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1 Introduction

The aim of this lecture note is to show the existence and uniqueness of
Fredholm integral operators of second kind, i.e., show the existence of a
solution x of x — T'x = y for any given y, in appropriate function spaces.

2 Integral Operators

Let E be a compact subset of R" and C(E) denote the space of complex
valued continuous functions on E endowed with the uniform norm || fj. =
sup,cg | f(x)]. Recall that C'(E) is a Banach space with the uniform norm.



Definition 2.1. Any continuous function K : E x E — C 1is called a con-
tinuous kernel.

Since K is continuous on a compact set, K is both bounded, i.e., there is
a k such that
|K(z,y)| <k Vo,yecFE

and uniformly continuous. In particular, for each € > 0 there is a § > 0 such
that
|K(z1,y) — K(z2,y)| < VyeE

whenever |z — 25| < 4.

Ezample 2.1 (Fredholm integral operator). For any f € C(F), we define

T(f)() = /E K, 9)f(y) dy

where x € F and K : E x ' — R is a continuous function. For each ¢ > 0,

T (1) — Tf(za)] < /E K (21,) — K (22, 9)|| /()| dy < ]| /]| E]

whenever |21 — z2| < §. Thus, Tf € C(E) and T defines a map from C(E)
to C(E).

Ezxample 2.2 (Volterra integral operator). For any f € Cfa,b], we define

T(f)(x) = / " K (o) (y) dy

where z € [a,b] and K : [a,b] X [a,b] — R is a continuous function. Note
that, for x1, 25 € [a, ],

Tfar) —Tf(zs) = /MK(asl,y)f(y)dy— /mK(fUz,y)f(y)dy
= /x (K (z1,y) — K(22,9)] f(y) dy

a

n / " Keny)f(y) dy.

€2



Therefore, for each € > 0,
Tf (1) = Tf(x2)|] < /1|K(I1,y) K(z2,y)l|f ()] dy
= [ EIrw) dy

2

< ellflloo(m1 — @) + Kz — 22)|| flloo
< el flloo(b — @) 4 KOl fll oo
< [(b—a)+rlell flle

whenever |z, — x9| < § and, without loss of generality, we have assumed
d <e. Thus, Tf € Cla,b] and T defines a map from Cfa, b] to C|a, b].

One can think of Volterra integral operator as a special case of Fredholm
integral operators by considering a K : [a,b] X [a,b] such that K(z,y) = 0
for y > x. Geometrically this means, in the square [a, b] X [a, ], K takes the
value zero in the region above y = x line. Thus, Volterra integral operator is
a Fredholm operator for a K which may be discontinuous on the line y = x
in the square. In fact, this particular K is a special case of weakly singular
kernel.

Definition 2.2. Let E C R" be a compact subset. A function K : ExXE — C
1s said to be weakly singular kernel if it is continuous for all x,y € E such
that x # y and there exist positive constants M and o € (0,n) such that

|K(z,y)| < M|z —y|*™ Vr,ye Ex#y.
Theorem 2.3. Let E C R" be a compact subset with non-empty interior.

Let K : EXE — C be a continuous function. Then the operator T : C(E) —
C(FE), defined as,

/ny y)dy, for each x € E

is a bounded linear operator, i.e., is in B(C(E)) and

|Tr|—sup/|ny|dy

zelR



Proof. The fact that T is linear is obvious. For each f € C(F) with || f|lco <1
and z € E, we have

(Tf)e| < / K ()| dy.
E
Thus,
ITI = sup TSl < sup / K ()| dy.
cFE JE

feC(E) z
[l flloo<1

It now only remains to show the other inequality. Since K is continuous,
there is a g € F such that

/ K (0, y)| dy = max / K (2,9)] dy.
E =y ) E

For each € > 0, choose g. € C(E) as

K(l’(),y)
(y) = —————, foryeFE.
=0) = Rapylte Y
Then ||ge]|lc <1 and
|K(5L’0,y)|2
T E 100 2 T 1> x - T/ N1 .
H g H ‘( g )( 0)’ 5 |K(I0,y)|+€

|K(l’0,y)|2 — ¢
o E |K<l’0,y)|+5

2
dy = / K (20,9)| dy — <|E).
E
Hence

|7 = sup [Tfllo > IITgellooZ/!K(xo,y)|dy—€|E|,
feC(E) E

[flleo<1

and, since ¢ is arbitrary, we have

171 = [ 1Kol dy = max [ | (o)l dy
E x E

]

For any operator 7" : X — X, one can define the iterated operators
T* : X — X as the k-times composition of T' with itself.
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Theorem 2.4 (Neumann Series). Let X be a Banach space, T' € B(X) with
IT|| <1 (contraction) and I : X — X be the identity operator. Then the
map I —T : X — X is invertible given by

(I-T)"= iT’“

and the inverse is bounded
1
1—||T||
Proof. Since X is a Banach space, by Theorem B.12, 5(.X) is a Banach space.

Thus, owing to Theorem B.4, to show the convergence of the series .- Tk
it is enough to show that it is absolutely convergent. Note that

STITH = i STITH < tim ST =37
k=0 k=0 k=0 k=0

Since ||T']| < 1, the geometric series converges to (1 — ||T||)~" and hence the
series Y 72 T" is absolutely convergent and, thus, convergence in B(X). Let
S : X — X be the limit of the series, i.e.,

S = f: T".
k=0

Note that ||S]| < (1—||T||)~*, hence, is a bounded linear operator on X, i.e.,
S € B(X). It only remains to show that S is the inverse of I — 7. Note that

(7 =17)7 <

(I-T)S = ([—T)%Lnéoiﬂ: lim (I -T)YI+T+...+T™)

m—00
k=0

= lim (I -7 =1,

m—0o0

The last equality is due to the fact that the sequence 7™ converges to 0 in
B(X) because [[T7#1] < [T/ and. since [T <1, Tnye oo [T = 0.
Similarly,

m—0o0

SI-T) = lim » THI-T)= lim (I+T+...+T")(I-T)
k=0

= lim (I -T™" =1

m—0o0



If x € X is the solution of (I — Tz = y, for any given y € X, then x can
be computed as

xr = ([—T)_ly:ZTky:nlLr{lOZTky: lim z,,.
k=0

m—»00
k=0

Note that z,,11 = Tz, +y, for m > 0.

Theorem 2.5. Let X be a Banach space, T € B(X) with ||T]| < 1 (con-
traction) and I : X — X be the identity operator. For any given y € X and
arbitrary o € X the sequence

Tma1 =TTy, +y form=0,1,2,...
converges to a unique solution x € X of (I —T)x =vy.

Proof. Note that xy = Txg +vy, 1o = Tay +y = T?xo + (I + T)y. Thus, by

induction, for m =1,2,.. .,

m—1
T =T 20 + ZTky.
k=0
Hence,

m—ro0

lim z,, = ZTky =(I-T)"y.
k=0

Corollary 2.6. Let K be a continuous kernel satisfying

zelE

max/ |K(z,y)|dy < 1.
E

Then, for each g € C(E), the integral equation of the second kind

fa) /E K(z,y)f(y)dy = g(z) z€E

has a unique solution f € C(E). Further, for any fo € C(E), the sequence

Fria@) = [ G fult) -+ g(o).m = 0.1,2,...

converges uniformly to f € C(E).



3 Compact Operators

Theorem 3.1. A subset of a normed space is compact iff it is sequentially
compact.

Definition 3.2. A subset E' of a normed space X is said to be relatively
compact if F, the closure of E, is compact in X.

Theorem 3.3. Any bounded and finite dimensional subset of a normed space
15 relatively compact.

Definition 3.4. Let X and Y be normed spaces. A linear operator T : X —

Y is said to be compact if T(E) is relatively compact in'Y", for every bounded
subset £ C X.

Let I(X,Y) be the space of all compact linear maps from X to Y. To
verify compactness of T, it is enough to check the relative compactness of
T(B) in Y for the closed unit ball B C X.

Theorem 3.5. A linear operator T : X — 'Y is compact iff for any bounded
sequence {x,} C X, the sequence {Tx,} C Y admits a convergent subse-
quence.

Proposition 3.6. The set K(X,Y) is a subspace of B(X,Y).

Proof. Any compact linear operator is bounded because any relatively com-
pact set is bounded. Thus, K(X,Y) C B(X,Y). Let S,T € K(X,Y).
It is easy to check that, for every bounded subset F of X and o, € C,
(aS + BT)(F) is relatively compact in Y, since S(E) and T'(E) are both
relatively compact in Y. O

Theorem 3.7. Let X, Y and Z be normed spaces, S € B(X,Y) and T €
B(Y,Z). If either one of S or T is compact, then the composition T o S :
X — Z is compact.

Proof. Let {x,} be a bounded sequence in X. Suppose S is compact, then
there is a subsequence {z,, } of {z,} such that Sz,, -y inY, as k — oo.
Since T is continuous, T'(Sx,, ) — Ty in Z, as k — oo. Thus, T o S is
compact.

On the other hand, since S is bounded, Sz, is bounded sequence in
Y. If T is compact, then there is a subsequence {z,, } of {z,} such that
T(Sxzy,) — zin Z, as k — oo. Thus, T'o S is compact. O
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Theorem 3.8. IfT € B(X,Y) such that T(X) is finite dimensional then T
18 compact.

Proof. Let E C X be bounded. Since T is bounded, T'(F) is bounded in
Y. But T(F) is a bounded subset of the finite dimensional space T'(X) and,
hence, T'(E) is relatively compact in Y. ]

Theorem 3.9. Let E C R™ be a compact subset with non-empty interior and

K : Ex E — C is a continuous kernel. Then the bounded linear operator
T:C(FE)— C(FE), defined as,

(Tf)(x) = /EK(x,y)f(y) dy, for each x € E

18 compact.

Proof. Let B C C(FE) be a bounded subset, i.e., there is a M > 0 such that
| fllo < M for all f € B. Thus, for all f € B, we have

Tf(z)| < sM|E]|

for all z € F and f € B. Thus, T(B) is bounded in C'(F). By the uniform
continuity of K, for each € > 0,

T f (1) = Tf(x2)] S/E\K(:vl,y) — K (22, )|l ()| dy < e[ fllo| E] < eM|E]

for all #1, 29 € E such that |x; — 25| < ¢ and for all f € B. Therefore, T'(B)
is equicontinuous. By Arzeld-Ascoli theorem (cf. Appendix A) T'(B) closure
is compact and, hence, T is compact. O

Theorem 3.10. Let E C R"™ be a compact subset with non-empty interior
and K : E x E — C be a weakly singular kernel. Then the bounded linear
operator T : C(E) — C(F), defined as,

(Tf)(z) = [EK(x,y)f(y) dy, for each x € E

18 compact.



Definition 3.11. Let V and W be vector spaces over the same field. For
any T € L(V,W), the kernel of T, denoted as N(T), is defined as

N(T)={x €V |Tx=0}.

The kernel of T is also referred to as null space of T' and the dimension of
kernel of T is called nullity of T'. Also, the range of T, denoted as R(T), is
defined as

R(T)={Tz|x €V}

The dimension of range of T is called the rank of T

Ezercise 3.1. If T € L(V,W), then N(T) is a subspace of V and R(T) is a
subspace of W.

Theorem 3.12. Let X be a normed space and T : X — X be a compact
linear operator. Then N(I —T) is finite dimensional and R(I —T) is closed
n X.

Proof. Let B; be the closed unit ball in N(I —T), i.e.,
By :={x e NI-T)]| ||z|| <1}.

If v € By, then x = Tx and ||Tz|| < 1. Thus, B; C T(B), where B is the
closed unit ball of X. Since T is a compact operator, B; is compact in X
and, hence, N(I —T) is finite dimensional (cf. Theorem B.8).

Let {y,} € R(I —T) and suppose that y, — y in X. Thus, there is
a sequence {z,} C X such that y, = z, — T'z,,. Since N(I — T) is finite
dimensional, by Theorem B.6, for each n, there is a z, € N(I —T') such that
@ — 2n|| = infoen—r) [|[2n — 2]|. Thus, yp = (xn — 2n) = T'(@n — 2).

If the sequence {z, — z,} is bounded in X, and since T" is compact, there
is a subsequence T'(z,, — 2,,) = win X. Then, z,, — 2, — y + u. Hence,
T(y4+u) =u. Set s :== y+u. Now consider, (I-T)s =s—Ts =y+u—u =y.
Therefore, y € R(I — T') and, hence, R(I —T) is closed. It only remains to
prove that {x, — z,} is a bounded sequence in X.

Suppose not, then, for a subsequence, ||z, — 2z, || = 00 as k — oco. Set

1

= (T, — 2
Hxnk _anH( " nk)

Wh,, :



so that ||w,, || = 1. Further

1

(I-Thw, =
oz = 2

Yni

and hence the LHS converges to the zero vector, since the denominator in
RHS blows up. Since T' is compact, there is a subsequence {wy, } of {wy,}
such that Tw,, — v in X. But, since (I — T)w,, — 0 in X, we should
have wy,, — v in X. Thus, Twy,, — Tv and, hence, (I —-T)w =0, ie,
v e N(I —T). On the other hand,

d(n,, N(I = T)

= 1.
||xnkl - anlH

d(wn,,, N(I = T)) =

Thus, d(v, N(I—=T)) =1 and v € N({ —T'), which is impossible. Hence, the
sequence {x, — z,} is bounded in X. O

For any normed space X and compact operator 7" : X — X, one can
define the operators (I —T)" : X — X, for n > 1. Let us denote L := I —T,
then L" = (I —T)" =1 —T,, where

n

T, = Z(—1)k—1k!(n”—ik)!Tk.

k=1

Note that 7}, is compact and, hence N (L") is finite dimensional and R(L")
is closed in X, for all n > 1.

Theorem 3.13. Let X be a normed space, T € K(X) and L :=1—T. Then
there is a unique non-negative integer r > 0, called the Riesz number of T
such that

{0} S N(L)CN(LHC...C N(L")=N(L"*) = ...

and

XDORL)DR(IHD..DR(L)=R(L™) =....

Proof. If x € N(L"), ie., Lz = 0, then L""'z = L(L"z) = LO = 0.
Therefore, {0} C N(L) C N(L?) C .... Suppose that all the inclusions are
proper. Since N(L") is finite dimensional, it is closed proper subspace of
N(L™). Therefore, by Riesz lemma, there is a z,, € N(L"™) such that
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|lz,|| = 1 and d(z,, N(L™)) > 1/2. Thus, we have a bounded sequence
{z,} € X with d(z,, N(L™)) > 1/2. Consider

T(xy — ) = — L) (2, — ) = Ty — (T + L, — Lyy,).
Note that, for n > m, we have
L"(z,, + L, — Lx,,) = L™ L™y + Ly, — LD gy, = 0.

Therefore, for n > m, ||Tx, — Tx,,| > 1/2, which contradicts that 7', since
there can be no convergent subsequence of {Tx,}. Thus, the sequence of
inclusions cannot be proper for all. There exists two consecutive null spaces
that are equal. Set

r:=min{k : N(L*) = N(LF)}.

We claim that N(L") = N(L"*') = .... Note that, for some k > r, we
have shown that N(L¥) = N(LF'). Now, consider z € N(LF?), then
0 = LF2x = L¥1Lx. Thus, Lr € N(L*') = N(LF), 0 = L*Lx = L'z
and z € N(L*1). Hence, N(L*) = N(L*"?) and

{0} S N(L)SN(LHC...CN(L")=N(L*) = ...

Let y € R(L™"), then there is a z € X such that L"™'z = y. Thus,
L"(Lz) =y and y € R(L™). We assume the inclusions are all proper. Since
R(L*) is closed subspace, by Riesz lemma, there is a y, € R(L") such that
llynll = 1 and d(y,, R(L"™')) > 1/2. Thus, we have a bounded sequence
{yn} C X with d(y,, R(L"™")) > 1/2. Consider

TWn = Ym) = L = L)(Yn — Ym) = Yn — Ym + LYn — Liym)-
Note that, for m > n, we have
Unm 4 Lyn o Lym — LnJrl(menflmm +$n o menxm)

and Y, + Ly, — Ly, € R(L™). Thus, for n > m, || Ty, —Tym|| > 1/2, which
contradicts that 7', since there can be no convergent subsequence of {7y, }.
Thus, the sequence of inclusions cannot be proper for all. There exists two
consecutive range spaces that are equal. Set

s :=min{k : R(L¥) = R(LF™)}.
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We claim that R(L®) = R(L**') = .... Note that, for some k& > s, we
have shown that R(L*) = R(L¥™). Now, consider y € R(LF1), then y =
L*y = L(LFx). Thus, for some zy € X, LFx = L*'zy and y = L(L*x) =
L(L*gy) = L*2zy. Hence R(LF*Y) = R(L*?) and

X2O2RL)2R(LH2...2R(L")=R(L'™)=....

It only remains to prove that r = s. Suppose r > s and let x € N(L").
Then L™ 'z € R(L"™') = R(L") and, hence, there is a y € X such that
L'y = L™ 'z. Therefore, L'y = L'z =0 and y € N(L"™') = N(L"). This
means that L™ 'z = 0 and # € N(L"™!) which contradicts the minimality of
T.

On the other hand, if r < s. Let y € R(L*"!). Then, for some z € X,
L'z = y and Ly = L*z. Consequently, Ly € R(L*) = R(L*™'). Hence,
there is a 2o € X such that L**'xy = Ly. Therefore,

0= L2y — Ly = L°(Lxg — 1),

ie., Lrg —x € N(L*) = N(L*7') and L°zy = L* 'z = y. Thus, y € R(L?)
which contradicts the minimality of s. O

Theorem 3.14. Let X be a normed space, T € K(X) and L := 1 —T.
Then, for each x € X, there exists unique y € N(L") and z € R(L") such
that v =y +z, i.e., X = N(L") & R(L").

Proof. Let x € N(L")N R(L"). Then x = L"y for some y € X and L™z = 0.
Thus, Ly = 0 and y € N(L*) = N(L"). Therefore, 0 = L™y = x.

Let x € X be an arbitrary element. Then L'z € R(L") = R(L*).
Thus, there is a g € X such that L'z = L*zy and L"(z — L"xo). Define
z:=1L"rg € R(L") and y := x—2z. Since L'y = L'x —L"z = L'z — L*"z5 = 0,
y € N(L"). O

Theorem 3.15. Let X be a normed space, T € K(X) and L :=1—T. Then
L is injective iff L is surjective. If L is injective (and hence bijective), then
its inverse L™' € B(X).

Proof. The injectivity of L is equivalent to saying that the Riesz number is
r = 0, which means L is surjective. The argument is also true viceversa.

If L is injective and suppose L~! is not bounded. Then there is a sequence
{z,} C X with ||z,]| = 1 such that ||L™'x,|| > n, for all n € N. Define, for

each n € N,
1 1

=y = —L .
R D TR T P
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Then Lz, = y, — 0 in X, as n — oo, and ||z,|| = 1 for all n. By the
compactness of 7', there is a subsequence {z,,} of z, such that, for some
ze€ X, Tz, — zas k — oo. Since Lz, =y, — 0, we have z, — z, as
k — oco. Also, Lz = 0 and z € N(L). By the injectivity of L, z = 0 which
contradicts the fact that ||z,|| = 1. Thus, L™! must be bounded. O

Corollary 3.16. Let T : X — X be a compact linear operator on a normed
space X . If the homogeneous equation x—Tx = 0 has only the trivial solution
x =0, then for each f € X the inhomogeneous equation x — Tx = f has a
unique solution x € X which depends continuously on f.

If the homogeneous equation x — T'x = 0 has non-trivial solution, then it
has m € N linearly independent solutions xi,xs, ..., x,, and the inhomoge-
neous equation xr — Tx = f is either unsolvable or its general solution is of

the form
m
Tr =g+ Z (a7 5]
i=1

where o; € C for each i and ¢ is a particular solution of the inhomogeneous
equation.

The decomposition X = N(L") @ R(L") induces a projection operator
P: X — N(L") that maps Px :=y, where x =y + 2.

Proposition 3.17. The projection operator P : X — N(L") is compact.

Proof. We first show that P is a bounded linear operator. Suppose not, then
there is a sequence {z,} C X with ||z,|| = 1 such that ||Pz,|| > n for all
n € N. Define, for each n € N, y,, := mxn. Then y, — 0, as n — 00,
and || Py,|| = 1 for all n € N. Since N(L") is finite-dimensional and { Py, } is
bounded, by Theorem 3.3, there is a subsequence {yy, } such that Py, — z
in N(L"), as k — oo.

Also, since y,, — 0, we have Py,, — y,, — %, as k — oco. Note that
Py, —yn, € R(L"), by direct decomposition, thus z € R(L") because R(L")
is closed. Since z € N(L") N R(L"), z = 0 and Py,, — 0 which contradicts
|| Pyn, || = 1. Thus, P must be bounded. Moreover, since P(X) = N(L") is
finite dimensional, by Theorem 3.8, P is compact. O
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4 Fredholm Alternative

Definition 4.1. Let V' and W be complex vector spaces. A mapping (-,-) :
V x W — C is called a bilinear form ¢f

(171 +ams, y) = an (w1, y) +ag(ze,y), (T, By + Poye) = Bi{y, v1) + B2(T, 12)

for all x1,20,x € X and y1,y2,y € Y and aq, a9, 81,52 € C. Further, a
bilinear form is called nondegenerate if for every non-zero x € X there exists
ay €Y such that (x,y) # 0 and, for every non-zeroy € Y there is a v € X
such that (x,y) # 0.

Definition 4.2. If two normed spaces X and Y are equipped with a nonde-
generate bilinear form, then we call it a dual system denoted by (X,Y).

Example 4.1. Let E C R™ be a non-empty compact subset. We define the
bilinear form in (C(E), C(E)) as

(f.g) = / f(2)g(z) da

which makes the pair a dual system.

Definition 4.3. Let (X1,Y)) and (Xs,Ys) be two dual systems. The operators
S: X1 = Xy and T : Yy = Y] are called adjoint if (Sx,y) = (x, Ty) for all
r e Xy andy €Y.

Theorem 4.4. Let E C R" be a non-empty compact subset and K be a
continuous kernel on E X E. Then the compact integral operators

/K ) f(y)dy x€FE
and

/K y,x)9(y)dy x €FE
are adjoint in the dual system (C(E),C(FE)).
Proof. Note that

Sra) = [ St@a@ds = [ [ K@rwdte) o
=/f /ny dxdy—/Eﬂy)Tg(y)dy:<f,Tg>.
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The above result is also true for a weakly singular kernel K whose proof
involves approximating K by continuous kernels.

Lemma 4.5. Let (X,Y) be a dual system. Then to every set of linearly
independent elements {x1,...,x,} C X, then there exists a set {y1,...,yn} C
Y such that (x;,y;) = 0;; for alli,j. The result also holds true with the roles
of X and'Y interchanged.

Proof. The result is true for n = 1, by the nondegeneracy of the bilinear
form. We shall prove the result by induction. Let us assume the result
for n > 1 and consider the n + 1 linearly independent {z1,...,z,.1}. By
induction hypothesis, for each m = 1,2,... n + 1, the linearly independent
set {T1,.. ., Tm_1, Tmi1, .-, Tni1} Of melements in X has a set of n elements
Wi Um—1 Ymats - Ynya y in Y such that (v, y7") = 6;; for all 4, j except
i,7 # m. Since {x1,..., 2,41} is linear independent, we have

n+1

T = 3 (@m, Y} # 0.
j=1
i#m

Thus, by nondegeneracy of bilinear form there is a z,, € Y such that

n+1
<xm — Z(xm, Yy )T, zm> # 0.

Jj=1
JFm

The LHS is same as

n+1
Oy 1= <xm,zm - Zy?(xj,zm>> .

j=1
j#m

Define
1 n+1
Ym ‘= a Zm_zy;n<xjazm>
7j=1
j#m

Then (x,,, ym) = 1, and for i # m, we have

1 n+1 .
<xzaym> = Oé_ <ZL‘Z‘, Zm> - Z(xiayj ><$j7zm> =0
m 1
jm
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because (v;,yj") = ;5. Thus, we obtained {y1, ..., ¥n11} such that (z;,y;) =
0;; for all ¢, j. O]

Theorem 4.6. Let (X,Y) be a dual system and S: X — X, T:Y =Y be
compact adjoint operators. Then

dim(N(I —S)) =dim(N(I —T)) < oc.
Proof. By Theorem 3.12,
dim(N(I —S)) =m; dim(N(I —1T)) = n.

We need to show that m = n. Suppose that m < n. If m > 0, we choose
a basis {z1,...,2,} C N(I —S5) and a basis {y1,...,y.} C N({ —T). By
Lemma 4.5, there exists elements {a1,as,...a,} CY and {by,bs,...,b,} C
X such that (x;,a;) = d;, for 4,5 = 1,2,...,m, and (b;,y;) = d;; for i,j =
1,2,...,n. Define a linear operator F' : X — X by

m

Fz .= Z(x,aiﬂ)i
i=1
for m > 0. If m = 0 then FF = 0 is the zero operator. Note that F' :
N[(I = S5)"] — X is bounded by Theorem B.9 and P : X — N[(I — S)"] is
a compact projection operator by Proposition 3.17. Then, by Theorem 3.7,
FP: X — X is compact. Since linear combination of compact operators are
compact, S — F'P is compact. Consider
(x — Sz + FPx,y;) = (x,(I = T)y;) + (FPx,y;) = (FPx,vy;).
Then
Px,a;) j=12,...
I (X AP RN
0 j=m+1,...,n.

If © € N(I — S+ FP), then by above equation (Px,a;) = 0 for all j =
1,...,m. Therefore, FPx = 0 and, hence, x € N(I — S). Consequently,
T =y g, le, o = (x,q;). But Pr =z for € N(I — S), therefore
a; = (Pz,a;) = 0 for all ¢ = 1,...,m which implies that z = 0. Thus,
I — S + FP is injective. Hence the inhomogeneous equation

r—Sx+ FPx =0,
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has a unique solution x. Note that
0= (x—Sz+ FPx,y,) = (bn,yn) = 1

is a contradiction. Therefore, m > n. Arguing similarly by interchanging
the roles of S and T, we get n > m implying that m = n. n

Theorem 4.7. Let (X,Y) be a dual system and S: X — X, T:Y =Y be
compact adjoint operators. Then

R(I-S)={ze X |(z,y)=0,Yye N(I -T)}

and
RI-T)={yeY |(x,y)=0,Yr e N(I—-5)}.

Proof. The case of dim(N(/ — T)) = 0 is trivial because, in that case,
dim(N(I —S)) =0 and R({ —S) = X (by Theorem 3.15 and Theorem 4.6).
Hence, the result is trivially true. Suppose that the dim(N(/ —1T")) =m > 0.
Let © € R(I — 95), ie., x = (I — S)xy for some xy € X. Then, for all
/S N(I - T)7

<J},y> = <[E0 - Sx07y> = <C(70,y - Ty> = 0.

Conversely, assume that z € X satisfies (z,y) = 0 for all y € N(I — T).
From the proof of previous theorem, there is a unique solution zy € X of

(I =S+ FP)xy=x. Then
<Px07aj> = <<[_S+FP)$07yj> = <xayj> =0 VJ:1,2,,m

Then FPzxy =0 and thus ({ — S)zo = z and z € R(I — S). The argument
for R(I —T) is similar. O

The above two theorems together is called the Fredholm alternative.

Corollary 4.8. Let EE C R" be a non-empty compact subset with non-empty
intertor and K be a continuous or weakly singular kernel on E x E. Then
either the homogeneous integral equations

u(z) — [EK(x,y)u(y) dy=0 z€FE (4.1)
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and
v(x) — /EK(y,x)v(y) dy=0 ze€k (4.2)

only have the trivial solutions u = 0 and v = 0, and the inhomogeneous
integral equations

u(x) - /E K(z.y)uly)dy = f(z) z€E

and

o(z) - /E K(y, 2)o(y)dy = g(a) w€E

have unique solution u,v € C(E) for given f,g,€ C(E), respectively, or both
(4.1) and (4.2) have the same finite number m € N of linearly independent
solutions and the inhomogeneous integral equations are solvable iff

/Ef(a:)v(q:) dr =0

for all v solving (4.2) and

[E w(@)g(x) dx = 0

for all u solving (4.1), respectively.

Appendices

A Ascoli-Arzela Result

Definition A.1. Let X be a topological space. A set EE C X is said to be
totally bounded if, for every given € > 0, there exists a finite collection of
points {xy1,x9, - ,x,} C X such that E C U, B:(z;).

Exercise A.1. If £ C X is totally bounded then E™ C X" is also totally
bounded.

Definition A.2. A subset A C C(X) is said to be bounded if there exists a
M € N such that || f|lco < M for all f € A.

18



Definition A.3. A subset A C C(X) is said to be equicontinuous at xy € X
if, for every given € > 0, there is an open set U of xy such that

|f(z) — f(xg)| <e VxeU;feA
A is said to be equicontinuous if it is equicontinuous at every point of X.

Theorem A.4. Let X be a compact topological space and Y be a totally
bounded metric space. If a subset A C C(X,Y) is equicontinuous then A is
totally bounded.

Proof. Let A be equicontinuous and € > 0. Then, for each z € X, there is a
open set U, containing x such that

1f(y) — f(2)] < g Vy e U,: f e A

Since X is compact, there is a finite set of points {z;}7 C X such that
X = U U,,. Define the subset E/4 of Y™ as,

EA = {(f(xl)af(x2)7 te 7f(‘rn)) | f € A}

which is endowed with the product metric, i.e.,

d(y, z) = max {[y; — z]}

1<i<n

where y, z € Y™ are n-tuples. Since Y is totally bounded, Y is also totally
bounded (cf. Exercise A.1). Thus, E,4 is totally bounded and there are m
number of n-tuples, y; := (f;(x1), fj(x2), -, fj(z,)) € Y™, foreach 1 < j <
m, such that Fa C UJL,B.3(k;). For any f € A, there is a j such that
d(y;, zr) < 5 where zy = (f(z1), f(22), -+, f(7,)). In particular, given any
f € A, there is a j such that, for all 1 <i < n,

fila) = fa)l < 5.

Given f € A, fix the j as chosen above.Now, for any given x € X, there is a
¢ such that x € U,,. For this choice of 7, j, we have

[f(2) = fi(@)] < [f (@) = Fla)| + 1f (i) = fi(ea)l + [f3(z:) = fi(2)]

The first and third term is smaller that £/3 by the continuity of f and f;,
respectively, and the second term is smaller than /3 by choice of f;. Hence
A'is totally bounded, i.e., A C UL, B.(f;), equivalently, for any f € A there
is a j such that ||f — fille < €. O
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Lemma A.5. Let X be compact topological space. If A C C(X) is bounded
then there is a compact subset K C R such that f(x) € K for all f € A and
reX.

Proof. Choose an element g € A. Since A is bounded in the uniform topology,
there is a M such that ||f — g||cc < M for all f € A. Since X is compact,
g(X) is compact. Hence there is a N > 0 such that g(X) C [-N, N]. Then
f(X)C[-M —N,M+ N]forall fe A Set K :=[-M — N,M + NJ and

we are done. O

Corollary A.6 (other part of Ascoli-Arzela Theorem). Let X be a compact
topological space. If a subset A C C(X) is closed, bounded and equicontinuous
then A is compact.

Proof. Since A is bounded, by Lemma above, we have A C C(X, K) C C(X)
for some compact subset K C R. Then, by the Theorem above, A is totally

bounded. Since A is a closed and totally bounded subset of the metric space
C(X), A is compact. O

B Normed Spaces and Bounded Operators

Definition B.1. Let V and W be real or complex vector spaces. A linear
map from V to W is a function T :' V — W such that

T(ax + By) = aT(x) + fT(y) Va,y €V and Yo, € R or C.

Observe that a linear map is defined between vector spaces over the same
field of scalars.

Ezercise B.1. Show that a linear map T satisfies 7'(0) = 0.
Let £(V, W) be the space of linear maps from V to W.

Definition B.2. A normed space is a pair (X, | - ||), where X is a vector
space over C or R and || - || : X — [0,00) is a function such that
(i) [lzll = 0 iff = =0,

(i1) || z|| = |A|||z]| for all x € X and X € F (absolute homogeneity),

(iii) |z + y|| < ||lz|| + lly|| for all z,y € X. (sub-additivity or triangle
inequality)
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The function || - || is called the norm of a vector from X. Norm is a
generalisation of the notion length of a vector in a Euclidean space.

Ezercise B.2. Show that every normed space is a metric space with the metric
d(z,y) = [z —yl.

FEzercise B.3. Show that the map || - | : X — [0, 00) is uniformly continuous
on X.

Proof. Observe that ||z = |lz —y +yl < |l =yl + [lyll. Thus, [lz]| —[ly|| <
[ =yl Similarly, [lyl| <[y — 2| + [[«]. Thus, [z} = {lyll| <]z =yll. O

Ezercise B.4. The operations addition (+) and scalar multiplication are con-
tinuous from X x X and X x C to X, respectively.

FEzercise B.5. Show that for a Cauchy sequence {z,} in X, we have

1
|Zm — 2|l < = Vm >n.

2n
Definition B.3 (Infinite Series). An infinite series in a normed space X,
SAY Y ooy T = Ty + To + ..., s said to be convergent if the sequence s, is

convergent, where s, = Z:.L:l x; 18 the sequence of partial sums. An infinite
series is said to be absolutely convergent if the series Y .-, ||z;|| is convergent.

Theorem B.4. A normed space X is a Banach space iff every absolutely
convergent series in X 1S convergent.

Proof. Let X be Banach space and let x = 3 °° x; be an absolutely con-
vergence series. Let y, = Y., x; be the partial sum. It is enough to
show that {y,} is Cauchy in X. Given € > 0, there exists a Ny such that
>, il < e. We choose m,n > Ny and, without loss of generality, fix
Ny <m < n. Then

n

>

i=m+1

n o0
< Y Jall < Y Jaill <<

i=m+1 i=Ng

Hyn - ymH =

Thus, {y,} is a Cauchy sequence in X and hence converges. Hence, the given
absolutely convergent series converges.

Conversely, let every absolutely convergent series in X converge. We need
to show that every Cauchy sequence in X converges. Let {x,} be a Cauchy
sequence in X. Therefore, by Exercise B.5,

1
|Zm — x| < on Vm > n.
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Now, let us construct a series in X using the given Cauchy sequence. Set
zo = 0 and define yj, = xj, —x4_ for all ¢ > 1. Then, observe that Y, _, yp =
. Therefore, the n' partial sum of the series Y - yj is x,,. Observe that
llyell < 1/2%1. Thus, by comparison test, the series absolutely convergent
and hence, by hypothesis, converges. Therefore its sequence of partial sums
{z,} converges. Therefore X is Banach since {x,} was a arbitrary sequence
in X. O

Theorem B.5. Let {z1,xs,...,2,} be a linearly independent set of vectors
in a normed space X. Then there is a constant ¢ > 0 such that for every
choice of A\, \o, ..., \, we have

n
g Ni;
i=1

Proof. Set s =>"" |\ If s =0 then \; =0, for each i = 1,2,...,n. Thus,
(B.1) holds trivially, for any ¢ > 0. Suppose that s > 0. Then, observe that
proving (B.1) is equivalent to showing the existence of a constant ¢ > 0 such
that for all scalars «; of the satisfying > | || = 1, we have

n
E ;0
i=1

The equivalence is obtained by dividing s on both sides of (B.1) and setting
o = % Suppose our claim is false, then for every m € N, there is a set of
scalars {a/"}7 such that >  |a/"] =1 and

n
m
i=1

Thus, ||ym|| — 0 as m — oo. Since > || = 1, for each i, |af"] < 1.
Fixing ¢ = 1, we observe that the sequence {a/"},, is bounded in R. By in-
voking Bolzano-Weierstrass theorem, {a]"},, has a convergent subsequence
{77"} that converges to ay. Let vy}, = {21 + >, a™x; which is a sub-
sequence of y,,. Repeating the argument for y!, we get a subsequence
Y2, = S0 Ala + SO0 'z, with ay being the limit of the subsequence
of {a5'}. Thus, repeating the procedure n times, we have a subsequence
{y" }m of y,, which is given by

>c (Z |)\1|> . (c independent of the scalars) (B.1)
i=1

> c.

1
[ymll = <.
m

n
no__ 2 m
i=1

22



where, for each i, 7" — «a; and Y ., [7/*| = 1. Thus, letting m — oo, we
have

n
Y =Y = Z Q4T
i=1

and > |a;| = 1. Thus, oy # 0 for some i. Since the set {z1, 29, ..., 2,} is
linearly independent y # 0. By Exercise B.3, if 4, ™%y, then ||y” || =
llyll. But ||ym| — 0, hence the subsequence ||y || — 0. Therefore ||y|| = 0

implies y = 0 which is a contradiction. O]

Theorem B.6. Let Y be finite dimensional subspace of a normed space X.
Then, for any x € X, there is ay € Y such that

—y|| = inf || — z||.
lz = yll = inf |z — 2|

Lemma B.7 (Riesz Lemma). Let Y be a proper closed subspace of a normed
space X. Then, for every 0 < ¢ < 1, there is a point v. € X such that
|ze]| = 1 and

e < d(l‘a,Y) <1,

where d(z,Y) = infy ey ||z — y|.

Proof. Since Y # X, choose © € X such that x ¢ Y. Since Y is closed
d(xz,Y) > 0. Now, for any 0 < £ < 1, there is a yy € Y such that

d(z,Y
d(r,Y) < |l — pol < 42Y)

The above inequality can be rewritten as

d(z,Y
e YY) (B.2)
[l = woll
Set z. = IIi:ng‘ Observe that
7. — ] L Iz~ wolly)
Te =Yl = 7o 7\@— Yo — lIT— Yolly
[ = woll
1
= ——lle—wml (whereyr =yo — |lz —wly € Y).
| = woll
Therefore, d(z.,Y) = Md(az, Y) and by (B.2), we have our claim. O

23



Theorem B.8. If a normed space X is such that the unit ball B(X) is
compact, then X 1is finite dimensional.

Proof. Let us suppose that X is infinite dimensional. Let x; € X such that
|lz1]] = 1. The X; = [z1] is a one dimensional subspace of X. Since X is
infinite dimensional, [z4] is a proper subspace of X. By Riesz lemma, there
is a xo € X with ||zo|| = 1 such that ||z — 21| > 1/2. Now, Xy = [z, 22] is
a two-dimensional proper subspace of X. Therefore, again by Riesz lemma,
there is a x3 € X with ||z3|| = 1 such that ||x3 — x| > 1/2 for all z € X5.
In particular, ||z3 — 21| > 1/2 and ||x3 — x3]| > 1/2. Arguing further in a
similar way, we obtain a sequence {z,} in B(X) such that ||z,, — z,| > 1/2
for all m # n. Thus, we have obtained a bounded sequence in B(X) which
cannot converge for any subsequence, which contradicts the hypothesis that
B(X) is compact. Therefore dim(X) = oo. O

Theorem B.9. Let X and Y be normed spaces. If X is finite dimensional,
then every linear map from X to'Y s continuous.

Proof. Let X be finite dimensional and and let T € L£(X,Y). If T'= 0, then
the result is trivial, since £(X,Y) = {0}. Let X # 0 and {ey,ea,...,€,} be
a basis for X. Let z, — z in X. For some scalars, since x, = Z:’il Ale;
and x = >7" Ne;, we have A — \; for all 1 < ¢ < m (by Theorem B.5).
Consider,

Tx, = Z A"Te;  (by linearity of T')
i=1

m

i=1

The convergence is valid by the continuity of addition and scalar multiplica-
tion (cf. Exercise B.4). Thus T is continuous. O

Definition B.10. For any given normed spaces X and Y, a linear map
T € L(X,Y) is said to be bounded if there is a constant ¢ > 0 such that
|Tz|| < c|z||, VrelX.

Basically, bounded operators map bounded sets in X to bounded sets in
Y. Let B(X,Y) be the space of bounded linear maps from X to Y.

Any map in £(X,Y) \ B(X,Y) is said to be unbounded linear map. We
shall now prove an interesting result which says that B(X,Y) = C(X,Y), the
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space of continuous linear maps from X to Y. In other words, by looking
at bounded linear maps we are, in fact, looking at continuous linear maps.
Such a result is possible only because of the underlying linear structure of
the space. The following theorem proves these remarks rigorously.

Theorem B.11. Let X andY be normed spaces and let T € L(X,Y). Then
the following are equivalent:

(i) T € C(X,Y).
(i1) T is continuous at some point xo € X.
(iii) T € B(X,Y).

Proof. The above equivalence are true if 7" = 0. Hence, henceforth, we
assume 1" # 0.

(1) implies (ii) is trivial from the definition of continuity.

Let us now assume (ii). Then, for any ¢ > 0, there is a § > 0 such that
Tz —Txo|| < e whenever ||z —x¢| < 9. Set Bs(xg) = {x € X | ||z —xo| < 0.
For any non-zero = € X, xy + ”%Hx € Bj(xg). Therefore ”i—”HTa:H < ¢ and
hence ||[Tx|| < ||z|. Thus, T" is bounded.

We shall now assume 7' is bounded and prove (i). There is a ¢ > 0 such
that | Tx|| < ¢||z||. Therefore, |Tx —Ty|| < c||lz —y|| for all z,y € X. Thus,
for any given € > 0, | Tz — Ty|| < € whenever ||z — y|| < e/N. O

We shall now introduce a norm in B(X,Y) to make it a normed space.
Observe that, in the definition of bounded linear map, we seek the existence
of a constant ¢ > 0. The question is what is the smallest such constant ¢ > 07
Note that

T
HH T’H <c¢ Vre X andz #0.
T
Thus, the smallest such constant would be sup,ex ””7;6 gﬂ” <ec.
x#0
Ezercise B.6. For any T' € B(X,Y)
Tz
L B —
zeX |:B|| reX zeX
20 e =1 el <1
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Proof. Observe that for any x € X, the vector z = ﬁ € X such that
|lz]] = 1. Thus, by the linearity of T,

T
sup ITz] = sup ||T <L)H = sup [|Tz||.
zex |zl zeX ] 2€X
x#0 x#0 [|z]|=1
[
FEzercise B.7. Show that the function || - || : B(X,Y) — [0, 00) defined as

T
170 = sup 2L v e Bx vy
wex ||
z#£0
is a norm on B(X,Y). Thus, B(X,Y) is a normed space.

Ezercise B.8. Show that if T € B(X,Y) and S € B(Y, Z), then the compo-
sition SoT = ST is in B(X, Z) and ||ST| < ||S||||T]|. In particular, show
that B(X) is an algebra under composition of operators.

Theorem B.12. IfY is complete then B(X,Y) is a complete normed space.
In particular, X* is a Banach space.

Proof. Let {T,,} be a Cauchy sequence in B(X,Y). Then {7,z} is a Cauchy
sequence in Y, for all z € X. Since Y is complete, there is a y € Y such
that T,,x — y. Set Tx = y. It now remains to show that 7' € B(X,Y) and
T, — T in B(X,Y). For any given x1,xs € X and scalars A\, Ay € R, we
have
T()\ll'1 + )\2272) = lim Tn()\lxl + )\21‘2)
= lim M7,z + lim M\T,, 29
n—oo n—oo

= )\1T.731 -+ )\QT.CEQ.
Thus, T € L(X,Y). Since T, is Cauchy, for every ¢ > 0, there is a Ny € N
such that ||T,,, — T,|| < € for all m,n > Ny. Therefore, for all z € X, we

have,
| Tz = Tall < T = Tulllle] < ellz] ¥m,n > No.

Now, by letting m — oo, we have || T,z — Tz|| < ¢||z| for all x € X and
n > Ny. Thus, ||T,, — T|| — 0. Also, since

[Tz = |T2 = Toxl| + | Toell < (e + [ Tul) =[],
we have T € B(X,Y). O
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