Riesz-Fredhölm Theory

T. Muthukumar
tmk@iitk.ac.in

Contents

1 Introduction 1
2 Integral Operators 1
3 Compact Operators 7
4 Fredhölm Alternative 14
Appendices 18
A Ascoli-Arzelá Result 18
B Normed Spaces and Bounded Operators 20

1 Introduction

The aim of this lecture note is to show the existence and uniqueness of Fredhölm integral operators of second kind, i.e., show the existence of a solution x of $x-T x=y$ for any given y, in appropriate function spaces.

2 Integral Operators

Let E be a compact subset of \mathbb{R}^{n} and $C(E)$ denote the space of complex valued continuous functions on E endowed with the uniform norm $\|f\|_{\infty}=$ $\sup _{x \in E}|f(x)|$. Recall that $C(E)$ is a Banach space with the uniform norm.

Definition 2.1. Any continuous function $K: E \times E \rightarrow \mathbb{C}$ is called a continuous kernel.

Since K is continuous on a compact set, K is both bounded, i.e., there is a κ such that

$$
|K(x, y)| \leq \kappa \quad \forall x, y \in E
$$

and uniformly continuous. In particular, for each $\varepsilon>0$ there is a $\delta>0$ such that

$$
\left|K\left(x_{1}, y\right)-K\left(x_{2}, y\right)\right| \leq \varepsilon \quad \forall y \in E
$$

whenever $\left|x_{1}-x_{2}\right|<\delta$.
Example 2.1 (Fredhölm integral operator). For any $f \in C(E)$, we define

$$
T(f)(x)=\int_{E} K(x, y) f(y) d y
$$

where $x \in E$ and $K: E \times E \rightarrow \mathbb{R}$ is a continuous function. For each $\varepsilon>0$,

$$
\left|T f\left(x_{1}\right)-T f\left(x_{2}\right)\right| \leq \int_{E}\left|K\left(x_{1}, y\right)-K\left(x_{2}, y\right)\right||f(y)| d y \leq \varepsilon\|f\|_{\infty}|E|
$$

whenever $\left|x_{1}-x_{2}\right|<\delta$. Thus, $T f \in C(E)$ and T defines a map from $C(E)$ to $C(E)$.
Example 2.2 (Volterra integral operator). For any $f \in C[a, b]$, we define

$$
T(f)(x)=\int_{a}^{x} K(x, y) f(y) d y
$$

where $x \in[a, b]$ and $K:[a, b] \times[a, b] \rightarrow \mathbb{R}$ is a continuous function. Note that, for $x_{1}, x_{2} \in[a, b]$,

$$
\begin{aligned}
T f\left(x_{1}\right)-T f\left(x_{2}\right)= & \int_{a}^{x_{1}} K\left(x_{1}, y\right) f(y) d y-\int_{a}^{x_{2}} K\left(x_{2}, y\right) f(y) d y \\
= & \int_{a}^{x_{1}}\left[K\left(x_{1}, y\right)-K\left(x_{2}, y\right)\right] f(y) d y \\
& +\int_{x_{2}}^{x_{1}} K\left(x_{2}, y\right) f(y) d y
\end{aligned}
$$

Therefore, for each $\varepsilon>0$,

$$
\begin{aligned}
\left|T f\left(x_{1}\right)-T f\left(x_{2}\right)\right| \leq & \int_{a}^{x_{1}}\left|K\left(x_{1}, y\right)-K\left(x_{2}, y\right) \| f(y)\right| d y \\
& +\int_{x_{2}}^{x_{1}}\left|K\left(x_{2}, y\right) \| f(y)\right| d y \\
\leq & \varepsilon\|f\|_{\infty}\left(x_{1}-a\right)+\kappa\left(x_{1}-x_{2}\right)\|f\|_{\infty} \\
\leq & \varepsilon\|f\|_{\infty}(b-a)+\kappa \delta\|f\|_{\infty} \\
\leq & {[(b-a)+\kappa] \varepsilon\|f\|_{\infty} }
\end{aligned}
$$

whenever $\left|x_{1}-x_{2}\right|<\delta$ and, without loss of generality, we have assumed $\delta \leq \varepsilon$. Thus, $T f \in C[a, b]$ and T defines a map from $C[a, b]$ to $C[a, b]$.

One can think of Volterra integral operator as a special case of Fredhölm integral operators by considering a $K:[a, b] \times[a, b]$ such that $K(x, y)=0$ for $y>x$. Geometrically this means, in the square $[a, b] \times[a, b], K$ takes the value zero in the region above $y=x$ line. Thus, Volterra integral operator is a Fredhölm operator for a K which may be discontinuous on the line $y=x$ in the square. In fact, this particular K is a special case of weakly singular kernel.

Definition 2.2. Let $E \subset \mathbb{R}^{n}$ be a compact subset. A function $K: E \times E \rightarrow \mathbb{C}$ is said to be weakly singular kernel if it is continuous for all $x, y \in E$ such that $x \neq y$ and there exist positive constants M and $\alpha \in(0, n)$ such that

$$
|K(x, y)| \leq M|x-y|^{\alpha-n} \quad \forall x, y \in E ; x \neq y
$$

Theorem 2.3. Let $E \subset \mathbb{R}^{n}$ be a compact subset with non-empty interior. Let $K: E \times E \rightarrow \mathbb{C}$ be a continuous function. Then the operator $T: C(E) \rightarrow$ $C(E)$, defined as,

$$
(T f)(x):=\int_{E} K(x, y) f(y) d y, \text { for each } x \in E
$$

is a bounded linear operator, i.e., is in $\mathcal{B}(C(E))$ and

$$
\|T\|=\sup _{x \in E} \int_{E}|K(x, y)| d y
$$

Proof. The fact that T is linear is obvious. For each $f \in C(E)$ with $\|f\|_{\infty} \leq 1$ and $x \in E$, we have

$$
|(T f) x| \leq \int_{E}|K(x, y)| d y
$$

Thus,

$$
\|T\|=\sup _{\substack{f \in C(E) \\\|f\|_{\infty} \leq 1}}\|T f\|_{\infty} \leq \sup _{x \in E} \int_{E}|K(x, y)| d y
$$

It now only remains to show the other inequality. Since K is continuous, there is a $x_{0} \in E$ such that

$$
\int_{E}\left|K\left(x_{0}, y\right)\right| d y=\max _{x \in E} \int_{E}|K(x, y)| d y .
$$

For each $\varepsilon>0$, choose $g_{\varepsilon} \in C(E)$ as

$$
g_{\varepsilon}(y):=\frac{\overline{K\left(x_{0}, y\right)}}{\left|K\left(x_{0}, y\right)\right|+\varepsilon}, \quad \text { for } y \in E .
$$

Then $\left\|g_{\varepsilon}\right\|_{\infty} \leq 1$ and

$$
\begin{aligned}
\left\|T g_{\varepsilon}\right\|_{\infty} & \geq\left|\left(T g_{\varepsilon}\right)\left(x_{0}\right)\right|=\int_{E} \frac{\left|K\left(x_{0}, y\right)\right|^{2}}{\left|K\left(x_{0}, y\right)\right|+\varepsilon} d y \\
& \geq \int_{E} \frac{\left|K\left(x_{0}, y\right)\right|^{2}-\varepsilon^{2}}{\left|K\left(x_{0}, y\right)\right|+\varepsilon} d y=\int_{E}\left|K\left(x_{0}, y\right)\right| d y-\varepsilon|E|
\end{aligned}
$$

Hence

$$
\|T\|=\sup _{\substack{f \in C(E) \\\|f\|_{\infty} \leq 1}}\|T f\|_{\infty} \geq\left\|T g_{\varepsilon}\right\|_{\infty} \geq \int_{E}\left|K\left(x_{0}, y\right)\right| d y-\varepsilon|E|
$$

and, since ε is arbitrary, we have

$$
\|T\| \geq \int_{E}\left|K\left(x_{0}, y\right)\right| d y=\max _{x \in E} \int_{E}|K(x, y)| d y
$$

For any operator $T: X \rightarrow X$, one can define the iterated operators $T^{k}: X \rightarrow X$ as the k-times composition of T with itself.

Theorem 2.4 (Neumann Series). Let X be a Banach space, $T \in B(X)$ with $\|T\|<1$ (contraction) and $I: X \rightarrow X$ be the identity operator. Then the map $I-T: X \rightarrow X$ is invertible given by

$$
(I-T)^{-1}=\sum_{k=0}^{\infty} T^{k}
$$

and the inverse is bounded

$$
\left\|(I-T)^{-1}\right\| \leq \frac{1}{1-\|T\|}
$$

Proof. Since X is a Banach space, by Theorem B.12, $\mathcal{B}(X)$ is a Banach space. Thus, owing to Theorem B.4, to show the convergence of the series $\sum_{k=0}^{\infty} T^{k}$ it is enough to show that it is absolutely convergent. Note that

$$
\sum_{k=0}^{\infty}\left\|T^{k}\right\|=\lim _{m \rightarrow \infty} \sum_{k=0}^{m}\left\|T^{k}\right\| \leq \lim _{m \rightarrow \infty} \sum_{k=0}^{m}\|T\|^{k}=\sum_{k=0}^{\infty}\|T\|^{k}
$$

Since $\|T\|<1$, the geometric series converges to $(1-\|T\|)^{-1}$ and hence the series $\sum_{k=0}^{\infty} T^{k}$ is absolutely convergent and, thus, convergence in $\mathcal{B}(X)$. Let $S: X \rightarrow X$ be the limit of the series, i.e.,

$$
S:=\sum_{k=0}^{\infty} T^{k}
$$

Note that $\|S\| \leq(1-\|T\|)^{-1}$, hence, is a bounded linear operator on X, i.e., $S \in \mathcal{B}(X)$. It only remains to show that S is the inverse of $I-T$. Note that

$$
\begin{aligned}
(I-T) S & =(I-T) \lim _{m \rightarrow \infty} \sum_{k=0}^{m} T^{k}=\lim _{m \rightarrow \infty}(I-T)\left(I+T+\ldots+T^{m}\right) \\
& =\lim _{m \rightarrow \infty}\left(I-T^{m+1}\right)=I
\end{aligned}
$$

The last equality is due to the fact that the sequence T^{m+1} converges to 0 in $\mathcal{B}(X)$ because $\left\|T^{m+1}\right\| \leq\|T\|^{m+1}$ and, since $\|T\|<1, \lim _{m \rightarrow \infty}\|T\|^{m+1} \rightarrow 0$. Similarly,

$$
\begin{aligned}
S(I-T) & =\lim _{m \rightarrow \infty} \sum_{k=0}^{m} T^{k}(I-T)=\lim _{m \rightarrow \infty}\left(I+T+\ldots+T^{m}\right)(I-T) \\
& =\lim _{m \rightarrow \infty}\left(I-T^{m+1}\right)=I .
\end{aligned}
$$

If $x \in X$ is the solution of $(I-T) x=y$, for any given $y \in X$, then x can be computed as

$$
x=(I-T)^{-1} y=\sum_{k=0}^{\infty} T^{k} y=\lim _{m \rightarrow \infty} \sum_{k=0}^{m} T^{k} y=\lim _{m \rightarrow \infty} x_{m}
$$

Note that $x_{m+1}=T x_{m}+y$, for $m \geq 0$.
Theorem 2.5. Let X be a Banach space, $T \in B(X)$ with $\|T\|<1$ (contraction) and $I: X \rightarrow X$ be the identity operator. For any given $y \in X$ and arbitrary $x_{0} \in X$ the sequence

$$
x_{m+1}:=T x_{m}+y \quad \text { for } m=0,1,2, \ldots
$$

converges to a unique solution $x \in X$ of $(I-T) x=y$.
Proof. Note that $x_{1}=T x_{0}+y, x_{2}=T x_{1}+y=T^{2} x_{0}+(I+T) y$. Thus, by induction, for $m=1,2, \ldots$,

$$
x_{m}=T^{m} x_{0}+\sum_{k=0}^{m-1} T^{k} y
$$

Hence,

$$
\lim _{m \rightarrow \infty} x_{m}=\sum_{k=0}^{\infty} T^{k} y=(I-T)^{-1} y
$$

Corollary 2.6. Let K be a continuous kernel satisfying

$$
\max _{x \in E} \int_{E}|K(x, y)| d y<1
$$

Then, for each $g \in C(E)$, the integral equation of the second kind

$$
f(x)-\int_{E} K(x, y) f(y) d y=g(x) \quad x \in E
$$

has a unique solution $f \in C(E)$. Further, for any $f_{0} \in C(E)$, the sequence

$$
f_{m+1}(x):=\int_{E} K(x, y) f_{m}(y) d y+g(x), m=0,1,2, \ldots
$$

converges uniformly to $f \in C(E)$.

3 Compact Operators

Theorem 3.1. A subset of a normed space is compact iff it is sequentially compact.

Definition 3.2. A subset E of a normed space X is said to be relatively compact if \bar{E}, the closure of E, is compact in X.

Theorem 3.3. Any bounded and finite dimensional subset of a normed space is relatively compact.

Definition 3.4. Let X and Y be normed spaces. A linear operator $T: X \rightarrow$ Y is said to be compact if $T(E)$ is relatively compact in Y, for every bounded subset $E \subset X$.

Let $\mathcal{K}(X, Y)$ be the space of all compact linear maps from X to Y. To verify compactness of T, it is enough to check the relative compactness of $T(B)$ in Y for the closed unit ball $B \subset X$.

Theorem 3.5. A linear operator $T: X \rightarrow Y$ is compact iff for any bounded sequence $\left\{x_{n}\right\} \subset X$, the sequence $\left\{T x_{n}\right\} \subset Y$ admits a convergent subsequence.

Proposition 3.6. The set $\mathcal{K}(X, Y)$ is a subspace of $\mathcal{B}(X, Y)$.
Proof. Any compact linear operator is bounded because any relatively compact set is bounded. Thus, $\mathcal{K}(X, Y) \subset \mathcal{B}(X, Y)$. Let $S, T \in \mathcal{K}(X, Y)$. It is easy to check that, for every bounded subset E of X and $\alpha, \beta \in \mathbb{C}$, $(\alpha S+\beta T)(E)$ is relatively compact in Y, since $S(E)$ and $T(E)$ are both relatively compact in Y.

Theorem 3.7. Let X, Y and Z be normed spaces, $S \in \mathcal{B}(X, Y)$ and $T \in$ $\mathcal{B}(Y, Z)$. If either one of S or T is compact, then the composition $T \circ S$: $X \rightarrow Z$ is compact.

Proof. Let $\left\{x_{n}\right\}$ be a bounded sequence in X. Suppose S is compact, then there is a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $S x_{n_{k}} \rightarrow y$ in Y, as $k \rightarrow \infty$. Since T is continuous, $T\left(S x_{n_{k}}\right) \rightarrow T y$ in Z, as $k \rightarrow \infty$. Thus, $T \circ S$ is compact.

On the other hand, since S is bounded, $S x_{n}$ is bounded sequence in Y. If T is compact, then there is a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $T\left(S x_{n_{k}}\right) \rightarrow z$ in Z, as $k \rightarrow \infty$. Thus, $T \circ S$ is compact.

Theorem 3.8. If $T \in \mathcal{B}(X, Y)$ such that $T(X)$ is finite dimensional then T is compact.

Proof. Let $E \subset X$ be bounded. Since T is bounded, $T(E)$ is bounded in Y. But $T(E)$ is a bounded subset of the finite dimensional space $T(X)$ and, hence, $T(E)$ is relatively compact in Y.

Theorem 3.9. Let $E \subset \mathbb{R}^{n}$ be a compact subset with non-empty interior and $K: E \times E \rightarrow \mathbb{C}$ is a continuous kernel. Then the bounded linear operator $T: C(E) \rightarrow C(E)$, defined as,

$$
(T f)(x):=\int_{E} K(x, y) f(y) d y, \text { for each } x \in E
$$

is compact.
Proof. Let $B \subset C(E)$ be a bounded subset, i.e., there is a $M>0$ such that $\|f\|_{\infty} \leq M$ for all $f \in B$. Thus, for all $f \in B$, we have

$$
|T f(x)| \leq \kappa M|E|
$$

for all $x \in E$ and $f \in B$. Thus, $T(B)$ is bounded in $C(E)$. By the uniform continuity of K, for each $\varepsilon>0$,
$\left|T f\left(x_{1}\right)-T f\left(x_{2}\right)\right| \leq \int_{E}\left|K\left(x_{1}, y\right)-K\left(x_{2}, y\right)\right||f(y)| d y \leq \varepsilon\|f\|_{\infty}|E| \leq \varepsilon M|E|$
for all $x_{1}, x_{2} \in E$ such that $\left|x_{1}-x_{2}\right|<\delta$ and for all $f \in B$. Therefore, $T(B)$ is equicontinuous. By Arzelá-Ascoli theorem (cf. Appendix A) $T(B)$ closure is compact and, hence, T is compact.

Theorem 3.10. Let $E \subset \mathbb{R}^{n}$ be a compact subset with non-empty interior and $K: E \times E \rightarrow \mathbb{C}$ be a weakly singular kernel. Then the bounded linear operator $T: C(E) \rightarrow C(E)$, defined as,

$$
(T f)(x):=\int_{E} K(x, y) f(y) d y, \text { for each } x \in E
$$

is compact.

Definition 3.11. Let V and W be vector spaces over the same field. For any $T \in \mathcal{L}(V, W)$, the kernel of T, denoted as $N(T)$, is defined as

$$
N(T)=\{x \in V \mid T x=0\} .
$$

The kernel of T is also referred to as null space of T and the dimension of kernel of T is called nullity of T. Also, the range of T, denoted as $R(T)$, is defined as

$$
R(T)=\{T x \mid x \in V\}
$$

The dimension of range of T is called the rank of T.
Exercise 3.1. If $T \in \mathcal{L}(V, W)$, then $N(T)$ is a subspace of V and $R(T)$ is a subspace of W.

Theorem 3.12. Let X be a normed space and $T: X \rightarrow X$ be a compact linear operator. Then $N(I-T)$ is finite dimensional and $R(I-T)$ is closed in X.

Proof. Let B_{1} be the closed unit ball in $N(I-T)$, i.e.,

$$
B_{1}:=\{x \in N(I-T) \mid\|x\| \leq 1\}
$$

If $x \in B_{1}$, then $x=T x$ and $\|T x\| \leq 1$. Thus, $B_{1} \subset T(B)$, where B is the closed unit ball of X. Since T is a compact operator, B_{1} is compact in X and, hence, $N(I-T)$ is finite dimensional (cf. Theorem B.8).

Let $\left\{y_{n}\right\} \subset R(I-T)$ and suppose that $y_{n} \rightarrow y$ in X. Thus, there is a sequence $\left\{x_{n}\right\} \subset X$ such that $y_{n}=x_{n}-T x_{n}$. Since $N(I-T)$ is finite dimensional, by Theorem B.6, for each n, there is a $z_{n} \in N(I-T)$ such that $\left\|x_{n}-z_{n}\right\|=\inf _{z \in N(I-T)}\left\|x_{n}-z\right\|$. Thus, $y_{n}=\left(x_{n}-z_{n}\right)-T\left(x_{n}-z_{n}\right)$.

If the sequence $\left\{x_{n}-z_{n}\right\}$ is bounded in X, and since T is compact, there is a subsequence $T\left(x_{n_{k}}-z_{n_{k}}\right) \rightarrow u$ in X. Then, $x_{n_{k}}-z_{n_{k}} \rightarrow y+u$. Hence, $T(y+u)=u$. Set $s:=y+u$. Now consider, $(I-T) s=s-T s=y+u-u=y$. Therefore, $y \in R(I-T)$ and, hence, $R(I-T)$ is closed. It only remains to prove that $\left\{x_{n}-z_{n}\right\}$ is a bounded sequence in X.

Suppose not, then, for a subsequence, $\left\|x_{n_{k}}-z_{n_{k}}\right\| \rightarrow \infty$ as $k \rightarrow \infty$. Set

$$
w_{n_{k}}:=\frac{1}{\left\|x_{n_{k}}-z_{n_{k}}\right\|}\left(x_{n_{k}}-z_{n_{k}}\right)
$$

so that $\left\|w_{n_{k}}\right\|=1$. Further

$$
(I-T) w_{n_{k}}=\frac{1}{\left\|x_{n_{k}}-z_{n_{k}}\right\|} y_{n_{k}}
$$

and hence the LHS converges to the zero vector, since the denominator in RHS blows up. Since T is compact, there is a subsequence $\left\{w_{n_{k_{l}}}\right\}$ of $\left\{w_{n_{k}}\right\}$ such that $T w_{n_{k_{l}}} \rightarrow v$ in X. But, since $(I-T) w_{n_{k_{l}}} \rightarrow 0$ in X, we should have $w_{n_{k_{l}}} \rightarrow v$ in X. Thus, $T w_{n_{k_{l}}} \rightarrow T v$ and, hence, $(I-T) v=0$, i.e., $v \in N(I-T)$. On the other hand,

$$
d\left(w_{n_{k_{l}}}, N(I-T)\right)=\frac{d\left(x_{n_{k_{l}}}, N(I-T)\right.}{\left\|x_{n_{k_{l}}}-z_{n_{k_{l}}}\right\|}=1 .
$$

Thus, $d(v, N(I-T))=1$ and $v \in N(I-T)$, which is impossible. Hence, the sequence $\left\{x_{n}-z_{n}\right\}$ is bounded in X.

For any normed space X and compact operator $T: X \rightarrow X$, one can define the operators $(I-T)^{n}: X \rightarrow X$, for $n \geq 1$. Let us denote $L:=I-T$, then $L^{n}=(I-T)^{n}=I-T_{n}$ where

$$
T_{n}:=\sum_{k=1}^{n}(-1)^{k-1} \frac{n!}{k!(n-k)!} T^{k}
$$

Note that T_{n} is compact and, hence $N\left(L^{n}\right)$ is finite dimensional and $R\left(L^{n}\right)$ is closed in X, for all $n \geq 1$.

Theorem 3.13. Let X be a normed space, $T \in \mathcal{K}(X)$ and $L:=I-T$. Then there is a unique non-negative integer $r \geq 0$, called the Riesz number of T such that

$$
\{0\} \subsetneq N(L) \subsetneq N\left(L^{2}\right) \subsetneq \ldots \subsetneq N\left(L^{r}\right)=N\left(L^{r+1}\right)=\ldots
$$

and

$$
X \supsetneq R(L) \supsetneq R\left(L^{2}\right) \supsetneq \ldots \supsetneq R\left(L^{r}\right)=R\left(L^{r+1}\right)=\ldots
$$

Proof. If $x \in N\left(L^{n}\right)$, i.e., $L^{n} x=0$, then $L^{n+1} x=L\left(L^{n} x\right)=L 0=0$. Therefore, $\{0\} \subset N(L) \subset N\left(L^{2}\right) \subset \ldots$. Suppose that all the inclusions are proper. Since $N\left(L^{n}\right)$ is finite dimensional, it is closed proper subspace of $N\left(L^{n+1}\right)$. Therefore, by Riesz lemma, there is a $x_{n} \in N\left(L^{n+1}\right)$ such that
$\left\|x_{n}\right\|=1$ and $d\left(x_{n}, N\left(L^{n}\right)\right) \geq 1 / 2$. Thus, we have a bounded sequence $\left\{x_{n}\right\} \subset X$ with $d\left(x_{n}, N\left(L^{n}\right)\right) \geq 1 / 2$. Consider

$$
T\left(x_{n}-x_{m}\right)=(I-L)\left(x_{n}-x_{m}\right)=x_{n}-\left(x_{m}+L x_{n}-L x_{m}\right) .
$$

Note that, for $n>m$, we have

$$
L^{n}\left(x_{m}+L x_{n}-L x_{m}\right)=L^{n-m-1} L^{m+1} x_{m}+L^{n+1} x_{n}-L^{n-m} L^{m+1} x_{m}=0 .
$$

Therefore, for $n>m,\left\|T x_{n}-T x_{m}\right\| \geq 1 / 2$, which contradicts that T, since there can be no convergent subsequence of $\left\{T x_{n}\right\}$. Thus, the sequence of inclusions cannot be proper for all. There exists two consecutive null spaces that are equal. Set

$$
r:=\min \left\{k: N\left(L^{k}\right)=N\left(L^{k+1}\right)\right\} .
$$

We claim that $N\left(L^{r}\right)=N\left(L^{r+1}\right)=\ldots$. Note that, for some $k \geq r$, we have shown that $N\left(L^{k}\right)=N\left(L^{k+1}\right)$. Now, consider $x \in N\left(L^{k+2}\right)$, then $0=L^{k+2} x=L^{k+1} L x$. Thus, $L x \in N\left(L^{k+1}\right)=N\left(L^{k}\right), 0=L^{k} L x=L^{k+1} x$ and $x \in N\left(L^{k+1}\right)$. Hence, $N\left(L^{k+1}\right)=N\left(L^{k+2}\right)$ and

$$
\{0\} \subsetneq N(L) \subsetneq N\left(L^{2}\right) \subsetneq \ldots \subsetneq N\left(L^{r}\right)=N\left(L^{r+1}\right)=\ldots .
$$

Let $y \in R\left(L^{n+1}\right)$, then there is a $x \in X$ such that $L^{n+1} x=y$. Thus, $L^{n}(L x)=y$ and $y \in R\left(L^{n}\right)$. We assume the inclusions are all proper. Since $R\left(L^{k}\right)$ is closed subspace, by Riesz lemma, there is a $y_{n} \in R\left(L^{n}\right)$ such that $\left\|y_{n}\right\|=1$ and $d\left(y_{n}, R\left(L^{n+1}\right)\right) \geq 1 / 2$. Thus, we have a bounded sequence $\left\{y_{n}\right\} \subset X$ with $d\left(y_{n}, R\left(L^{n+1}\right)\right) \geq 1 / 2$. Consider

$$
T\left(y_{n}-y_{m}\right)=(I-L)\left(y_{n}-y_{m}\right)=y_{n}-\left(y_{m}+L y_{n}-L y_{m}\right) .
$$

Note that, for $m>n$, we have

$$
y_{m}+L y_{n}-L y_{m}=L^{n+1}\left(L^{m-n-1} x_{m}+x_{n}-L^{m-n} x_{m}\right)
$$

and $y_{m}+L y_{n}-L y_{m} \in R\left(L^{n+1}\right)$. Thus, for $n>m,\left\|T y_{n}-T y_{m}\right\| \geq 1 / 2$, which contradicts that T, since there can be no convergent subsequence of $\left\{T y_{n}\right\}$. Thus, the sequence of inclusions cannot be proper for all. There exists two consecutive range spaces that are equal. Set

$$
s:=\min \left\{k: R\left(L^{k}\right)=R\left(L^{k+1}\right)\right\} .
$$

We claim that $R\left(L^{s}\right)=R\left(L^{s+1}\right)=\ldots$. Note that, for some $k \geq s$, we have shown that $R\left(L^{k}\right)=R\left(L^{k+1}\right)$. Now, consider $y \in R\left(L^{k+1}\right)$, then $y=$ $L^{k+1} x=L\left(L^{k} x\right)$. Thus, for some $x_{0} \in X, L^{k} x=L^{k+1} x_{0}$ and $y=L\left(L^{k} x\right)=$ $L\left(L^{k+1} x_{0}\right)=L^{k+2} x_{0}$. Hence $R\left(L^{k+1}\right)=R\left(L^{k+2}\right)$ and

$$
X \supsetneq R(L) \supsetneq R\left(L^{2}\right) \supsetneq \ldots \supsetneq R\left(L^{r}\right)=R\left(L^{r+1}\right)=\ldots
$$

It only remains to prove that $r=s$. Suppose $r>s$ and let $x \in N\left(L^{r}\right)$. Then $L^{r-1} x \in R\left(L^{r-1}\right)=R\left(L^{r}\right)$ and, hence, there is a $y \in X$ such that $L^{r} y=L^{r-1} x$. Therefore, $L^{r+1} y=L^{r} x=0$ and $y \in N\left(L^{r+1}\right)=N\left(L^{r}\right)$. This means that $L^{r-1} x=0$ and $x \in N\left(L^{r-1}\right)$ which contradicts the minimality of r.

On the other hand, if $r<s$. Let $y \in R\left(L^{s-1}\right)$. Then, for some $x \in X$, $L^{s-1} x=y$ and $L y=L^{s} x$. Consequently, $L y \in R\left(L^{s}\right)=R\left(L^{s+1}\right)$. Hence, there is a $x_{0} \in X$ such that $L^{s+1} x_{0}=L y$. Therefore,

$$
0=L^{s+1} x_{0}-L y=L^{s}\left(L x_{0}-x\right)
$$

i.e., $L x_{0}-x \in N\left(L^{s}\right)=N\left(L^{s-1}\right)$ and $L^{s} x_{0}=L^{s-1} x=y$. Thus, $y \in R\left(L^{s}\right)$ which contradicts the minimality of s.
Theorem 3.14. Let X be a normed space, $T \in \mathcal{K}(X)$ and $L:=I-T$. Then, for each $x \in X$, there exists unique $y \in N\left(L^{r}\right)$ and $z \in R\left(L^{r}\right)$ such that $x=y+z$, i.e., $X=N\left(L^{r}\right) \oplus R\left(L^{r}\right)$.
Proof. Let $x \in N\left(L^{r}\right) \cap R\left(L^{r}\right)$. Then $x=L^{r} y$ for some $y \in X$ and $L^{r} x=0$. Thus, $L^{2 r} y=0$ and $y \in N\left(L^{2 r}\right)=N\left(L^{r}\right)$. Therefore, $0=L^{r} y=x$.

Let $x \in X$ be an arbitrary element. Then $L^{r} x \in R\left(L^{r}\right)=R\left(L^{2 r}\right)$. Thus, there is a $x_{0} \in X$ such that $L^{r} x=L^{2 r} x_{0}$ and $L^{r}\left(x-L^{r} x_{0}\right)$. Define $z:=L^{r} x_{0} \in R\left(L^{r}\right)$ and $y:=x-z$. Since $L^{r} y=L^{r} x-L^{r} z=L^{r} x-L^{2 r} x_{0}=0$, $y \in N\left(L^{r}\right)$.
Theorem 3.15. Let X be a normed space, $T \in \mathcal{K}(X)$ and $L:=I-T$. Then L is injective iff L is surjective. If L is injective (and hence bijective), then its inverse $L^{-1} \in \mathcal{B}(X)$.

Proof. The injectivity of L is equivalent to saying that the Riesz number is $r=0$, which means L is surjective. The argument is also true viceversa.

If L is injective and suppose L^{-1} is not bounded. Then there is a sequence $\left\{x_{n}\right\} \subset X$ with $\left\|x_{n}\right\|=1$ such that $\left\|L^{-1} x_{n}\right\| \geq n$, for all $n \in \mathbb{N}$. Define, for each $n \in \mathbb{N}$,

$$
y_{n}:=\frac{1}{\left\|L^{-1} x_{n}\right\|} x_{n} ; \quad z_{n}:=\frac{1}{\left\|L^{-1} x_{n}\right\|} L^{-1} x_{n} .
$$

Then $L z_{n}=y_{n} \rightarrow 0$ in X, as $n \rightarrow \infty$, and $\left\|z_{n}\right\|=1$ for all n. By the compactness of T, there is a subsequence $\left\{z_{n_{k}}\right\}$ of z_{n} such that, for some $z \in X, T z_{n_{k}} \rightarrow z$ as $k \rightarrow \infty$. Since $L z_{n}=y_{n} \rightarrow 0$, we have $z_{n_{k}} \rightarrow z$, as $k \rightarrow \infty$. Also, $L z=0$ and $z \in N(L)$. By the injectivity of $L, z=0$ which contradicts the fact that $\left\|z_{n}\right\|=1$. Thus, L^{-1} must be bounded.

Corollary 3.16. Let $T: X \rightarrow X$ be a compact linear operator on a normed space X. If the homogeneous equation $x-T x=0$ has only the trivial solution $x=0$, then for each $f \in X$ the inhomogeneous equation $x-T x=f$ has a unique solution $x \in X$ which depends continuously on f.

If the homogeneous equation $x-T x=0$ has non-trivial solution, then it has $m \in \mathbb{N}$ linearly independent solutions $x_{1}, x_{2}, \ldots, x_{m}$ and the inhomogeneous equation $x-T x=f$ is either unsolvable or its general solution is of the form

$$
x=x_{0}+\sum_{i=1}^{m} \alpha_{i} x_{i}
$$

where $\alpha_{i} \in \mathbb{C}$ for each i and x_{0} is a particular solution of the inhomogeneous equation.

The decomposition $X=N\left(L^{r}\right) \oplus R\left(L^{r}\right)$ induces a projection operator $P: X \rightarrow N\left(L^{r}\right)$ that maps $P x:=y$, where $x=y+z$.

Proposition 3.17. The projection operator $P: X \rightarrow N\left(L^{r}\right)$ is compact.
Proof. We first show that P is a bounded linear operator. Suppose not, then there is a sequence $\left\{x_{n}\right\} \subset X$ with $\left\|x_{n}\right\|=1$ such that $\left\|P x_{n}\right\| \geq n$ for all $n \in \mathbb{N}$. Define, for each $n \in \mathbb{N}, y_{n}:=\frac{1}{\left\|P x_{n}\right\|} x_{n}$. Then $y_{n} \rightarrow 0$, as $n \rightarrow \infty$, and $\left\|P y_{n}\right\|=1$ for all $n \in \mathbb{N}$. Since $N\left(L^{r}\right)$ is finite-dimensional and $\left\{P y_{n}\right\}$ is bounded, by Theorem 3.3, there is a subsequence $\left\{y_{n_{k}}\right\}$ such that $P y_{n_{k}} \rightarrow z$ in $N\left(L^{r}\right)$, as $k \rightarrow \infty$.

Also, since $y_{n_{k}} \rightarrow 0$, we have $P y_{n_{k}}-y_{n_{k}} \rightarrow z$, as $k \rightarrow \infty$. Note that $P y_{n_{k}}-y_{n_{k}} \in R\left(L^{r}\right)$, by direct decomposition, thus $z \in R\left(L^{r}\right)$ because $R\left(L^{r}\right)$ is closed. Since $z \in N\left(L^{r}\right) \cap R\left(L^{r}\right), z=0$ and $P y_{n_{k}} \rightarrow 0$ which contradicts $\left\|P y_{n_{k}}\right\|=1$. Thus, P must be bounded. Moreover, since $P(X)=N\left(L^{r}\right)$ is finite dimensional, by Theorem 3.8, P is compact.

4 Fredhölm Alternative

Definition 4.1. Let V and W be complex vector spaces. A mapping $\langle\cdot, \cdot\rangle$: $V \times W \rightarrow \mathbb{C}$ is called a bilinear form if
$\left\langle\alpha_{1} x_{1}+\alpha_{2} x_{2}, y\right\rangle=\alpha_{1}\left\langle x_{1}, y\right\rangle+\alpha_{2}\left\langle x_{2}, y\right\rangle,\left\langle x, \beta_{1} y_{1}+\beta_{2} y_{2}\right\rangle=\beta_{1}\left\langle y, x_{1}\right\rangle+\beta_{2}\left\langle x, y_{2}\right\rangle$
for all $x_{1}, x_{2}, x \in X$ and $y_{1}, y_{2}, y \in Y$ and $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathbb{C}$. Further, a bilinear form is called nondegenerate if for every non-zero $x \in X$ there exists a $y \in Y$ such that $\langle x, y\rangle \neq 0$ and, for every non-zero $y \in Y$ there is a $x \in X$ such that $\langle x, y\rangle \neq 0$.
Definition 4.2. If two normed spaces X and Y are equipped with a nondegenerate bilinear form, then we call it a dual system denoted by $\langle X, Y\rangle$.
Example 4.1. Let $E \subset \mathbb{R}^{n}$ be a non-empty compact subset. We define the bilinear form in $\langle C(E), C(E)\rangle$ as

$$
\langle f, g\rangle:=\int_{E} f(x) g(x) d x
$$

which makes the pair a dual system.
Definition 4.3. Let $\left\langle X_{1}, Y_{1}\right\rangle$ and $\left\langle X_{2}, Y_{2}\right\rangle$ be two dual systems. The operators $S: X_{1} \rightarrow X_{2}$ and $T: Y_{2} \rightarrow Y_{1}$ are called adjoint if $\langle S x, y\rangle=\langle x, T y\rangle$ for all $x \in X_{1}$ and $y \in Y_{2}$.
Theorem 4.4. Let $E \subset \mathbb{R}^{n}$ be a non-empty compact subset and K be a continuous kernel on $E \times E$. Then the compact integral operators

$$
S f(x):=\int_{E} K(x, y) f(y) d y \quad x \in E
$$

and

$$
T g(x):=\int_{E} K(y, x) g(y) d y \quad x \in E
$$

are adjoint in the dual system $\langle C(E), C(E)\rangle$.
Proof. Note that

$$
\begin{aligned}
\langle S f, g\rangle & =\int_{E} S f(x) g(x) d x=\int_{E} \int_{E} K(x, y) f(y) d y g(x) d x \\
& =\int_{E} f(y) \int_{E} K(x, y) g(x) d x d y=\int_{E} f(y) T g(y) d y=\langle f, T g\rangle
\end{aligned}
$$

The above result is also true for a weakly singular kernel K whose proof involves approximating K by continuous kernels.

Lemma 4.5. Let $\langle X, Y\rangle$ be a dual system. Then to every set of linearly independent elements $\left\{x_{1}, \ldots, x_{n}\right\} \subset X$, then there exists a set $\left\{y_{1}, \ldots, y_{n}\right\} \subset$ Y such that $\left\langle x_{i}, y_{j}\right\rangle=\delta_{i j}$ for all i, j. The result also holds true with the roles of X and Y interchanged.

Proof. The result is true for $n=1$, by the nondegeneracy of the bilinear form. We shall prove the result by induction. Let us assume the result for $n \geq 1$ and consider the $n+1$ linearly independent $\left\{x_{1}, \ldots, x_{n+1}\right\}$. By induction hypothesis, for each $m=1,2, \ldots, n+1$, the linearly independent set $\left\{x_{1}, \ldots, x_{m-1}, x_{m+1}, \ldots, x_{n+1}\right\}$ of n elements in X has a set of n elements $\left\{y_{1}^{m}, \ldots, y_{m-1}^{m}, y_{m+1}^{m}, \ldots, y_{n+1}^{m}\right\}$ in Y such that $\left\langle x_{i}, y_{j}^{m}\right\rangle=\delta_{i j}$ for all i, j except $i, j \neq m$. Since $\left\{x_{1}, \ldots, x_{n+1}\right\}$ is linear independent, we have

$$
x_{m}-\sum_{\substack{j=1 \\ j \neq m}}^{n+1}\left\langle x_{m}, y_{j}^{m}\right\rangle x_{j} \neq 0
$$

Thus, by nondegeneracy of bilinear form there is a $z_{m} \in Y$ such that

$$
\left\langle x_{m}-\sum_{\substack{j=1 \\ j \neq m}}^{n+1}\left\langle x_{m}, y_{j}^{m}\right\rangle x_{j}, z_{m}\right\rangle \neq 0
$$

The LHS is same as

$$
\alpha_{m}:=\left\langle x_{m}, z_{m}-\sum_{\substack{j=1 \\ j \neq m}}^{n+1} y_{j}^{m}\left\langle x_{j}, z_{m}\right\rangle\right\rangle .
$$

Define

$$
y_{m}:=\frac{1}{\alpha_{m}}\left\{z_{m}-\sum_{\substack{j=1 \\ j \neq m}}^{n+1} y_{j}^{m}\left\langle x_{j}, z_{m}\right\rangle\right\}
$$

Then $\left\langle x_{m}, y_{m}\right\rangle=1$, and for $i \neq m$, we have

$$
\left\langle x_{i}, y_{m}\right\rangle=\frac{1}{\alpha_{m}}\left\{\left\langle x_{i}, z_{m}\right\rangle-\sum_{\substack{j=1 \\ j \neq m}}^{n+1}\left\langle x_{i}, y_{j}^{m}\right\rangle\left\langle x_{j}, z_{m}\right\rangle\right\}=0
$$

because $\left\langle x_{i}, y_{j}^{m}\right\rangle=\delta_{i j}$. Thus, we obtained $\left\{y_{1}, \ldots, y_{n+1}\right\}$ such that $\left\langle x_{i}, y_{j}\right\rangle=$ $\delta_{i j}$ for all i, j.

Theorem 4.6. Let $\langle X, Y\rangle$ be a dual system and $S: X \rightarrow X, T: Y \rightarrow Y$ be compact adjoint operators. Then

$$
\operatorname{dim}(N(I-S))=\operatorname{dim}(N(I-T))<\infty
$$

Proof. By Theorem 3.12,

$$
\operatorname{dim}(N(I-S))=m ; \quad \operatorname{dim}(N(I-T))=n
$$

We need to show that $m=n$. Suppose that $m<n$. If $m>0$, we choose a basis $\left\{x_{1}, \ldots, x_{m}\right\} \subset N(I-S)$ and a basis $\left\{y_{1}, \ldots, y_{n}\right\} \subset N(I-T)$. By Lemma 4.5, there exists elements $\left\{a_{1}, a_{2}, \ldots a_{m}\right\} \subset Y$ and $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\} \subset$ X such that $\left\langle x_{i}, a_{j}\right\rangle=\delta_{i j}$, for $i, j=1,2, \ldots, m$, and $\left\langle b_{i}, y_{j}\right\rangle=\delta_{i j}$ for $i, j=$ $1,2, \ldots, n$. Define a linear operator $F: X \rightarrow X$ by

$$
F x:=\sum_{i=1}^{m}\left\langle x, a_{i}\right\rangle b_{i}
$$

for $m>0$. If $m=0$ then $F \equiv 0$ is the zero operator. Note that F : $N\left[(I-S)^{r}\right] \rightarrow X$ is bounded by Theorem B. 9 and $P: X \rightarrow N\left[(I-S)^{r}\right]$ is a compact projection operator by Proposition 3.17. Then, by Theorem 3.7, $F P: X \rightarrow X$ is compact. Since linear combination of compact operators are compact, $S-F P$ is compact. Consider

$$
\left\langle x-S x+F P x, y_{j}\right\rangle=\left\langle x,(I-T) y_{j}\right\rangle+\left\langle F P x, y_{j}\right\rangle=\left\langle F P x, y_{j}\right\rangle .
$$

Then

$$
\left\langle x-S x+F P x, y_{j}\right\rangle= \begin{cases}\left\langle P x, a_{j}\right\rangle & j=1,2, \ldots, m \\ 0 & j=m+1, \ldots, n\end{cases}
$$

If $x \in N(I-S+F P)$, then by above equation $\left\langle P x, a_{j}\right\rangle=0$ for all $j=$ $1, \ldots, m$. Therefore, $F P x=0$ and, hence, $x \in N(I-S)$. Consequently, $x=\sum_{i=1}^{m} \alpha_{i} x_{i}$, i.e., $\alpha_{i}=\left\langle x, a_{i}\right\rangle$. But $P x=x$ for $x \in N(I-S)$, therefore $\alpha_{i}=\left\langle P x, a_{i}\right\rangle=0$ for all $i=1, \ldots, m$ which implies that $x=0$. Thus, $I-S+F P$ is injective. Hence the inhomogeneous equation

$$
x-S x+F P x=b_{n}
$$

has a unique solution x. Note that

$$
0=\left\langle x-S x+F P x, y_{n}\right\rangle=\left\langle b_{n}, y_{n}\right\rangle=1
$$

is a contradiction. Therefore, $m \geq n$. Arguing similarly by interchanging the roles of S and T, we get $n \geq m$ implying that $m=n$.

Theorem 4.7. Let $\langle X, Y\rangle$ be a dual system and $S: X \rightarrow X, T: Y \rightarrow Y$ be compact adjoint operators. Then

$$
R(I-S)=\{x \in X \mid\langle x, y\rangle=0, \forall y \in N(I-T)\}
$$

and

$$
R(I-T)=\{y \in Y \mid\langle x, y\rangle=0, \forall x \in N(I-S)\} .
$$

Proof. The case of $\operatorname{dim}(N(I-T))=0$ is trivial because, in that case, $\operatorname{dim}(N(I-S))=0$ and $R(I-S)=X$ (by Theorem 3.15 and Theorem 4.6). Hence, the result is trivially true. Suppose that the $\operatorname{dim}(N(I-T))=m>0$. Let $x \in R(I-S)$, i.e., $x=(I-S) x_{0}$ for some $x_{0} \in X$. Then, for all $y \in N(I-T)$,

$$
\langle x, y\rangle=\left\langle x_{0}-S x_{0}, y\right\rangle=\left\langle x_{0}, y-T y\right\rangle=0 .
$$

Conversely, assume that $x \in X$ satisfies $\langle x, y\rangle=0$ for all $y \in N(I-T)$. From the proof of previous theorem, there is a unique solution $x_{0} \in X$ of $(I-S+F P) x_{0}=x$. Then

$$
\left\langle P x_{0}, a_{j}\right\rangle=\left\langle(I-S+F P) x_{0}, y_{j}\right\rangle=\left\langle x, y_{j}\right\rangle=0 \quad \forall j=1,2, \ldots, m .
$$

Then $F P x_{0}=0$ and thus $(I-S) x_{0}=x$ and $x \in R(I-S)$. The argument for $R(I-T)$ is similar.

The above two theorems together is called the Fredhölm alternative.
Corollary 4.8. Let $E \subset \mathbb{R}^{n}$ be a non-empty compact subset with non-empty interior and K be a continuous or weakly singular kernel on $E \times E$. Then either the homogeneous integral equations

$$
\begin{equation*}
u(x)-\int_{E} K(x, y) u(y) d y=0 \quad x \in E \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
v(x)-\int_{E} K(y, x) v(y) d y=0 \quad x \in E \tag{4.2}
\end{equation*}
$$

only have the trivial solutions $u=0$ and $v=0$, and the inhomogeneous integral equations

$$
u(x)-\int_{E} K(x, y) u(y) d y=f(x) \quad x \in E
$$

and

$$
v(x)-\int_{E} K(y, x) v(y) d y=g(x) \quad x \in E
$$

have unique solution $u, v \in C(E)$ for given $f, g, \in C(E)$, respectively, or both (4.1) and (4.2) have the same finite number $m \in \mathbb{N}$ of linearly independent solutions and the inhomogeneous integral equations are solvable iff

$$
\int_{E} f(x) v(x) d x=0
$$

for all v solving (4.2) and

$$
\int_{E} u(x) g(x) d x=0
$$

for all u solving (4.1), respectively.

Appendices

A Ascoli-Arzelá Result

Definition A.1. Let X be a topological space. A set $E \subset X$ is said to be totally bounded if, for every given $\varepsilon>0$, there exists a finite collection of points $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\} \subset X$ such that $E \subset \cup_{i=1}^{n} B_{\varepsilon}\left(x_{i}\right)$.

Exercise A.1. If $E \subset X$ is totally bounded then $E^{n} \subset X^{n}$ is also totally bounded.

Definition A.2. A subset $A \subset C(X)$ is said to be bounded if there exists a $M \in \mathbb{N}$ such that $\|f\|_{\infty} \leq M$ for all $f \in A$.

Definition A.3. A subset $A \subset C(X)$ is said to be equicontinuous at $x_{0} \in X$ if, for every given $\varepsilon>0$, there is an open set U of x_{0} such that

$$
\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon \quad \forall x \in U ; f \in A
$$

A is said to be equicontinuous if it is equicontinuous at every point of X.
Theorem A.4. Let X be a compact topological space and Y be a totally bounded metric space. If a subset $A \subset C(X, Y)$ is equicontinuous then A is totally bounded.

Proof. Let A be equicontinuous and $\varepsilon>0$. Then, for each $x \in X$, there is a open set U_{x} containing x such that

$$
|f(y)-f(x)|<\frac{\varepsilon}{3} \quad \forall y \in U_{x} ; f \in A
$$

Since X is compact, there is a finite set of points $\left\{x_{i}\right\}_{1}^{n} \subset X$ such that $X=\cup_{i=1}^{n} U_{x_{i}}$. Define the subset E_{A} of Y^{n} as,

$$
E_{A}:=\left\{\left(f\left(x_{1}\right), f\left(x_{2}\right), \cdots, f\left(x_{n}\right)\right) \mid f \in A\right\}
$$

which is endowed with the product metric, i.e.,

$$
d(y, z)=\max _{1 \leq i \leq n}\left\{\left|y_{i}-z_{i}\right|\right\}
$$

where $y, z \in Y^{n}$ are n-tuples. Since Y is totally bounded, Y^{n} is also totally bounded (cf. Exercise A.1). Thus, E_{A} is totally bounded and there are m number of n-tuples, $y_{j}:=\left(f_{j}\left(x_{1}\right), f_{j}\left(x_{2}\right), \cdots, f_{j}\left(x_{n}\right)\right) \in Y^{n}$, for each $1 \leq j \leq$ m, such that $E_{A} \subset \cup_{j=1}^{m} B_{\varepsilon / 3}\left(k_{j}\right)$. For any $f \in A$, there is a j such that $d\left(y_{j}, z_{f}\right)<\frac{\varepsilon}{3}$ where $z_{f}=\left(f\left(x_{1}\right), f\left(x_{2}\right), \cdots, f\left(x_{n}\right)\right)$. In particular, given any $f \in A$, there is a j such that, for all $1 \leq i \leq n$,

$$
\left|f_{j}\left(x_{i}\right)-f\left(x_{i}\right)\right|<\frac{\varepsilon}{3} .
$$

Given $f \in A$, fix the j as chosen above.Now, for any given $x \in X$, there is a i such that $x \in U_{x_{i}}$. For this choice of i, j, we have

$$
\left|f(x)-f_{j}(x)\right| \leq\left|f(x)-f\left(x_{i}\right)\right|+\left|f\left(x_{i}\right)-f_{j}\left(x_{i}\right)\right|+\left|f_{j}\left(x_{i}\right)-f_{j}(x)\right|
$$

The first and third term is smaller that $\varepsilon / 3$ by the continuity of f and f_{j}, respectively, and the second term is smaller than $\varepsilon / 3$ by choice of f_{j}. Hence A is totally bounded, i.e., $A \subset \cup_{j=1}^{m} B_{\varepsilon}\left(f_{j}\right)$, equivalently, for any $f \in A$ there is a j such that $\left\|f-f_{j}\right\|_{\infty}<\varepsilon$.

Lemma A.5. Let X be compact topological space. If $A \subset C(X)$ is bounded then there is a compact subset $K \subset \mathbb{R}$ such that $f(x) \in K$ for all $f \in A$ and $x \in X$.

Proof. Choose an element $g \in A$. Since A is bounded in the uniform topology, there is a M such that $\|f-g\|_{\infty}<M$ for all $f \in A$. Since X is compact, $g(X)$ is compact. Hence there is a $N>0$ such that $g(X) \subset[-N, N]$. Then $f(X) \subset[-M-N, M+N]$ for all $f \in A$. Set $K:=[-M-N, M+N]$ and we are done.

Corollary A. 6 (other part of Ascoli-Arzela Theorem). Let X be a compact topological space. If a subset $A \subset C(X)$ is closed, bounded and equicontinuous then A is compact.

Proof. Since A is bounded, by Lemma above, we have $A \subset C(X, K) \subset C(X)$ for some compact subset $K \subset \mathbb{R}$. Then, by the Theorem above, A is totally bounded. Since A is a closed and totally bounded subset of the metric space $C(X), A$ is compact.

B Normed Spaces and Bounded Operators

Definition B.1. Let V and W be real or complex vector spaces. A linear map from V to W is a function $T: V \rightarrow W$ such that

$$
T(\alpha x+\beta y)=\alpha T(x)+\beta T(y) \quad \forall x, y \in V \text { and } \forall \alpha, \beta \in \mathbb{R} \text { or } \mathbb{C}
$$

Observe that a linear map is defined between vector spaces over the same field of scalars.
Exercise B.1. Show that a linear map T satisfies $T(0)=0$.
Let $\mathcal{L}(V, W)$ be the space of linear maps from V to W.
Definition B.2. A normed space is a pair $(X,\|\cdot\|)$, where X is a vector space over \mathbb{C} or \mathbb{R} and $\|\cdot\|: X \rightarrow[0, \infty)$ is a function such that
(i) $\|x\|=0$ iff $x=0$,
(ii) $\|\lambda x\|=|\lambda|\|x\|$ for all $x \in X$ and $\lambda \in \mathbb{F}$ (absolute homogeneity),
(iii) $\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in X$. (sub-additivity or triangle inequality)

The function $\|\cdot\|$ is called the norm of a vector from X. Norm is a generalisation of the notion length of a vector in a Euclidean space.
Exercise B.2. Show that every normed space is a metric space with the metric $d(x, y)=\|x-y\|$.
Exercise B.3. Show that the map $\|\cdot\|: X \rightarrow[0, \infty)$ is uniformly continuous on X.

Proof. Observe that $\|x\|=\|x-y+y\| \leq\|x-y\|+\|y\|$. Thus, $\|x\|-\|y\| \leq$ $\|x-y\|$. Similarly, $\|y\| \leq\|y-x\|+\|x\|$. Thus, $|\|x\|-\|y\|| \leq\|x-y\|$.

Exercise B.4. The operations addition $(+)$ and scalar multiplication are continuous from $X \times X$ and $X \times \mathbb{C}$ to X, respectively.
Exercise B.5. Show that for a Cauchy sequence $\left\{x_{n}\right\}$ in X, we have

$$
\left\|x_{m}-x_{n}\right\|<\frac{1}{2^{n}} \quad \forall m \geq n
$$

Definition B. 3 (Infinite Series). An infinite series in a normed space X, say $\sum_{i=1}^{\infty} x_{i}=x_{1}+x_{2}+\ldots$, is said to be convergent if the sequence s_{n} is convergent, where $s_{n}=\sum_{i=1}^{n} x_{i}$ is the sequence of partial sums. An infinite series is said to be absolutely convergent if the series $\sum_{i=1}^{\infty}\left\|x_{i}\right\|$ is convergent.
Theorem B.4. A normed space X is a Banach space iff every absolutely convergent series in X is convergent.
Proof. Let X be Banach space and let $x=\sum_{i=1}^{\infty} x_{i}$ be an absolutely convergence series. Let $y_{n}=\sum_{i=1}^{n} x_{i}$ be the partial sum. It is enough to show that $\left\{y_{n}\right\}$ is Cauchy in X. Given $\varepsilon>0$, there exists a N_{0} such that $\sum_{i=N_{0}}^{\infty}\left\|x_{i}\right\|<\varepsilon$. We choose $m, n \geq N_{0}$ and, without loss of generality, fix $N_{0} \leq m<n$. Then

$$
\left\|y_{n}-y_{m}\right\|=\left\|\sum_{i=m+1}^{n} x_{i}\right\| \leq \sum_{i=m+1}^{n}\left\|x_{i}\right\| \leq \sum_{i=N_{0}}^{\infty}\left\|x_{i}\right\|<\varepsilon .
$$

Thus, $\left\{y_{n}\right\}$ is a Cauchy sequence in X and hence converges. Hence, the given absolutely convergent series converges.

Conversely, let every absolutely convergent series in X converge. We need to show that every Cauchy sequence in X converges. Let $\left\{x_{n}\right\}$ be a Cauchy sequence in X. Therefore, by Exercise B.5,

$$
\left\|x_{m}-x_{n}\right\|<\frac{1}{2^{n}} \quad \forall m \geq n
$$

Now, let us construct a series in X using the given Cauchy sequence. Set $x_{0}=0$ and define $y_{k}=x_{k}-x_{k-1}$ for all $i \geq 1$. Then, observe that $\sum_{k=1}^{n} y_{k}=$ x_{n}. Therefore, the $n^{\text {th }}$ partial sum of the series $\sum_{k=1}^{\infty} y_{k}$ is x_{n}. Observe that $\left\|y_{k}\right\|<1 / 2^{k-1}$. Thus, by comparison test, the series absolutely convergent and hence, by hypothesis, converges. Therefore its sequence of partial sums $\left\{x_{n}\right\}$ converges. Therefore X is Banach since $\left\{x_{n}\right\}$ was a arbitrary sequence in X.
Theorem B.5. Let $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a linearly independent set of vectors in a normed space X. Then there is a constant $c>0$ such that for every choice of $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ we have

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} \lambda_{i} x_{i}\right\| \geq c\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|\right) . \quad \text { (c independent of the scalars) } \tag{B.1}
\end{equation*}
$$

Proof. Set $s=\sum_{i=1}^{n}\left|\lambda_{i}\right|$. If $s=0$ then $\lambda_{i}=0$, for each $i=1,2, \ldots, n$. Thus, (B.1) holds trivially, for any $c>0$. Suppose that $s>0$. Then, observe that proving (B.1) is equivalent to showing the existence of a constant $c>0$ such that for all scalars α_{i} of the satisfying $\sum_{i=1}^{n}\left|\alpha_{i}\right|=1$, we have

$$
\left\|\sum_{i=1}^{n} \alpha_{i} x_{i}\right\| \geq c .
$$

The equivalence is obtained by dividing s on both sides of (B.1) and setting $\alpha_{i}=\frac{\lambda_{i}}{s}$. Suppose our claim is false, then for every $m \in \mathbb{N}$, there is a set of scalars $\left\{\alpha_{i}^{m}\right\}_{1}^{n}$ such that $\sum_{i=1}^{n}\left|\alpha_{i}^{m}\right|=1$ and

$$
\left\|y_{m}\right\|=\left\|\sum_{i=1}^{n} \alpha_{i}^{m} x_{i}\right\|<\frac{1}{m} .
$$

Thus, $\left\|y_{m}\right\| \rightarrow 0$ as $m \rightarrow \infty$. Since $\sum_{i=1}^{n}\left|\alpha_{i}^{m}\right|=1$, for each $i,\left|\alpha_{i}^{m}\right| \leq 1$. Fixing $i=1$, we observe that the sequence $\left\{\alpha_{i}^{m}\right\}_{m}$ is bounded in \mathbb{R}. By invoking Bolzano-Weierstrass theorem, $\left\{\alpha_{1}^{m}\right\}_{m}$ has a convergent subsequence $\left\{\gamma_{1}^{m}\right\}$ that converges to α_{1}. Let $y_{m}^{1}=\gamma_{1}^{m} x_{1}+\sum_{i=2}^{n} \alpha_{i}^{m} x_{i}$ which is a subsequence of y_{m}. Repeating the argument for y_{m}^{1}, we get a subsequence $y_{m}^{2}=\sum_{i=1}^{2} \gamma_{i}^{m} x_{i}+\sum_{i=3}^{n} \alpha_{i}^{m} x_{i}$ with α_{2} being the limit of the subsequence of $\left\{\alpha_{2}^{m}\right\}$. Thus, repeating the procedure n times, we have a subsequence $\left\{y_{m}^{n}\right\}_{m}$ of y_{m} which is given by

$$
y_{m}^{n}=\sum_{i=1}^{n} \gamma_{i}^{m} x_{i}
$$

where, for each $i, \gamma_{i}^{m} \rightarrow \alpha_{i}$ and $\sum_{i=1}^{n}\left|\gamma_{i}^{m}\right|=1$. Thus, letting $m \rightarrow \infty$, we have

$$
y_{m}^{n} \rightarrow y=\sum_{i=1}^{n} \alpha_{i} x_{i}
$$

and $\sum_{i=1}^{n}\left|\alpha_{i}\right|=1$. Thus, $\alpha_{i} \neq 0$ for some i. Since the set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is linearly independent $y \neq 0$. By Exercise B.3, if $y_{m}^{n} \xrightarrow{m \rightarrow \infty} y$, then $\left\|y_{m}^{n}\right\| \xrightarrow{m \rightarrow \infty}$ $\|y\|$. But $\left\|y_{m}\right\| \rightarrow 0$, hence the subsequence $\left\|y_{m}^{n}\right\| \rightarrow 0$. Therefore $\|y\|=0$ implies $y=0$ which is a contradiction.

Theorem B.6. Let Y be finite dimensional subspace of a normed space X. Then, for any $x \in X$, there is a $y \in Y$ such that

$$
\|x-y\|=\inf _{z \in Y}\|x-z\|
$$

Lemma B. 7 (Riesz Lemma). Let Y be a proper closed subspace of a normed space X. Then, for every $0<\varepsilon<1$, there is a point $x_{\varepsilon} \in X$ such that $\left\|x_{\varepsilon}\right\|=1$ and

$$
\varepsilon \leq d\left(x_{\varepsilon}, Y\right) \leq 1
$$

where $d(x, Y)=\inf _{y \in Y}\|x-y\|$.
Proof. Since $Y \neq X$, choose $x \in X$ such that $x \notin Y$. Since Y is closed $d(x, Y)>0$. Now, for any $0<\varepsilon<1$, there is a $y_{0} \in Y$ such that

$$
d(x, Y) \leq\left\|x-y_{0}\right\| \leq \frac{d(x, Y)}{\varepsilon}
$$

The above inequality can be rewritten as

$$
\begin{equation*}
\varepsilon \leq \frac{d(x, Y)}{\left\|x-y_{0}\right\|} \leq 1 \tag{B.2}
\end{equation*}
$$

Set $x_{\varepsilon}=\frac{x-y_{0}}{\left\|x-y_{0}\right\|}$. Observe that

$$
\begin{aligned}
\left\|x_{\varepsilon}-y\right\| & =\frac{1}{\left\|x-y_{0}\right\|}\left(x-y_{0}-\left\|x-y_{0}\right\| y\right) \\
& =\frac{1}{\left\|x-y_{0}\right\|}\left\|x-y_{1}\right\| \quad\left(\text { where } y_{1}=y_{0}-\left\|x-y_{0}\right\| y \in Y\right)
\end{aligned}
$$

Therefore, $d\left(x_{\varepsilon}, Y\right)=\frac{1}{\left\|x-y_{0}\right\|} d(x, Y)$ and by (B.2), we have our claim.

Theorem B.8. If a normed space X is such that the unit ball $B(X)$ is compact, then X is finite dimensional.

Proof. Let us suppose that X is infinite dimensional. Let $x_{1} \in X$ such that $\left\|x_{1}\right\|=1$. The $X_{1}=\left[x_{1}\right]$ is a one dimensional subspace of X. Since X is infinite dimensional, $\left[x_{1}\right]$ is a proper subspace of X. By Riesz lemma, there is a $x_{2} \in X$ with $\left\|x_{2}\right\|=1$ such that $\left\|x_{2}-x_{1}\right\| \geq 1 / 2$. Now, $X_{2}=\left[x_{1}, x_{2}\right]$ is a two-dimensional proper subspace of X. Therefore, again by Riesz lemma, there is a $x_{3} \in X$ with $\left\|x_{3}\right\|=1$ such that $\left\|x_{3}-x\right\| \geq 1 / 2$ for all $x \in X_{2}$. In particular, $\left\|x_{3}-x_{1}\right\| \geq 1 / 2$ and $\left\|x_{3}-x_{2}\right\| \geq 1 / 2$. Arguing further in a similar way, we obtain a sequence $\left\{x_{n}\right\}$ in $B(X)$ such that $\left\|x_{m}-x_{n}\right\| \geq 1 / 2$ for all $m \neq n$. Thus, we have obtained a bounded sequence in $B(X)$ which cannot converge for any subsequence, which contradicts the hypothesis that $B(X)$ is compact. Therefore $\operatorname{dim}(X)=\infty$.

Theorem B.9. Let X and Y be normed spaces. If X is finite dimensional, then every linear map from X to Y is continuous.

Proof. Let X be finite dimensional and and let $T \in \mathcal{L}(X, Y)$. If $T=0$, then the result is trivial, since $\mathcal{L}(X, Y)=\{0\}$. Let $X \neq 0$ and $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ be a basis for X. Let $x_{n} \rightarrow x$ in X. For some scalars, since $x_{n}=\sum_{i=1}^{m} \lambda_{i}^{n} e_{i}$ and $x=\sum_{i=1}^{m} \lambda_{i} e_{i}$, we have $\lambda_{i}^{n} \rightarrow \lambda_{i}$ for all $1 \leq i \leq m$ (by Theorem B.5). Consider,

$$
\begin{aligned}
T x_{n} & =\sum_{i=1}^{m} \lambda_{i}^{m} T e_{i} \quad(\text { by linearity of } T) \\
& \longrightarrow \sum_{i=1}^{m} \lambda_{i} T e_{i}=T x
\end{aligned}
$$

The convergence is valid by the continuity of addition and scalar multiplication (cf. Exercise B.4). Thus T is continuous.

Definition B.10. For any given normed spaces X and Y, a linear map $T \in \mathcal{L}(X, Y)$ is said to be bounded if there is a constant $c>0$ such that $\|T x\| \leq c\|x\|, \quad \forall x \in X$.

Basically, bounded operators map bounded sets in X to bounded sets in Y. Let $\mathcal{B}(X, Y)$ be the space of bounded linear maps from X to Y.

Any map in $\mathcal{L}(X, Y) \backslash \mathcal{B}(X, Y)$ is said to be unbounded linear map. We shall now prove an interesting result which says that $\mathcal{B}(X, Y)=\mathcal{C}(X, Y)$, the
space of continuous linear maps from X to Y. In other words, by looking at bounded linear maps we are, in fact, looking at continuous linear maps. Such a result is possible only because of the underlying linear structure of the space. The following theorem proves these remarks rigorously.

Theorem B.11. Let X and Y be normed spaces and let $T \in \mathcal{L}(X, Y)$. Then the following are equivalent:
(i) $T \in \mathcal{C}(X, Y)$.
(ii) T is continuous at some point $x_{0} \in X$.
(iii) $T \in \mathcal{B}(X, Y)$.

Proof. The above equivalence are true if $T=0$. Hence, henceforth, we assume $T \neq 0$.
(i) implies (ii) is trivial from the definition of continuity.

Let us now assume (ii). Then, for any $\varepsilon>0$, there is a $\delta>0$ such that $\left\|T x-T x_{0}\right\| \leq \varepsilon$ whenever $\left\|x-x_{0}\right\| \leq \delta$. Set $B_{\delta}\left(x_{0}\right)=\left\{x \in X \mid\left\|x-x_{0}\right\| \leq \delta\right.$. For any non-zero $x \in X, x_{0}+\frac{\delta}{\|x\|} x \in B_{\delta}\left(x_{0}\right)$. Therefore $\frac{\delta}{\|x\|}\|T x\| \leq \varepsilon$ and hence $\|T x\| \leq \frac{\varepsilon}{\delta}\|x\|$. Thus, T is bounded.

We shall now assume T is bounded and prove (i). There is a $c>0$ such that $\|T x\| \leq c\|x\|$. Therefore, $\|T x-T y\| \leq c\|x-y\|$ for all $x, y \in X$. Thus, for any given $\varepsilon>0,\|T x-T y\| \leq \varepsilon$ whenever $\|x-y\| \leq \varepsilon / N$.

We shall now introduce a norm in $\mathcal{B}(X, Y)$ to make it a normed space. Observe that, in the definition of bounded linear map, we seek the existence of a constant $c>0$. The question is what is the smallest such constant $c>0$? Note that

$$
\frac{\|T x\|}{\|x\|} \leq c \quad \forall x \in X \text { and } x \neq 0
$$

Thus, the smallest such constant would be $\sup _{\substack{x \in X \\ x \neq 0}} \frac{\|T x\|}{\|x\|} \leq c$.
Exercise B.6. For any $T \in \mathcal{B}(X, Y)$

$$
\sup _{\substack{x \in X \\ x \neq 0}} \frac{\|T x\|}{\|x\|}=\sup _{\substack{x \in X \\\|x\|=1}}\|T x\|=\sup _{\substack{x \in X \\\|x\| \leq 1}}\|T x\| .
$$

Proof. Observe that for any $x \in X$, the vector $z=\frac{x}{\|x\|} \in X$ such that $\|z\|=1$. Thus, by the linearity of T,

$$
\sup _{\substack{x \in X \\ x \neq 0}} \frac{\|T x\|}{\|x\|}=\sup _{\substack{x \in X \\ x \neq 0}}\left\|T\left(\frac{x}{\|x\|}\right)\right\|=\sup _{\substack{z \in X \\\|z\|=1}}\|T z\| .
$$

Exercise B.7. Show that the function $\|\cdot\|: \mathcal{B}(X, Y) \rightarrow[0, \infty)$ defined as

$$
\|T\|=\sup _{\substack{x \in X \\ x \neq 0}} \frac{\|T x\|}{\|x\|}, \quad \forall T \in \mathcal{B}(X, Y)
$$

is a norm on $\mathcal{B}(X, Y)$. Thus, $\mathcal{B}(X, Y)$ is a normed space.
Exercise B.8. Show that if $T \in \mathcal{B}(X, Y)$ and $S \in \mathcal{B}(Y, Z)$, then the composition $S \circ T=S T$ is in $\mathcal{B}(X, Z)$ and $\|S T\| \leq\|S\|\|T\|$. In particular, show that $\mathcal{B}(X)$ is an algebra under composition of operators.
Theorem B.12. If Y is complete then $\mathcal{B}(X, Y)$ is a complete normed space. In particular, X^{\star} is a Banach space.

Proof. Let $\left\{T_{n}\right\}$ be a Cauchy sequence in $\mathcal{B}(X, Y)$. Then $\left\{T_{n} x\right\}$ is a Cauchy sequence in Y, for all $x \in X$. Since Y is complete, there is a $y \in Y$ such that $T_{n} x \rightarrow y$. Set $T x=y$. It now remains to show that $T \in \mathcal{B}(X, Y)$ and $T_{n} \rightarrow T$ in $\mathcal{B}(X, Y)$. For any given $x_{1}, x_{2} \in X$ and scalars $\lambda_{1}, \lambda_{2} \in \mathbb{R}$, we have

$$
\begin{aligned}
T\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right) & =\lim _{n \rightarrow \infty} T_{n}\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right) \\
& =\lim _{n \rightarrow \infty} \lambda_{1} T_{n} x_{1}+\lim _{n \rightarrow \infty} \lambda_{2} T_{n} x_{2} \\
& =\lambda_{1} T x_{1}+\lambda_{2} T x_{2}
\end{aligned}
$$

Thus, $T \in \mathcal{L}(X, Y)$. Since T_{n} is Cauchy, for every $\varepsilon>0$, there is a $N_{0} \in \mathbb{N}$ such that $\left\|T_{m}-T_{n}\right\|<\varepsilon$ for all $m, n \geq N_{0}$. Therefore, for all $x \in X$, we have,

$$
\left\|T_{n} x-T_{m} x\right\| \leq\left\|T_{n}-T_{m}\right\|\|x\|<\varepsilon\|x\| \quad \forall m, n \geq N_{0}
$$

Now, by letting $m \rightarrow \infty$, we have $\left\|T_{n} x-T x\right\| \leq \varepsilon\|x\|$ for all $x \in X$ and $n \geq N_{0}$. Thus, $\left\|T_{n}-T\right\| \rightarrow 0$. Also, since

$$
\|T x\|=\left\|T x-T_{n} x\right\|+\left\|T_{n} x\right\| \leq\left(\varepsilon+\left\|T_{n}\right\|\right)\|x\|
$$

we have $T \in \mathcal{B}(X, Y)$.

