(x, u′(x)).

Hence,

F ⋆(φ) =

∫ b

a

(

Φ(x)u′(x) − f(x, u′(x)
)

dx

=

∫ b

a

f ⋆(x, Φ(x) dx

=

∫ b

a

f ⋆

(

x,−

∫ x

a

φ(t) dt

)

dx

Now, for a general f satisfying hypotheses H1 and H2, we define fε(x, ξ) =
∫ b

a
ρε(x − y)f(y, ξ) dy, where ρε are the sequence of mollifiers. Observe that

fε are convex in the second variable and, by Jensen’s inequality, fε ≥ f .
Also, observe that limε f ⋆

ε (x, ξ⋆) = f ⋆(x, ξ⋆) for all x ∈ (a, b) and ξ⋆ ∈ R. We
have, for each ε,

F ⋆
ε (φ) =

∫ b

a

f ⋆
ε

(

x,−

∫ x

a

φ(t) dt

)

dx ∀φ ∈ L1(a, b).

Now, by dominated convergence theorem and F ⋆ ≥ F ⋆
ε , we get

F ⋆(φ) ≥ lim
k

F ⋆
ε (φ) =

∫ b

a

f ⋆

(

x,−

∫ x

a

φ(t) dt

)

dx.
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Also, by the convex conjugate definition, f ⋆(x, ξ⋆) ≥ ξ⋆ξ − f(x, ξ) for all
x, ξ, ξ⋆. Now, choose ξ⋆ = Φ(x), ξ = v′, where v ∈ X and integrate both
sides of above inequality,

∫ b

a

f ⋆(x, Φ(x)) dx ≥

∫ b

a

(Φ(x)v′(x) − f(x, v′(x))) dx

=

∫ b

a

(φ(x)v(x) − f(x, v′(x))) dx.

Taking supremum over v ∈ V , we have F ⋆(φ) ≤
∫ b

a
f ⋆(x, Φ(x)) dx.

Proposition 4.2. Let gn : Ω×R
n → [0, +∞) satisfy hypotheses H1 and H2,

for all n. If gn(·, ξ) weak* converges to g(·, ξ) for all ξ ∈ R, then gn(·, v(·))
weak* converges to g(·, v(·)), for all v ∈ C([a, b]).

Proof. Let v ∈ C([a, b]) and φ ∈ L1(a, b). Also, let (xi−1, xi) be k number of
partitions of (a, b) for i = 1, 2, . . . , k such that x0 = a and xk = b. Consider,

∣

∣

∣

∣

∫ b

a

(gn(x, v) − g(x, v)) φ dx

∣

∣

∣

∣

≤
k
∑

i=1

∣

∣

∣

∣

∫

(xi−1,xi)

(gn(x, v(x)) − gn(x, v(xi))) φ dx

∣

∣

∣

∣

+
k
∑

i=1

∣

∣

∣

∣

∫

(xi−1,xi)

(gn(x, v(xi)) − g(x, v(xi))) φ dx

∣

∣

∣

∣

+
k
∑

i=1

∣

∣

∣

∣

∫

(xi−1,xi)

(g(x, v(xi)) − g(x, v(x))) φ dx

∣

∣

∣

∣

The second term converges to zero, by hypothesis, and by uniform local
Lipschitz continuity (cf. Exercise 11 of gn and g, we have the result.

Lemma 4.1. Let gn : Ω×R
n → [0, +∞) satisfy hypotheses H1 and H2, for

all n. Then, there exists a subsequence of {gn} and a g : (a, b)×R → [0, +∞)
such that gn(·, ξ) weak* converges to g(·, ξ) for all ξ ∈ R.

Theorem 4.1. Let {Fn} be a sequence in F with integrand fn and F ∈ F
with integrand f . Then the following statements are equivalent:

1. Fn(·, I) Γ-converges to F (·, I) in W 1,p(I), for all open intervals I of
(a, b).
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2. f ⋆
n(·, ξ⋆) weak* converges to f ⋆(·, ξ⋆), for all ξ⋆ ∈ R.

The proof of above lemma and theorem are being skipped and can be
found in [1].

Example 4.1. Let 0 < α ≤ aε(x) ≤ β < +∞ and g ∈ L2(a, b). Let Fε :
H1

0 (a, b) → R be defined as

Fε(u) =

∫ b

a

{

1

2
aε(x)|u′|2 − gu

}

dx.

The Euler-Lagrange equations yields that the minimizers uε,

{

− d
dx

(

aε(x)duε

dx

)

= g in (a, b)

uε(a) = uε(b) = 0.

Now, set fε(x, ξ) := aε(x)|ξ|2. Then, f ⋆
ε (x, ξ⋆) = ξ2

4aε(x)
. But, for each ξ⋆ ∈

R
n, f ⋆

ε (·, ξ⋆) converges weak* in L∞(a, b) to f ⋆(·, ξ⋆), where f ⋆(x, ξ⋆) = ξ2

4b(x)

and
1

aε(x)
⇀

1

b(x)
.
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