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Raison d’être

The process of understanding natural phenomena may be viewed in three
stages:

(i) Modelling the phenomenon as a mathematical equation (algebraic or
differential equation) using physical laws such as Newton’s law,
momentum, conservation laws, balancing forces etc.

(ii) Solving the equation! This leads to the question of what constitutes
as a solution to the equation?

(iii) Properties of the solution, especially in situations when exact solution
is not within our reach.

In this course, we are mostly interested in differential equations in
dimension bigger than one!
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Review of Multi-variable Calculus

Let Ω ⊂ R is an open interval. Then the derivative of a function
u : Ω→ R, at x ∈ Ω, is defined as

u′(x) := lim
h→0

u(x + h)− u(x)

h

provided the limit exists.

Now, let Ω be an open, connected subset of Rn. The directional
derivative of u : Ω→ R, at x ∈ Ω and in the direction of a given
vector ξ ∈ Rn, is defined as

∂ξu(x) := lim
h→0

u(x + hξ)− u(x)

h
,

provided the limit exists.
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Review of Multi-variable Calculus

Let ei := (0, 0, . . . , 1, 0, . . . , 0), where 1 is in the i-th place, denote
the standard basis vectors of Rn.

The i-th partial derivative of u at x is the directional derivative of u,
at x ∈ Ω and along the direction ei , and is denoted as uxi (x) or
∂u
∂xi

(x).

The gradient vector of u is ∇u(x) := (ux1(x), ux2(x), . . . , uxn(x)).

The directional derivative along a vector ξ ∈ Rn satisfies the identity

∂ξu(x) = ∇u(x) · ξ.

The divergence of a vector function u = (u1, . . . , un), denoted as
div(u), is defined as div(u) := ∇ · u.
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Multi-Index Notations

Note that a k-degree polynomial in one variable is written as∑
1≤i≤k aix

i .

How does one denote a k-degree polynomial in n variable (higher
dimensions)?

A k-degree polynomial in n-variables can be concisely written as∑
|α|≤k aαx

α where

the multi-index α = (α1, . . . , αn) is a n-tuple where αi , for each
1 ≤ i ≤ n, is a non-negative integer,

|α| := α1 + . . .+ αn,

and, for any x ∈ Rn, xα = xα1
1 . . . xαn

n .
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Multi-Index Notations

The partial differential operator of order α is denoted as

∂α =
∂α1

∂x1
α1
. . .

∂αn

∂xnαn
=

∂|α|

∂x1
α1 . . . ∂xnαn

.

If |α| = 0, then ∂αf = f .

For each k ∈ N, Dku(x) := {∂αu(x) | |α| = k}.
The case k = 1 is the gradient vector,

∇u(x) := D1u(x)

=
(
∂(1,0,...,0)u(x), ∂(0,1,0,...,0)u(x), . . . , ∂(0,0,...,0,1)u(x)

)
=

(
∂u(x)

∂x1
,
∂u(x)

∂x2
, . . . ,

∂u(x)

∂xn

)
.
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Multi-Index Notations

The case k = 2 is the Hessian matrix

D2u(x) =


∂2u(x)
∂x2

1
. . . ∂2u(x)

∂x1∂xn
∂2u(x)
∂x2∂x1

. . . ∂2u(x)
∂x2∂xn

...
. . .

...
∂2u(x)
∂xn∂x1

. . . ∂2u(x)
∂x2

n


n×n

.

The Laplace operator, denoted as ∆, is defined as the trace of the
Hessian operator, i.e., ∆ :=

∑n
i=1

∂2

∂x2
i

. Note that ∆ = ∇ · ∇.
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Partial Differential map

Example

Let u(x , y) : R2 → R be defined as u(x , y) = ax2 + by2. Then

∇u = (ux , uy ) = (2ax , 2by)

and

D2u =

(
uxx uyx
uxy uyy

)
=

(
2a 0
0 2b

)
.

Observe that ∇u : R2 → R2 and D2u : R2 → R4 = R22
.

More generally, for a k-times differentiable function u, the nk -tensor
Dku(x) := {∂αu(x) | |α| = k} may be viewed as a map

Dku : Rn → Rnk .
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Partial Differential Equation

Definition

Let Ω be an open, connected subset of Rn. A k-th order partial differential
equation of an unknown function u : Ω→ R is of the form

F
(
Dku(x),Dk−1u(x), . . .Du(x), u(x), x

)
= 0, (1.1)

for each x ∈ Ω, where F : Rnk ×Rnk−1 × . . .×Rn ×R×Ω→ R is a given
map such that F depends, at least, on one k-th partial derivative u and is
independent of (k + j)-th partial derivatives of u for all j ∈ N.

For instance, a first order PDE is represented as
F (Du(x), u(x), x) = 0 and a second order PDE is
F (D2u(x),Du(x), u(x), x) = 0.
A first order PDE with three variable unknown function u(x , y , z) is
written as F (ux , uy , uz , u, x , y , z) = 0 with F depending, at least, on
one of ux , uy and uz .
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Classification of PDE in terms of Linearity

The level of difficulty in solving a PDE may depend on its order k and
linearity of F .

Definition

A k-th order PDE is linear if F in (1.1) has the form

Fu := Lu − f (x)

where Lu(x) :=
∑
|α|≤k aα(x)∂αu(x) for given functions f and aα’s. In

addition, if f ≡ 0 then the PDE is linear and homogeneous.

It is called linear because L is linear in u for all derivatives , i.e.,
L(λu1 + µu2) = λL(u1) + µL(u2) for λ, µ ∈ R.
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Classification of PDE in terms of Linearity

Example
(i) xuy − yux = u is linear and homogeneous.

(ii) xux + yuy = x2 + y2 is linear.

(iii) utt − c2uxx = f (x , t) is linear.

(iv) y2uxx + xuyy = 0 is linear and homogeneous.
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Classification of PDE in terms of Linearity

Definition

A k-th order PDE is semilinear if F is linear only in the highest (k-th)
order, i.e., F has the form∑

|α|=k

aα(x)∂αu(x) + f (Dk−1u(x), . . . ,Du(x), u(x), x) = 0.

Example

(i) ux + uy − u2 = 0 is semilinear.

(ii) ut + uux + uxxx = 0 is semilinear.

(iii) u2
tt + uxxxx = 0 is semilinear.
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Classification of PDE in terms of Linearity

Definition

A k-th order PDE is quasilinear if F has the form∑
|α|=k

aα(Dk−1u(x), . . . , u(x), x)∂αu + f (Dk−1u(x), . . . , u(x), x) = 0,

i.e., the coefficient of its highest (k-th) order derivative depends on u and
its derivative only upto the previous (k − 1)-th orders.

Example

(i) ux + uuy − u2 = 0 is quasilinear.

(ii) uux + uy = 2 is quasilinear.
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Classification of PDE in terms of Linearity

Definition

A k-th order PDE is fully nonlinear if it depends nonlinearly on the highest
(k-th) order derivatives.

Example
(i) uxuy − u = 0 is nonlinear.

(ii) u2
x + u2

y = 1 is nonlinear.
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Solution of PDE

Definition

We say u : Ω→ R is a solution to the PDE (1.1), if ∂αu exists for all α
explicitly present in (1.1) and u satisfies the equation (1.1).

Example

Consider the first order equation ux(x , y) = 0 in R2.Freezing the
y -variable, the PDE can be viewed as an ODE in x-variable. On
integrating both sides with respect to x , u(x , y) = f (y) for any arbitrary
function f : R→ R.Therefore, for every choice of f : R→ R, there is a
solution u of the PDE.Note that the solution u is not necessarily in
C 1(R2), in contrast to the situation in ODE. By choosing a discontinuous
function f , one obtains a solution which is discontinuous in the
y -direction.Similarly, a solution of uy (x , y) = 0 is u(x , y) = f (x) for any
choice of f : R→ R (not necessarily continuous).
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Solution of PDE

Example

Consider the first order equation ut(x , t) = u(x , t) in R× (0,∞) such that
u(x , t) 6= 0, for all (x , t). Freezing the x-variable, the PDE can be viewed
as an ODE in t-variable. Integrating both sides with respect to t we
obtain u(x , t) = f (x)et , for some arbitrary (not necessarily continuous)
function f : R→ R.
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Example

Consider the second order PDE uxy (x , y) = 0 in R2. In contrast to the
previous two examples, the PDE involves derivatives in both variables. On
integrating both sides with respect to x we obtain uy (x , y) = F (y), for
any arbitrary integrable function F : R→ R. Now, integrating both sides
with respect to y , u(x , y) = f (y) + g(x) for an arbitrary g : R→ R and a
f ∈ C 1(R). But the u obtained above is not a solution to uyx(x , y) = 0 if
g is not differentiable. If we assume mixed derivatives to be same we need
to assume f , g ∈ C 1(R) for the solution to exist.
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Solution of PDE

Example

Consider the first order equation ux(x , y) = uy (x , y) in R2.On first glance,
the PDE does not seem simple to solve. But, by change of coordinates,
the PDE can be rewritten in a simpler form. Choose the coordinates
w = x + y and z = x − y and, by chain rule, ux = uw + uz and
uy = uw − uz . In the new coordinates, the PDE becomes uz(w , z) = 0
which is in the form considered in Example 12.Therefore, its solution is
u(w , z) = f (w) for any arbitrary f : R→ R and, hence,
u(x , y) = f (x + y).
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Multiple Family of Solutions

Example

Consider the second order PDE ut(x , t) = uxx(x , t).

(i) Note that u(x , t) = c is a solution of the PDE, for any constant
c ∈ R. This is a family of solutions indexed by c ∈ R.

(ii) The function u : R2 → R defined as u(x , t) = x2

2 + t + c , for any
constant c ∈ R, is also a family of solutions of the PDE. Because
ut = 1, ux = x and uxx = 1.This family is not covered in the first
case.

(iii) The function u(x , t) = ec(x+ct) is also a family of solutions to the
PDE, for each c ∈ R. Because ut = c2u, ux = cu and uxx = c2u.
This family is not covered in the previous two cases.

Recall that the family of solutions of an ODE is indexed by constants. In
contrast to ODE, observe that the family of solutions of a PDE is indexed
by either functions or constants.
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Well-posedness of PDE

It has been illustrated via examples that a PDE has a family of
solutions.

The choice of one solution from the family of solutions is made by
imposing boundary conditions (boundary value problem) or initial
conditions (initial value problem).

If too many initial/boundary conditions are specified, then the PDE
may have no solution.

If too few initial/boundary conditions are specified, then the PDE
may have many solutions.

Even with ‘right amount’ of initial/boundary conditions, but at wrong
places, the solution may fail to be stable, i.e., may not depend
continuously on the initial or boundary data.

It is, usually, desirable to solve a well-posed problem, in the sense of
Hadamard.
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Well-posedness of PDE

A PDE, along with the boundary condition or initial condition, is said to
be well-posedness if the PDE

(a) admits a solution (existence);

(b) the solution is unique (uniqueness);

(c) and the solution depends continuously on the data given (stability).

Any PDE not meeting the above criteria is said to be ill-posed. Further,
the stability condition means that a small “change” in the data reflects a
small “change” in the solution. The change is measured using a metric or
“distance” in the function space of data and solution, respectively.
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Cauchy Problem

A Cauchy problem poses the following question: given the knowledge
of u on a smooth hypersurface Γ ⊂ Ω, can one find the solution u of
the PDE?

The prescription of u on Γ is said to be the Cauchy data.

What is the minimum desirable Cauchy data in order to solve the
Cauchy problem?

Taking cue for ODE: Recall that the initial value problem
corresponding to a k-th order linear ODE admits a unique solution

∑k
i=0 aiy

(i)(x) = 0 in I
y(x0) = y0 for some x0 ∈ I

y (i)(x0) = y
(i)
0 ∀i = {1, 2, . . . , k − 1} for some x0 ∈ I

where ai are continuous on I , a closed subinterval of R, and x0 ∈ I .

T. Muthukumar tmk@iitk.ac.in Partial Differential EquationsMSO-203-B November 14, 2019 22 / 193



Cauchy Problem

This motivates us to define the Cauchy problem as
F
(
Dku(x), . . . ,Du(x), u(x), x

)
= 0 in Ω

u(x) = u0(x) on Γ
∂ iνu(x) = ui (x) on Γ

∀i = {1, 2, . . . , k − 1}
(1.2)

where Ω is an open connected subset (domain) of Rn and Γ is a
hypersurface contained in Ω. Thus, a natural question at this juncture is
whether the knowledge of u and all its normal derivative upto order
(k − 1) on Γ is sufficient to compute all order derivatives of u on Γ.
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First Order Quasilinear PDE

Let f ∈ C (Rn). The Cauchy problem for the first order quasilinear PDE{
a(x , u(x)) · ∇u(x) = f (x , u) in Rn

u(x) = u0(x) on {xn = 0}.

We seek whether all order derivatives of u on {xn = 0} can be
computed.

Without loss of generality, let us compute at x = 0, i.e u(0) and
∇u(0) := (∇x ′u(0), ∂xnu(0)) where x = (x ′, xn) where x ′ is the
(n − 1)-tuple.

If the initial condition u0 is a smooth function then the x ′ derivative of
u is computed to be the x ′-derivatve of u0, i.e. ∇x ′u(0) = ∇x ′u0(0).

It only remains to compute ∂xnu(0).

Using the PDE, whenever an(0, u0(0)) 6= 0, we have

∂xnu(0) =
−1

an(0, u0(0))

(
a′(0, u0(0)) · ∇x ′u(0)− f (0, u0(0))

)
.
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General Hypersurface

Now, suppose Γ is a general hyperspace given by the equation
{φ = 0} for a smooth function φ : Rn → R in a neighbourhood of the
origin with ∇φ 6= 0.

Recall that ∇φ is normal to Γ. Without loss of generality, we assume
φxn(x0) 6= 0.

Consider the change of coordinate (x ′, xn) 7→ y := (x ′, φ(x)), then its
Jacobian matrix is given by(

I(n−1)×(n−1) 0n−1

∇x ′φ φxn

)
n×n

and its determinant at x0 is non-zero because φxn(x0) 6= 0.
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General Hypersurface

The change of coordinates has mapped the hypersurface to the
hyperplane {yn = 0}. Rewriting the given PDE in the new variable y ,
we get

Lu = a(x , u(x)) · ∇φ∂ynu + terms not involving ∂ynu

and the initial conditions are given on the hyperplane {yn = 0}.
Thus, the necessary condition is a(x , u(x)) · ∇φ 6= 0.

Recall that ∇φ is the normal to the hypersurface Γ.
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Non-characteristic Hypersurface

Definition

For any given vector field a : Rn → Rn and f : Rn → R, let
Lu := a(x , u) · ∇u − f (x , u) be the first order quasilinear partial
differential operator defined in a neighbourhood of x0 ∈ Rn and Γ be a
smooth hypersurface containing x0. Then Γ is non-characteristic at x0 if

a(x0, u0(x0)) · ν(x0) 6= 0

where ν(x0) is the normal to Γ at x0. Otherwise, we say Γ is characteristic
at x0 with respect to L. If Γ is (non)characteristic at each of its point then
we say Γ is (non)characteristic.

It says that the coefficient vector a is not a tangent vector to Γ at x0.

The non-characteristic condition depends on the initial hypersurface
and the coefficients of first order derivatives in the linear case.

In the quasilinear case, it also depends on the initial data.
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Two Dimension

In the two dimension case, the quasilinear Cauchy problem is{
a(x , y , u)ux + b(x , y , u)uy = f (x , y , u) in Ω ⊂ R2

u = u0 on Γ ⊂ Ω
(1.3)

If the parametrization of Γ is {γ1(r), γ2(r)} ⊂ Ω ⊂ R2 then the
non-characteristic condition means if Γ is nowhere tangent to
(a(γ1, γ2, u0), b(γ1, γ2, u0)), i.e.

(a(γ1, γ2, u0), b(γ1, γ2, u0)) · (−γ′2, γ′1) 6= 0 for all r .
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Example

Consider the equation

2ux(x , y) + 3uy (x , y) = 1 in R2.

Let Γ be a straight line y = mx + c in R2.The equation of Γ is
φ(x , y) = y −mx − c . Then, ∇φ = (−m, 1). The parametrization of the
line is Γ(r) := (r ,mr + c) for r ∈ R. Therefore,

(a(γ1(r), γ2(r)), b(γ1(r), γ2(r))) · (−γ′2(r), γ′1(r)) = (2, 3) · (−m, 1)

= 3− 2m.

Thus, the line is not a non-characteristic for m = 3/2, i.e., all lines with
slope 3/2 is not a non-characteristic.
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Two Dimension: Second order Quasilinear

Consider the second order quasilinear Cauchy problem in two variables
(x , y)

Puxx + 2Quxy + Ruyy = f (x , y , u, ux , uy ) in Ω ⊂ R2

u(x) = u0(x) on Γ
∂νu(x) = u1(x) on Γ

(1.4)

where ν is the unit normal vector to the curve Γ, P,Q,R and f may
nonlinearly depend on its arguments (x , y , u, ux , uy ) and u0, u1 are known
functions on Γ. Also, one of the coefficients P,Q or R is identically
non-zero (else the PDE is not of second order). If the curve Γ is
parametrised by s 7→ (γ1(s), γ2(s)) then the directional derivative of u at
any point on Γ, along the tangent vector, is u′(s) = uxγ

′
1(s) + uyγ

′
2(s).

But u′(s) = u′0(s) on Γ.
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Two Dimension

Thus, instead of the normal derivative, one can prescribe the partial
derivatives ux and uy on Γ and reformulate the Cauchy problem (1.4) as

Puxx + 2Quxy + Ruyy = f (x , y , u, ux , uy ) in Ω
u(x , y) = u0(x , y) on Γ
ux(x , y) = u11(x , y) on Γ
uy (x , y) = u12(x , y) on Γ.

(1.5)

satisfying the compatibility condition u′0(s) = u11γ
′
1(s) + u12γ

′
2(s). The

compatibility condition implies that among u0, u11, u12 only two can be
assigned independently, as expected for a second order equation.
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By computing the second derivatives of u on Γ and considering uxx , uyy
and uxy as unknowns, we have the system of three equations in three
unknowns on Γ,

Puxx +2Quxy +Ruyy = f
γ′1(s)uxx +γ′2(s)uxy = u′11(s)

γ′1(s)uxy +γ′2(s)uyy = u′12(s).

This system of equation is solvable whenever the determinant of the
coefficients are non-zero, i.e.,∣∣∣∣∣∣

P 2Q R
γ′1 γ′2 0
0 γ′1 γ′2

∣∣∣∣∣∣ 6= 0.

Definition

We say a curve Γ ⊂ R2 is characteristic with respect to (1.5) if
P(γ′2)2 − 2Qγ′1γ

′
2 + R(γ′1)2 = 0 where (γ1(s), γ2(s)) is a parametrisation

of Γ.
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Two Dimension

If y = y(x) is a representation of the curve Γ (locally, if necessary), we
have γ1(s) = s and γ2(s) = y(s). Then the characteristic equation
reduces as

P

(
dy

dx

)2

− 2Q
dy

dx
+ R = 0.

Therefore, the characteristic curves of (1.5) are given by the graphs whose
equation is

dy

dx
=

Q ±
√
Q2 − PR

P
.
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Two Dimension: Types of Characteristics

Thus, we have three situations depending on the sign of the discriminant
d(x) := Q2 − PR.

Definition

A second order quasilinear PDE in two dimension is of

(a) hyperbolic type at x if d(x) > 0, has two families of real
characteristic curves,

(b) parabolic type at x if d(x) = 0, has one family of real characteristic
curves and

(c) elliptic type at x if d(x) < 0, has no real characteristic curves.
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Example

For a given c ∈ R, uyy − c2uxx = 0 is hyperbolic. Since P = −c2, Q = 0
and R = 1, we have d = Q2 − PR = c2 > 0.
How to compute the characteristic curves?Recall that the characteristic
curves are given by the equation

dy

dx
=

Q ±
√
Q2 − PR

P
=
±
√
c2

−c2
=
∓1

c
.

Thus, cy ± x = a constant is the equation for the two characteristic
curves. Note that the characteristic curves y = ∓x/c + y0 are boundary of
two cones in R2 with vertex at (0, y0).
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Higher Dimension: Second order Quasilinear

The classification based on characteristics was done in two dimensions
for simplicity.

The classification is valid for any dimension.

A second order quasilinear PDE is of the form

Lu := A(∇u, u, x) · D2u − f (∇u, u, x) (2.1)

where A : Rn → Rn2
and f : Rn → R are given and the dot product in

LHS is in Rn2
.

Without loss generality, one may assume that A is symmetric.Because
if A is not symmetric, one can replace A with its symmetric part
As := 1

2 (A + At) in L and L remains unchanged because
A · D2u = As · D2u.
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Non-characteristic Hypersurface

Now repeat the arguments that led to the definition of non-characteristic
hypersurface for first order PDE, i.e. compute all the second order
derivatives on the data curve.

Definition

Let L as given in (2.1) be defined in a neighbourhood of x0 ∈ Rn and Γ be
a smooth hypersurface containing x0. We say Γ is non-characteristic at
x0 ∈ Γ with respect L if

Aν · ν =
n∑

i ,j=1

Aij(∇u(x0), u(x0), x0)νi (x0)νj(x0) 6= 0.

where ν(x0) is the normal vector of Γ at x0. Otherwise, we say Γ is
characteristic at x0 with respect to L. Γ is said to be (non)-characteristic if
it is (non)-characteristic at each of its point.
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Classification

The coefficient matrix A(∇u(x), u(x), x) being a real symmetric matrix
will admit n eigenvalues at each x . For each x , let P(x) and Z (x) denote
the number of positive and zero eigenvalues of A(∇u(x), u(x), x).

Definition

We say the partial differential operator given in (2.1) is

hyperbolic at x ∈ Ω, if Z (x) = 0 and either P(x) = 1 or
P(x) = n − 1.

elliptic, if Z (x) = 0 and either P(x) = n or P(x) = 0.

is ultra hyperbolic, if Z (x) = 0 and 1 < P(x) < n − 1.

is parabolic if Z (x) > 0.
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Examples

Example

The wave equation utt −∆xu = f (x , t) for (x , t) ∈ Rn+1 is hyperbolic
because the (n + 1)× (n + 1) second order coefficient matrix is

A :=

(
−I 0
0t 1

)
has no zero eigenvalue and exactly one positive eigenvalue, where I is the
n × n identity matrix.
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Example

The heat equation ut −∆xu = f (x , t) for (x , t) ∈ Rn+1 is parabolic
because the (n + 1)× (n + 1) second order coefficient matrix is(

−I 0
0t 0

)
has one zero eigenvalue.

Example

The Laplace equation ∆u = f (∇u, u, x) for x ∈ Rn is elliptic because
∆u = I ·D2u(x) where I is the n× n identity matrix. The eigen values are
all positive.
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‘Right’ Initial data

The classification based on characteristics tells us the right amount of
initial condition that needs to be imposed for a PDE to be well-posed.

A hyperbolic PDE, which has two real characteristics, requires as
many initial condition as the number of characteristics emanating
from initial time and as many boundary conditions as the number of
characteristics that pass into the spatial boundary.

For parabolic, which has exactly one real characteristic, we need one
boundary condition at each point of the spatial boundary and one
initial condition at initial time.

For elliptic, which has no real characteristic curves, we need one
boundary condition at each point of the spatial boundary.
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Standard or Canonical Forms

The classification helps us in reducing a given PDE into simple forms.
Given a PDE, one can compute the sign of the discriminant and depending
on its clasification we can choose a coordinate transformation (w , z) such
that

(i) For hyperbolic, a = c = 0 (first standard form)
uxy = f̃ (x , y , u, ux , uy ) or b = 0 and a = −c (second standard form).

(ii) If we introduce the linear change of variable X = x + y and
Y = x − y in the first standard form, we get the second standard
form of hyperbolic PDE uXX − uYY = f̂ (X ,Y , u, uX , uY ).

(iii) For parabolic, c = b = 0 or a = b = 0. We conveniently choose
c = b = 0 situation so that a 6= 0 (so that division by zero is avoided
in the equation for characteristic curves) uyy = f̃ (x , y , u, ux , uy ).

(iv) For elliptic, b = 0 and a = c to obtain the form
uxx + uyy = f̃ (x , y , u, ux , uy ).
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Reduction to Standard Form

Consider the second order semilinear PDE not in standard form and
seek a change of coordinates w = w(x , y) and z = z(x , y), with
non-vanishing Jacobian, such that the reduced form is the standard
form.

How does one choose such coordinates w and z . Recall the
coeeficients a, b and c obtained in the proof of Exercise 5 of the first
assignment!

If Q2 − PR > 0, we have two characteristics. Thus, choose w and z
such that a = c = 0.

This implies we have to choose w and z such that

wx

wy
=
−Q ±

√
Q2 − PR

P
=

zx
zy
.
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Therefore, we need to find w such that along the slopes of the
characteristic curves,

dy

dx
=

Q ±
√
Q2 − PR

P
=
−wx

wy
.

This means that, using the parametrisation (γ1, γ2) of the
characteristic curves, wx γ̇1(s) + wy γ̇2(s) = 0 and ˙w(s) = 0.

Similarly for z .

Thus, w and z are chosen such that they are constant on the
characteristic curves.

Note that wxzy − wyzx = wyzy
(

2
P

√
Q2 − PR

)
6= 0.
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Example

Let us reduce the PDE uxx − c2uyy = 0 to its canonical form. Note that
P = 1, Q = 0, R = −c2 and Q2 − PR = c2 and the equation is
hyperbolic. The characteristic curves are given by the equation

dy

dx
=

Q ±
√
Q2 − PR

P
= ±c .

Solving we get y ∓ cx = a constant. Thus, w = y + cx and z = y − cx .
Now writing

uxx = uwww
2
x + 2uwzwxzx + uzzz

2
x + uwwxx + uzzxx

= c2(uww − 2uwz + uzz)

uyy = uwww
2
y + 2uwzwyzy + uzzz

2
y + uwwyy + uzzyy

= uww + 2uwz + uzz

−c2uyy = −c2(uww + 2uwz + uzz)

Substituting into the given PDE, we get 0 = 4c2uwz or 0 = uwz .
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Example

In the parabolic case, Q2 − PR = 0, we have a single characteristic. Let us
reduce the PDE e2xuxx + 2ex+yuxy + e2yuyy = 0 to its canonical form.
Note that P = e2x , Q = ex+y , R = e2y and Q2 − PR = 0. The PDE is
parabolic. The characteristic curves are given by the equation

dy

dx
=

Q

P
=

ey

ex
.

Solving, we get e−y − e−x = a constant. Thus, w = e−y − e−x . Now, we
choose z such that the Jacobian wxzy − wyzx 6= 0. For instance, z = x is
one such choice.
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Example

Then

ux = e−xuw + uz

uy = −e−yuw
uxx = e−2xuww + 2e−xuwz + uzz − e−xuw

uyy = e−2yuww + e−yuw

uxy = −e−y (e−xuww − uwz)

Substituting into the given PDE, we get

exe−yuzz = (e−y − e−x)uw

Replacing x , y in terms of w , z gives

uzz =
w

1 + wez
uw .
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In the elliptic case, Q2 − PR < 0, we have no real characteristics. We
choose w , z to be the real and imaginary part of the solution of the
characteristic equation.

Example

Let us reduce the PDE x2uxx + y2uyy = 0 given in the region
{(x , y) ∈ R2 | x > 0, y > 0} to its canonical form. Note that P = x2,
Q = 0, R = y2 and Q2 − PR = −x2y2 < 0. The PDE is elliptic. Solving
the characteristic equation

dy

dx
= ± ıy

x

we get ln x ± ı ln y = c . Let w = ln x and z = ln y . Then

ux = uw/x , uy = uz/y

uxx = −uw/x2 + uww/x
2

uyy = −uz/y2 + uzz/y
2

Substituting into the PDE, we get uww + uzz = uw + uz .
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Solving a First Order Quasilinear

Consider the quasilinear PDE a(x , u) · ∇u − f (x , u) = 0 in a domain
Ω ⊂ Rn.

Solving for the unknown u : Ω→ R is equivalent to determining the
surface S in Rn+1 given by

S = {(x , z) ∈ Ω× R | u(x)− z = 0}.

The equation of the surface S is given by {φ(x , z) := u(x)− z = 0}.
The normal vector to S is given by ∇(x ,z)φ = (∇u(x),−1).

But using the PDE satisfied by u, we know that

(a(x , u(x)), f (x , u(x))) · (∇u(x),−1) = 0.

Thus, the data vector field V (x , z) := (a(x , z), f (x , z)) ∈ Rn+1 is
perpendicular to the normal of S at every point of S .
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Integral Surface

The coefficient vector V must lie on the tangent plane of S , at each of its
point. Hence, we seek a surface S such that the given coefficient field V is
tangential to S , at every point of S .

Definition

A smooth curve in Rn is said to be an integral curve w.r.t a given vector
field, if the vector field is tangential to the curve at each of its point.
Further, a smooth surface in Rn is said to be an integral surface w.r.t a
given vector field, if the vector field is tangential to the surface at each of
its point.

Thus, finding the unknown u is equivalent to finding the integral surface
corresponding to the data vector field V (x , z)) = (a(x , z), f (x , z)). An
integral surface w.r.t V is an union1 of integral curves w.r.t V .

1the union is in the sense that every point in the integral surface belongs to exactly
one characteristic
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Method of Characteristics for Quasilinear

If Γ = {x(s), z(s)} is an integral curve corresponding to V lying on the
solution surface S , i.e. V is tangential to Γ at all its points, then the curve
is described by the system ODEs,

dx

ds
= a(x(s), z(s)) and

dz

ds
= f (x(s), z(s)).

The n + 1 ODEs obtained are called characteristic equations. The method
of characteristics converts a first order PDE to a system of ODE whose
solution describes the integral curves.
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Example

We shall now compute the solution of the Cauchy problem{
ut + aux = 0 x ∈ R and t ∈ (0,∞)
u(x , 0) = u0(x) x ∈ R. (2.2)

where u0 : R→ R is a given smooth function. We now check for
non-characteristic property of Γ. Note that Γ ≡ {(x , 0)}, the x-axis of
xt-plane, is the (boundary) curve on which the value of u is given. Thus,
(Γ, u0) = {(x , 0, u0(x))} is the known curve on the solution surface of u.
The curve Γ is given by the equation {t = 0} and, hence, its normal is
(0, 1). Γ is non-characteristic, because (a, 1) · (0, 1) = 1 6= 0. The
characteristic equations are:

dx(r , s)

ds
= a,

dt(r , s)

ds
= 1, and

dz(r , s)

ds
= 0

with initial conditions x(r , 0) = r , t(r , 0) = 0 and z(r , 0) = u0(r).
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Example

Solving the ODE’s, we get

x(r , s) = as + c1(r), t(r , s) = s + c2(r)

and z(r , s) = c3(r) with initial conditions

x(r , 0) = c1(r) = r

t(r , 0) = c2(r) = 0, and z(r , 0) = c3(r) = u0(r).

Therefore,

x(r , s) = as + r , t(r , s) = s, and z(r , s) = u0(r).

We solve for r , s in terms of x , t and set u(x , t) = z(r(x , t), s(x , t)).

r(x , t) = x − at and s(x , t) = t.

Therefore, u(x , t) = z(r , s) = u0(r) = u0(x − at).
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Cauchy Data on Inflow Boundary

Consider the linear transport equation

ut + aux = 0, in Ω := (0,∞)× (0,∞)

and the constant a ∈ R is given with u(x , t) = u0(x − at).

Note that if a < 0 then the equation is solvable in the entire domain
if the Cauchy data u0 is prescribed on (0,∞)× {0}.
However, when a > 0, the Cauchy data has to be prescribed on
{0} × (0,∞) ∪ (0,∞)× {0}.
In other words, the Cauchy data has to be prescribed on that part of
boundary where the projected characteristic curves are ‘inflow’ or the
region of entry.
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Consider the linear transport equation

ut + aux = 0, in Ω := (0, L)× (0,∞)

where both L > 0 and a ∈ R are given with solution
u(x , t) = u0(x − at).

The boundary of Ω is
Γ := {(0, t) | t > 0} ∪ {(0, L)× {0}} ∪ {(L, t) | t > 0}.
If a > 0 then the projected characteristics curves inflow in to a subset
of Γ and, hence, u0 should be prescribed on the subset
{(0, t) | t > 0} ∪ {(0, L)× {0}} of Γ.

However, if a < 0 then it is enough to prescribe u0 on the the subset
{(0, L)× {0}} ∪ {(L, t) | t > 0} of Γ.
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Burgers’ equation

Consider the quasilinear Cauchy problem called the Burgers’ equation{
ut(x , t) + u(x , t)ux(x , t) = 0 in R× (0,∞)

u(x , 0) = u0(x) on R× {0}.

We first check for non-characteristic property of Γ. Note that
(Γ, u0) = {(x , 0, u0(x))} is the known curve on the solution surface of
u. We parametrize the curve Γ with r -variable, i.e., Γ = {(r , 0)}. Γ is
non-characteristic, because (u, 1) · (0, 1) = 1 6= 0.

The characteristic equations are:

dx(r , s)

ds
= z ,

dt(r , s)

ds
= 1, and

dz(r , s)

ds
= 0

with initial conditions,

x(r , 0) = r , t(r , 0) = 0, and z(r , 0) = u0(r).
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Solving the ODE corresponding to z , we get z(r , s) = c3(r) with
initial conditions z(r , 0) = c3(r) = u0(r). Thus, z(r , s) = u0(r).

Using this in the ODE of x , we get

dx(r , s)

ds
= u0(r).

Solving the ODE’s, we get

x(r , s) = u0(r)s + c1(r), t(r , s) = s + c2(r)

with initial conditions

x(r , 0) = c1(r) = r and t(r , 0) = c2(r) = 0.

Therefore,
x(r , s) = u0(r)s + r , and t(r , s) = s.

Solving r and s, in terms of x , t and z , we get s = t and r = x − zt.
Therefore, u(x , t) = u0(x − tu) is the solution in the implicit form.
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Observe that the projected characteristic curves are given by
x = u0(r)t + r passing through (r , 0) ∈ Γ and u is constant along
these curves.

Thus, in contrast to the transport equation, the slope of the projected
characteristic curve is 1

u0(r) which is not fixed and depends on the
initial condition.

If the Cauchy data u0 is such that, for r1 < r2, u0(r1) > u0(r2) then
the characteristic curves passing through r1 and r2 will necessarily
intersect.

The slope of line passing through (r2, 0) is bigger than the one
passing through (r1, 0). The characteristic curves will necessarily
intersect at some point (x0, t0).

This situation leads to a multi-valued solution because

u(x0, t0) = u(r2, 0) = u0(r2) < u0(r1) = u(r1, 0) = u(x0, t0).

Thus, even if the Cauchy data is a ‘smooth’ decreasing initial data
one may not be able to find a solution for all time t.
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Eigen Value Problems

Definition

Let L denote a linear differential operator and I ⊂ R. Then we say
Ly(x) = λy(x) on I is an eigenvalue problem (EVP) corresponding to L
when both λ and y : I → R are unknown.

Example

For instance, if L = −d2

dx2 then its corresponding eigenvalue problem is
−y ′′ = λy .

If λ ∈ R is fixed then one can obtain a general solution. But, in an EVP2

we need to find all λ ∈ R for which the given ODE is solvable. Note that
y ≡ 0 is a trivial solution, for all λ ∈ R.

2compare an EVP with the notion of diagonalisation of matrices from Linear Algebra
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Definition

A λ ∈ R, for which the EVP corresponding to L admits a non-trivial
solution yλ is called an eigenvalue of the operator L and yλ is said to be an
eigen function corresponding to λ. The set of all eigenvalues of L is called
the spectrum of L.

Exercise

Show that any second order ODE of the form

y ′′ + P(x)y ′ + Q(x)y(x) = R(x)

can be written in the form

d

dx

(
p(x)

dy

dx

)
+ q(x)y(x) = r(x).

(Find p, q and r in terms of P, Q and R).
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Sturm-Liouville Problems

Given a finite interval (a, b) ⊂ R, the Sturm-Liouville (S-L) problem is
given as

d
dx

(
p(x)dydx

)
+ q(x)y + λr(x)y = 0 x ∈ (a, b)

c1y(a) + c2y
′(a) = 0 c2

1 + c2
2 > 0

d1y(b) + d2y
′(b) = 0 d2

1 + d2
2 > 0.

(3.1)

The function y(x) and λ are unknown quantities. The pair of boundary
conditions given above is called separated. The boundary conditions
corresponds to the end-point a and b, respectively. Note that both c1 and
c2 cannot be zero simultaneously and, similar condition on d1 and d2.
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Definition

The Sturm-Liouville problem with separated boundary conditions is said to
be regular if:

(a) p, p′, q, r : [a, b]→ R are continuous functions

(b) p(x) > 0 and r(x) > 0 for x ∈ [a, b].

We say the S-L problem is singular if either the interval (a, b) is
unbounded or one (or both) of the regularity condition given above fails.
We say the S-L problem is periodic if p(a) = p(b) and the separated
boundary conditions are replaced with the periodic boundary condition
y(a) = y(b) and y ′(a) = y ′(b).
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Examples of regular S-L problem

Consider the problem −y ′′(x) = λy(x) in x ∈ (0, a) with boundary
conditions:

Example
(a) y(0) = y(a) = 0. We have chosen c1 = d1 = 1 and c2 = d2 = 0.

Also, q ≡ 0 and p ≡ r ≡ 1.

(b) y ′(0) = y ′(a) = 0. We have chosen c1 = d1 = 0 and c2 = d2 = 1.
Also, q ≡ 0 and p ≡ r ≡ 1.

(c) {
y ′(0) = 0

cy(a) + y ′(a) = 0,

where c > 0 is a constant.
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Example  −
(
x2y ′(x)

)′
= λy(x) x ∈ (1, a)

y(1) = 0
y(a) = 0,

where p(x) = x2, q ≡ 0 and r ≡ 1.
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Remark

In a singular Sturm-Liouville problem, the boundary condition at an (or
both) end(s) is dropped if p vanishes in (or both) the corresponding
end(s). This is because when p vanishes, the equation at that point is no
longer second order. Note that dropping a boundary condition
corresponding to a end-point is equivalent to taking both constants zero
(for instance, c1 = c2 = 0, in case of left end-point).
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Example

Examples of singular S-L problem:

(a) For each n = 0, 1, 2, . . ., consider the Bessel’s equation{
− (xy ′(x))′ =

(
−n2

x + λx
)
y(x) x ∈ (0, a)

y(a) = 0,

where p(x) = r(x) = x , q(x) = −n2/x . This equation is not regular
because p(0) = r(0) = 0 and q is not continuous in the closed
interval [0, a], since q(x)→ −∞ as x → 0. Note that there is no
boundary condition corresponding to 0.

(b) The Legendre equation, −
[
(1− x2)y ′(x)

]′
= λy(x) with x ∈ (−1, 1)

with no boundary condition. Here p(x) = 1− x2, q ≡ 0 and r ≡ 1.
This equation is not regular because p(−1) = p(1) = 0. Note that
there are no boundary conditions because p vanishes at both the
end-points.
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Example

Examples of periodic S-L problem:
−y ′′(x) = λy(x) x ∈ (−π, π)
y(−π) = y(π)
y ′(−π) = y ′(π).

T. Muthukumar tmk@iitk.ac.in Partial Differential EquationsMSO-203-B November 14, 2019 67 / 193

Spectral Results

We shall now state without proof the spectral theorem for regular S-L
problem. Our aim, in this course, is to check the validity of the theorem
through some examples.

Theorem

For a regular S-L problem, there exists an increasing sequence of
eigenvalues 0 < λ1 < λ2 < λ3 < . . . < λk < . . . with λk →∞, as k →∞.

Example

Consider the boundary value problem,{
y ′′ + λy = 0 x ∈ (0, a)

y(0) = y(a) = 0.

T. Muthukumar tmk@iitk.ac.in Partial Differential EquationsMSO-203-B November 14, 2019 68 / 193



Example

This is a second order ODE with constant coeffcients. Its characteristic
equation is m2 + λ = 0. Solving for m, we get m = ±

√
−λ.

Note that the λ can be either zero, positive or negative. If λ = 0, then
y ′′ = 0 and the general solution is y(x) = αx + β, for some constants α
and β. Since y(0) = y(a) = 0 and a 6= 0, we get α = β = 0. Thus, we
have no non-trivial solution corresponding to λ = 0.
If λ < 0, then ω = −λ > 0. Hence y(x) = αe

√
ωx + βe−

√
ωx . Using the

boundary condition y(0) = y(a) = 0, we get α = β = 0 and hence we
have no non-trivial solution corresponding to negative λ’s.
If λ > 0, then m = ±i

√
λ and y(x) = α cos(

√
λx) + β sin(

√
λx). Using

the boundary condition y(0) = 0, we get α = 0 and y(x) = β sin(
√
λx).

Using y(a) = 0 (and β = 0 yields trivial solution), we assume
sin(
√
λa) = 0. Thus, λ = (kπ/a)2 for each non-zero k ∈ N (since λ > 0).
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Example

Hence, for each k ∈ N, there is a solution (yk , λk) with

yk(x) = sin

(
kπx

a

)
,

and λk = (kπ/a)2. Notice the following properties of the eigenvalues λk
and eigen functions yk

(i) We have discrete set of λ’s such that 0 < λ1 < λ2 < λ3 < . . . and
λk →∞, as k →∞.

(ii) The eigen functions yλ corresponding to λ form a subspace of
dimension one.

In particular, in the above example, when a = π the eigenvalues, for each
k ∈ N, are (yk , λk) where yk(x) = sin(kx) and λk = k2.
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Spectral result for Periodic S-L

Theorem

For a periodic S-L problem, there exists an increasing sequence of
eigenvalues 0 ≤ λ1 < λ2 < λ3 < . . . < λk < . . . with λk →∞, as k →∞.
Moreover, W1 = Wλ1 , the eigen space corresponding to the first eigen
value is one dimensional.

Example

Consider the boundary value problem,
y ′′ + λy = 0 in (−π, π)
y(−π) = y(π)
y ′(−π) = y ′(π).

The characteristic equation is m2 + λ = 0. Solving for m, we get
m = ±

√
−λ. Note that the λ can be either zero, positive or negative.
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Example

If λ = 0, then y ′′ = 0 and the general solution is y(x) = αx + β, for some
constants α and β. Since y(−π) = y(π), we get α = 0. Thus, for λ = 0,
y ≡ a constant is the only non-trivial solution.
If λ < 0, then ω = −λ > 0. Hence y(x) = αe

√
ωx + βe−

√
ωx . Using the

boundary condition y(−π) = y(π), we get α = β and using the other
boundary condition, we get α = β = 0. Hence we have no non-trivial
solution corresponding to negative λ’s.
If λ > 0, then m = ±ı

√
λ and y(x) = α cos(

√
λx) + β sin(

√
λx). Using

the boundary condition, we get

α cos(−
√
λπ) + β sin(−

√
λπ) = α cos(

√
λπ) + β sin(

√
λπ)

and

−α sin(−
√
λπ) + β cos(−

√
λπ) = −α sin(

√
λπ) + β cos(

√
λπ).

Thus, β sin(
√
λπ) = α sin(

√
λπ) = 0.
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Example

For a non-trivial solution, we must have sin(
√
λπ) = 0. Thus, λ = k2 for

each non-zero k ∈ N (since λ > 0).
Hence, for each k ∈ N ∪ {0}, there is a solution (yk , λk) with

yk(x) = αk cos kx + βk sin kx ,

and λk = k2.
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Singular Sturm-Liouville Problem

Singular S-L, in general, have continuous spectrum. However, the
examples we presented viz. Bessel’s equation and Legendre equation have
a discrete spectrum, similar to the regular S-L problem. Consider the
Legendre equation

d

dx

(
(1− x2)

dy

dx

)
+ λy = 0 for x ∈ [−1, 1].

Note that, equivalently, we have the form

(1− x2)y ′′ − 2xy ′ + λy = 0 for x ∈ [−1, 1].

The function p(x) = 1− x2 vanishes at the endpoints x = ±1.
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Definition

A point x0 is a singular point of

y ′′(x) + P(x)y ′(x) + Q(x)y(x) = R(x)

if either P or Q (or both) diverges as x → x0. A singular point x0 is said
to be regular if (x − x0)P(x) and (x − x0)2Q(x) tends to finite value as
x → x0.

The end points x = ±1 are regular singular point. The coefficients
P(x) = −2x

1−x2 and Q(x) = λ
1−x2 are analytic at x = 0, with radius of

convergence 1. We look for power series form of solutions
y(x) =

∑∞
k=0 akx

k . Differentiating (twice) the series term by term,
substituting in the Legendre equation and equating like powers of x , we
get a2 = −λa0

2 , a3 = (2−λ)a1

6 and for k ≥ 2,

ak+2 =
(k(k + 1)− λ)ak

(k + 2)(k + 1)
.
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Thus, the constants a0 and a1 can be fixed arbitrarily and the remaining
constants are defined as per the above relation. For instance, if a1 = 0, we
get the non-trivial solution of the Legendre equation as

y1 = a0 +
∞∑
k=1

a2kx
2k

and if a0 = 0, we get the non-trivial solution as

y2 = a1x +
∞∑
k=1

a2k+1x
2k+1,

provided the series converge. Note from the recurrence relation that if a
coefficient is zero at some stage, then every alternate coefficient,
subsequently, is zero. Thus, there are two possibilities of convergence here:

(i) the series terminates after finite stage to become a polynomial

(ii) the series does not terminate, but converges.
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Suppose the series does not terminate, say for instance, in y1. Then
a2k 6= 0, for all k . Consider the ratio

lim
k→∞

∣∣∣∣∣a2(k+1)x
2(k+1)

a2kx2k

∣∣∣∣∣ = lim
k→∞

∣∣∣∣ 2k(2k + 1)x2

(2k + 2)(2k + 1)

∣∣∣∣ = lim
k→∞

∣∣∣∣ 2kx2

(2k + 2)

∣∣∣∣ = x2.

The term involving λ tends to zero. Therefore, by ratio test, y1 converges
in x2 < 1 and diverges in x2 > 1. Also, it can be shown that when x2 = 1
the series diverges (beyond the scope of this course).
Since, Legendre equation is a singular S-L problem, we try to find solution
y such that y and its derivative y ′ are continuous in the closed interval
[−1, 1]. Thus, the only such possible solutions will be terminating series
becoming polynomials. Recall that, for k ≥ 2,

ak+2 =
(k(k + 1)− λ)ak

(k + 2)(k + 1)
.

Hence, for any n ≥ 2, if λ = n(n + 1), then an+2 = 0 and hence every
alternate term is zero. Also, if λ = 1(1 + 1) = 2, then a3 = 0. If
λ = 0(0 + 1) = 0, then a2 = 0.
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Thus, for each n ∈ N ∪ {0}, we have λn = n(n + 1) and one of the
solution y1 or y2 is a polynomial. Thus, for each n ∈ N ∪ {0}, we have the
eigenvalue λn = n(n + 1) and the Legendre polynomial Pn of degree n
which is a solution to the Legendre equation.

Pn(x) =

{
y1(x) n is even

y2(x) n is odd.
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EVP of Bessel’s Operator

Consider the EVP, for each fixed n = 0, 1, 2, . . .,{
− (xy ′(x))′ =

(
−n2

x + λx
)
y(x) x ∈ (0, a)

y(a) = 0.

As before, since this is a singular S-L problem we shall look for solutions y
such that y and its derivative y ′ are continuous in the closed interval [0, a].
We shall assume that the eigenvalues are all real3! Thus, λ may be zero,
positive or negative.
When λ = 0, the given ODE reduces to the Cauchy-Euler form

−
(
xy ′(x)

)′
+

n2

x
y(x) = 0

or equivalently,
x2y ′′(x) + xy ′(x)− n2y(x) = 0.

3needs proof
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The above second order ODE with variable coefficients can be converted
to an ODE with constant coefficients by the substitution x = es (or
s = ln x). Then, by chain rule,

y ′ =
dy

dx
=

dy

ds

ds

dx
= e−s

dy

ds

and

y ′′ = e−s
dy ′

ds
= e−s

d

ds

(
e−s

dy

ds

)
= e−2s

(
d2y

ds2
− dy

ds

)
.

Therefore,
y ′′(s)− n2y(s) = 0,

where y is now a function of the new variable s. For n = 0, the general
solution is y(s) = αs + β, for some arbitrary constants. Thus,
y(x) = α ln x + β. The requirement that both y and y ′ are continuous on
[0, a] forces α = 0. Thus, y(x) = β. But y(a) = 0 and hence β = 0,
yielding the trivial solution.
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Now, let n > 0 be positive integers. Then the general solution is
y(s) = αens + βe−ns . Consequently, y(x) = αxn + βx−n. Since y and y ′

has to be continuous on [0, a], β = 0. Thus, y(x) = αxn. Now, using the
boundary condition y(a) = 0, we get α = 0 yielding the trivial solution.
Therefore, λ = 0 is not an eigenvalue for all n = 0, 1, 2, . . ..
When λ > 0, the given ODE reduces to

x2y ′′(x) + xy ′(x) + (λx2 − n2)y(x) = 0.

Using the change of variable s2 = λx2, we get y ′(x) =
√
λy ′(s) and

y ′′(x) = λy ′′(s). Then the given ODE is transformed into the Bessel’s
equation

s2y ′′(s) + sy ′(s) + (s2 − n2)y(s) = 0.

Using the power series form of solution, we know that the general solution
of the Bessel’s equation is y(s) = αJn(s) + βYn(s), where Jn and Yn are
the Bessel functions of first and second kind, respectively. Therefore,
y(x) = αJn(

√
λx) + βYn(

√
λx).
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The continuity assumptions of y and y ′ force that β = 0, because
Yn(
√
λx) is discontinuous at x = 0. Thus, y(x) = αJn(

√
λx). Using the

boundary condition y(a) = 0, we get Jn(
√
λa) = 0.

Theorem

For each non-negative integer n, Jn has infinitely many positive roots.

For each n ∈ N ∪ {0}, let znm be the m-th zero of Jn, m ∈ N. Hence√
λa = znm and so λnm = z2

nm/a
2 and the corresponding eigen functions

are ynm(x) = Jn(znmx/a).
For λ < 0, there are no eigen values. Observing this fact is beyond the
scope of this course, hence we assume this fact.
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Orthogonality of Eigen Functions

Observe that for a regular S-L problem the differential operator can be
written as

L =
−1

r(x)

d

dx

(
p(x)

d

dx

)
− q(x)

r(x)
.

Let V denote the set of all solutions of (3.1). Necessarily, 0 ∈ V and
V ⊂ C 2(a, b). We define the inner product4 〈·, ·〉 : V × V → R on V as,

〈f , g〉 :=

∫ b

a
r(x)f (x)g(x) dx .

4a generalisation of the usual scalar product of vectors
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Definition

We say two functions f and g are perpendicular or orthogonal with weight
r if 〈f , g〉 = 0. We say f is of unit length if its norm ‖f ‖ =

√
〈f , f 〉 = 1.

Theorem

With respect to the inner product defined above in V , the eigen functions
corresponding to distinct eigenvalues of the S-L problem are orthogonal.
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Let us examine the orthogonality of the eigenvectors computed in the
examples earlier.

Example

We computed in Example 43 the eigenvalues and eigenvectors of the
regular S-L problem,{

y ′′ + λy = 0 x ∈ (0, a)
y(0) = y(a) = 0

to be (yk , λk) where

yk(x) = sin

(
kπx

a

)
and λk = (kπ/a)2, for each k ∈ N. For m, n ∈ N such that m 6= n, we
need to check that ym and yn are orthogonal. Since r ≡ 1, we consider

〈ym(x), yn(x)〉 =

∫ a

0
sin
(mπx

a

)
sin
(nπx

a

)
dx
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Exercise

Show that, for any n ≥ 0 and m positive integer,

(i) ∫ π

−π
cos nt cosmt dt =

{
π, for m = n

0, for m 6= n.

(ii) ∫ π

−π
sin nt sinmt dt =

{
π, for m = n

0, for m 6= n.

(iii) ∫ π

−π
sin nt cosmt dt = 0.

Consequently, show that cos kt√
π

and sin kt√
π

are of unit length.
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Example

We computed in Example 47 the eigenvalues and eigenvectors of the
periodic S-L problem,

y ′′ + λy = 0 in (−π, π)
y(−π) = y(π)
y ′(−π) = y ′(π)

to be, for each k ∈ N ∪ {0}, (yk , λk) where

yk(x) = αk cos kx + βk sin kx ,

and λk = k2. Again r ≡ 1 and the orthogonality follows from the exercise
above.
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Example

The orthogonality of Legendre polynomial and Bessel function must have
been discussed in your course on ODE. Recall that the Legendre
polynomials has the property∫ 1

−1
Pm(x)Pn(x) dx =

{
0, if m 6= n

2
2n+1 , if m = n

and the Bessel functions have the property∫ 1

0
xJn(znix)Jn(znjx) dx =

{
0, if m 6= n
1
2 [Jn+1(zni )]2, if m = n

where zni is the i-th positive zero of the Bessel function (of order n) Jn.
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Eigen Function Expansion

Observe that an eigenvector yk , for any k, can be normalised (unit norm)
in its inner-product by dividing yk by its norm ‖yk‖. Thus, yk/‖yk‖, for
any k, is a unit vector. For instance, in view of Exercise 2, cos kt√

π
and sin kt√

π

are functions of unit length.

Definition

Any given function f : (a, b)→ R is said to be have the eigen function
expansion corresponding to the S-L problem (3.1), if

f (x) ≈
∞∑
k=0

akyk ,

for some constants ak and yk are the normalised eigenvectors
corresponding to (3.1).

We are using the “≈” symbol to highlight the fact that the issue of
convergence of the series is ignored.
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If the eigenvectors (or eigen functions) yk involves only sin or cos
terms, as in regular S-L problem (cf. Example 43), then the series is
called Fourier Sine or Fourier Cosine series.

If the eigen functions yk involve both sin and cos, as in periodic S-L
problem (cf. Example 47), then the series is called Fourier series.

In the case of the eigenfunctions being Legendre polynomial or Bessel
function, we call it Fourier-Legendre or Fourier-Bessel series,
respectively.
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Periodic Functions

We isolate the properties of the trigonometric functions, viz., sin, cos etc.

Definition

A function f : R→ R is said to be periodic of period T , if T > 0 is the
smallest number such that

f (t + T ) = f (t) ∀t ∈ R.

Such functions are also called T -periodic functions.

Example

The trigonometric functions sin t and cos t are 2π-periodic functions, while
sin 2t and cos 2t are π-periodic functions.
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Given a L-periodic real-valued function g on R, one can always construct a
T -periodic function as: f (t) = g(Lt/T ). For instance, f (t) = sin

(
2πt
T

)
is

a T -periodic function.

sin

(
2π(t + T )

T

)
= sin

(
2πt

T
+ 2π

)
= sin

(
2πt

T

)
.

In fact, for any positive integer k , sin
(

2πkt
T

)
and cos

(
2πkt
T

)
are T -periodic

functions.

Exercise

If f : R→ R is a T -periodic function, then show that

(i) f (t − T ) = f (t), for all t ∈ R.

(ii) f (t + kT ) = f (t), for all k ∈ Z.

(iii) g(t) = f (αt + β) is (T/α)-periodic, where α > 0 and β ∈ R.
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Exercise

Show that for a T -periodic integrable function f : R→ R,∫ α+T

α
f (t) dt =

∫ T

0
f (t) dt ∀α ∈ R.
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Fourier Coefficients and Fourier Series

Without loss of generality, to simplify our computation, let us assume that
f is a 2π-periodic (similar idea will work for any T -periodic function)
function on R. Suppose that f : (−π, π)→ R, extended to all of R as a
2π-periodic function, is such that the infinite series

a0 +
∞∑
k=1

(ak cos kt + bk sin kt)

converges uniformly (note the uniform convergence hypothesis) to f .
Then,

f (t) = a0 +
∞∑
k=1

(ak cos kt + bk sin kt). (4.1)
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and integrating both sides of (4.1), from −π to π, we get∫ π

−π
f (t) dt =

∫ π

−π

(
a0 +

∞∑
k=1

(ak cos kt + bk sin kt)

)
dt

= a0(2π) +

∫ π

−π

( ∞∑
k=1

(ak cos kt + bk sin kt)

)
dt

Since the series converges uniformly to f , the interchange of integral and
series is possible. Therefore,∫ π

−π
f (t) dt = a0(2π) +

∞∑
k=1

(∫ π

−π
(ak cos kt + bk sin kt) dt

)
From Exercise 2, we know that∫ π

−π
sin kt dt =

∫ π

−π
cos kt dt = 0, ∀k ∈ N.

Hence,

a0 =
1

2π

∫ π

−π
f (t) dt.
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To find the coefficients ak , for each fixed k ∈ N, we multiply both sides of
(4.1) by cos kt and integrate from −π to π. Consequently,∫ π

−π
f (t) cos kt dt = a0

∫ π

−π
cos kt dt

+
∞∑
j=1

∫ π

−π
(aj cos jt cos kt + bj sin jt cos kt) dt

=

∫ π

−π
ak cos kt cos kt dt = πak .

Similar argument, after multiplying by sin kt, gives the formula for bk .
Thus, we have derived , for all k ∈ N,

ak =
1

π

∫ π

−π
f (t) cos kt dt

bk =
1

π

∫ π

−π
f (t) sin kt dt

a0 =
1

2π

∫ π

−π
f (t) dt.
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These are the formulae for Fourier coefficients of a 2π-periodic functions
f , in terms of f . Similarly, if f is a T -periodic function extended to R,
then its Fourier series is

f (t) = a0 +
∞∑
k=1

[
ak cos

(
2πkt

T

)
+ bk sin

(
2πkt

T

)]
,

where

ak =
2

T

∫ T

0
f (t) cos

(
2πkt

T

)
dt (4.2a)

bk =
2

T

∫ T

0
f (t) sin

(
2πkt

T

)
dt (4.2b)

a0 =
1

T

∫ T

0
f (t) dt. (4.2c)
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The above discussion motivates us to give the following definition.

Definition

If f : R→ R is any T -periodic integrable function then we define the
Fourier coefficients of f , a0, ak and bk , for all k ∈ N, by (4.2) and the
Fourier series of f is given by

f (t) ≈ a0 +
∞∑
k=1

[
ak cos

(
2πkt

T

)
+ bk sin

(
2πkt

T

)]
. (4.3)

Note the use of “≈” symbol in (4.3). This is because we have the
following issues once we have the definition of Fourier series of f , viz.,

(a) Will the Fourier series of f always converge?

(b) If it converges, will it converge to f ?

(c) If so, is the convergence point-wise or uniform5.

5because our derivation of formulae for Fourier coefficients assumed uniform
convergence of the series
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Answering these question, in all generality, is beyond the scope of this
course. However, we shall state some results later that will get us in to
working mode. We now present some simple examples on computing
Fourier coefficients of functions.

Example

Consider the constant function f ≡ c on (−π, π). Then

a0 =
1

2π

∫ π

−π
c dt = c .

For each k ∈ N,

ak =
1

π

∫ π

−π
c cos kt dt = 0

and

bk =
1

π

∫ π

−π
c sin kt dt = 0.
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Example

Consider the trigonometric function f (t) = sin t on (−π, π). Then

a0 =
1

2π

∫ π

−π
sin x dt = 0.

For each k ∈ N,

ak =
1

π

∫ π

−π
sin t cos kt dt = 0

and

bk =
1

π

∫ π

−π
sin t sin kt dt =

{
0 k 6= 1

1 k = 1.

Similarly, for f (t) = cos t on (−π, π), all Fourier coefficients are zero,
except a1 = 1.
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Example

Consider the function f (t) = t on (−π, π). Then

a0 =
1

2π

∫ π

−π
t dt = 0.

For each k ∈ N,

ak =
1

π

∫ π

−π
t cos kt dt

=
1

kπ

[
−
∫ π

−π
sin kt dt + (π sin kπ − (−π) sin k(−π))

]
and hence ak = 0, for all k .
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Example

bk =
1

π

∫ π

−π
t sin kt dt

=
1

kπ

[∫ π

−π
cos kt dt − (π cos kπ − (−π) cos k(−π))

]
=

1

kπ

[
0−

(
π(−1)k + π(−1)k

)]
=

(−1)k+12

k

Therefore, t as a 2π-periodic function defined in (−π, π) has the Fourier
series expansion

t ≈ 2
∞∑
k=1

(−1)k+1

k
sin kt
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Example

Let us consider the same function f (t) = t, as in previous example, but
defined on (0, π). Viewing this as π-periodic function, we compute

a0 =
1

π

∫ π

0
t dt =

π

2
.

For each k ∈ N,

ak =
2

π

∫ π

0
t cos 2kt dt =

2

2kπ

[
−
∫ π

0
sin 2kt dt + (π sin 2kπ − 0)

]
=

1

kπ

[
1

2k
(cos 2kπ − cos(0))

]
= 0 and

bk =
2

π

∫ π

0
t sin 2kt dt =

2

2kπ

[∫ π

0
cos 2kt dt − (π cos 2kπ − 0)

]
=

1

kπ

[
1

2k
(sin 2kπ − sin(0))− π

]
=
−1

k
.
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Therefore, t as a π-periodic function defined on (0, π) has the Fourier
series expansion

t ≈ π

2
−
∞∑
k=1

1

k
sin 2kt

while t as a 2π-periodic function defined in (−π, π) has the Fourier series
expansion

t ≈ 2
∞∑
k=1

(−1)k+1

k
sin kt.

Note that difference in Fourier expansion of the same function when the
periodicity changes.
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Theorem (Riemann-Lebesgue Lemma)

Let f be a continuous function in [−π, π]. Show that the Fourier
coefficients of f converges to zero, i.e.,

lim
k→∞

ak = lim
k→∞

bk = 0.

Observe that |ak | and |bk | are bounded sequences, since

{|ak |, |bk |} ≤
∫ π

−π
|f (t)| dt < +∞.

We need to show that these bounded sequences, in fact, converges to
zero. Now set x = t − π/k and hence
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bk =

∫ π

−π
f (t) sin kt dt =

∫ π−π/k

−π−π/k
f (x + π/k) sin(kx + π) dx

= −
∫ π−π/k

−π−π/k
f (x + π/k) sin kx dx .

Therefore, after reassigning x as t,

2bk =

∫ π

−π
f (t) sin kt dt −

∫ π−π/k

−π−π/k
f (t + π/k) sin kt dt

= −
∫ −π
−π−π/k

f (t + π/k) sin kt dt

+

∫ π−π/k

−π
(f (t)− f (t + π/k)) sin kt dt +

∫ π

π−π/k
f (t) sin kt dt

= I1 + I2 + I3.

T. Muthukumar tmk@iitk.ac.in Partial Differential EquationsMSO-203-B November 14, 2019 106 / 193



Thus, |2bk | ≤ |I1|+ |I2|+ |I3|. Consider

|I3| =

∣∣∣∣∣
∫ π

π−π/k
f (t) sin kt dt

∣∣∣∣∣
≤

∫ π

π−π/k
|f (t)| dt

≤
(

max
t∈[−π,π]

|f (t)|
)
π

k
=

Mπ

k
.

Similar estimate is also true for I1. Let us consider,

|I2| =

∣∣∣∣∣
∫ π−π/k

−π
(f (t)− f (t + π/k)) sin kt dt

∣∣∣∣∣
≤

(
max

t∈[−π,π−π/k]
|f (t)− f (t + π/k)|

)(
2π − π

k

)
By the uniform continuity of f on [−π, π], the maximum will tend to zero
as k →∞. Hence |bk | → 0. Exactly, similar arguments hold for ak .
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Piecewise Smooth Functions

Definition

A function f : [a, b]→ R is said to be piecewise continuously differentiable
if it has a continuous derivative f ′ in (a, b), except at finitely many points
in the interval [a, b] and at each these finite points, the right-hand and
left-hand limit for both f and f ′ exist.

Example

Consider f : [−1, 1]→ R defined as f (t) = |t| is continuous.It is not
differentiable at 0, but it is piecewise continuously differentiable.
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Example

Consider the function f : [−1, 1]→ R defined as

f (t) =


−1, for − 1 < t < 0,

1, for 0 < t < 1,

0, for t = 0, 1,−1.

It is not continuous, but is piecewise continuous. It is also piecewise
continuously differentiable.
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Exercise (Riemann-Lebesgue Lemma)

Let f be a piecewise continuous function in [−π, π] such that∫ π

−π
|f (t)| dt < +∞.

Show that the Fourier coefficients of f converges to zero, i.e.,

lim
k→∞

ak = lim
k→∞

bk = 0.
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Theorem

If f is a T -periodic piecewise continuously differentiable function, then the
Fourier series of f converges to f (t), for every t at which f is smooth.
Further, at a non-smooth point t0, the Fourier series of f will converge to
the average of the right and left limits of f at t0.

Corollary

If f : R→ R is a continuously differentiable (derivative f ′ exists and is
continuous) T -periodic function, then the Fourier series of f converges to
f (t), for every t ∈ R.

T. Muthukumar tmk@iitk.ac.in Partial Differential EquationsMSO-203-B November 14, 2019 111 / 193

Example

For a given constant c 6= 0, consider the piecewise function

f (t) =

{
0 if t ∈ (−π, 0)

c if t ∈ (0, π).

Then,

a0 =
1

2π

∫ π

0
c dt =

c

2
.

For each k ∈ N,

ak =
1

π

∫ π

0
c cos kt dt = 0

and

bk =
1

π

∫ π

0
c sin kt dt =

c

π

[
1

k
(− cos kπ + cos(0))

]
=

c(1 + (−1)k+1)

kπ
.
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Example

Therefore,

f (t) ≈ c

2
+
∞∑
k=1

c(1 + (−1)k+1)

kπ
sin kt.

The point t0 = 0 is a non-smooth point of the function f . Note that the
right limit of f at t0 = 0 is c and the left limit of f at t0 = 0 is 0. Note
that the Fourier series of f ay t0 = 0 converges to c/2, the average of c
and 0.
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Complex Fourier Coefficients

The Fourier series of a 2π-periodic function f : R→ R as given in (4.1),
can be recast in complex number notation using the formulae

cos t =
eıt + e−ıt

2
, sin t =

eıt − e−ıt

2i
.

Note that we can rewrite the Fourier series expansion of f as

f (t) =
a0

2
+
∞∑
k=1

(ak cos kt + bk sin kt)

with a factor 2 in denominator of a0 and make the formulae of the Fourier
coefficient having uniform factor.
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Thus,

f (t) =
a0

2
+
∞∑
k=1

(ak cos kt + bk sin kt)

=
a0

2
+
∞∑
k=1

[
ak
2

(
eıkt + e−ıkt

)
− ıbk

2

(
eıkt − e−ıkt

)]

f (t) =
a0

2
+
∞∑
k=1

([
ak − ıbk

2

]
eıkt +

[
ak + ıbk

2

]
e−ıkt

)

= c0 +
∞∑
k=1

(
cke

ıkt + c−ke
−ıkt

)
=

∞∑
k=−∞

cke
ıkt .
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Exercise

Given a 2π-periodic function f such that

f (t) =
∞∑

k=−∞
cke

ıkt , (4.4)

where the convergence is uniform. Show that, for all k ∈ Z,

ck =
1

2π

∫ π

−π
f (t)e−ıkt dt.
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Orthogonality

Consider, for k ∈ N, the following elements in V

e0(t) =
1√
2π
, ek(t) =

cos kt√
π

and fk(t) =
sin kt√
π
.

Example

e0, ek and fk are all of unit length. 〈e0, ek〉 = 0 and 〈e0, fk〉 = 0. Also,
〈em, en〉 = 0 and 〈fm, fn〉 = 0, for m 6= n. Further, 〈em, fn〉 = 0 for all m, n.
Check and compare these properties with the standard basis vectors of Rn!
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Odd and Even functions

Definition

We say a function f : R→ R is odd if f (−t) = −f (t) and even if
f (−t) = f (t).

Example

All constant functions are even functions. For all k ∈ N, sin kt are odd
functions and cos kt are even functions.

Exercise

Any odd function is always orthogonal to an even function.
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The Fourier series of an odd or even functions will contain only sine or
cosine parts, respectively. The reason being that, if f is odd

〈f , 1〉 = 0 and 〈f , cos kt〉 = 0

and hence a0 = 0 and ak = 0, for all k. If f is even

〈f , sin kt〉 = 0

and bk = 0, for all k .
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Fourier Sine-Cosine Series

Let f : (0,T )→ R be a piecewise smooth function. To compute the
Fourier Sine series of f , we extend f , as an odd function fo , to (−T ,T )

fo(t) =

{
f (t), for t ∈ (0,T )

−f (−t) , for t ∈ (−T , 0).

Note that fo is a 2T -periodic function and is an odd function. Since fo is
odd, the cosine coefficients ak and the constant term a0 vanishes in
Fourier series expansion of fo . The restriction of the Fourier series of fo to
f in the interval (0,T ) gives the Fourier sine series of f . We derive the
formulae for Fourier sine coefficient of f .
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f (t) =
∞∑
k=1

bk sin

(
πkt

T

)
where (4.5)

bk =
1

T

〈
fo , sin

(
πkt

T

)〉
=

1

T

∫ T

−T
fo(t) sin

(
πkt

T

)
dt

=
1

T

[∫ 0

−T
−f (−t) sin

(
πkt

T

)
dt +

∫ T

0
f (t) sin

(
πkt

T

)
dt

]
=

1

T

[∫ 0

T
−f (t) sin

(
πkt

T

)
dt +

∫ T

0
f (t) sin

(
πkt

T

)
dt

]
=

2

T

∫ T

0
f (t) sin

(
πkt

T

)
dt.
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Example

Let us consider the function f (t) = t on (0, π). To compute the Fourier
sine series of f , we extend f to (−π, π) as an odd function fo(t) = t on
(−π, π). For each k ∈ N,

bk =
2

π

∫ π

0
t sin kt dt =

2

kπ

[∫ π

0
cos kt dt − (π cos kπ − 0)

]
=

2

kπ

[
1

k
(sin kπ − sin(0)) + π(−1)k+1

]
=

(−1)k+12

k
.

Therefore, the Fourier sine series expansion of f (t) = t on (0, π) is

t ≈ 2
∞∑
k=1

(−1)k+1

k
sin kt

Compare the result with Example 63.
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For computing the Fourier cosine series of f , we extend f as an even
function to (−T ,T ),

fe(t) =

{
f (t), for t ∈ (0,T )

f (−t) , for t ∈ (−T , 0).

The function fe is a 2T -periodic function extended to all of R. The Fourier
series of fe has no sine coefficients, bk = 0 for all k . The restriction of the
Fourier series of fe to f in the interval (0,T ) gives the Fourier cosine series
of f . We derive the formulae for Fourier cosine coefficient of f .
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f (t) = a0 +
∞∑
k=1

ak cos

(
πkt

T

)
(4.6)

where

ak =
2

T

∫ T

0
f (t) cos

(
πkt

T

)
dt

and

a0 =
1

T

∫ T

0
f (t) dt.
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Example

Consider the function f (t) = t on (0, π). To compute the Fourier cosine
series of f , we extend f to (−π, π) as an even function fe(t) = |t| on
(−π, π). Then, a0 = 1

π

∫ π
0 t dt = π

2 . For each k ∈ N,

ak =
2

π

∫ π

0
t cos kt dt =

2

kπ

[
−
∫ π

0
sin kt dt + (π sin kπ − 0)

]
=

2

kπ

[
1

k
(cos kπ − cos(0))

]
=

2[(−1)k − 1]

k2π
.

Therefore, the Fourier cosine series expansion of f (t) = t on (0, π) is

t ≈ π

2
+ 2

∞∑
k=1

(−1)k − 1

k2π
cos kt.

Compare the result with the Fourier series of the function f (t) = |t| on
(−π, π).
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Fourier Transform and Integral

We have introduced the notion of Fourier series for periodic functions.

The periodicity was assumed due to the periodicity of sin and cos
functions.

Can we generalise the notion of Fourier series of f , to non-periodic
functions?

The answer is a “yes”!

Note that the periodicity of f is captured by the integer k appearing
in the arguments of sin and cos.

To generalise the notion of Fourier series to non-periodic functions,
we shall replace k, a positive integer, with a real number ξ.

Note that when we replace k with ξ, the sequences ak , bk become
functions of ξ, a(ξ) and b(ξ) and the discrete sum is replaced by an
integral form over R.
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Definition

If f : R→ R is a piecewise continuous function which vanishes outside a
finite interval, then its Fourier integral is defined as

f (t) =

∫ ∞
0

(a(ξ) cos ξt + b(ξ) sin ξt) dξ,

where

a(ξ) =
1

π

∫ ∞
−∞

f (t) cos ξt dt

b(ξ) =
1

π

∫ ∞
−∞

f (t) sin ξt dt.
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Travelling Wave Technique

Consider the wave equation utt = c2uxx on R× (0,∞), describing the
vibration of an infinite string.

The equation is hyperbolic and has the two family of characteristics
x ± ct= a constant.

Introduce the new coordinates w = x + ct, z = x − ct and set
u(w , z) = u(x , t). Thus, we have the following relations, using chain
rule:

ux = uwwx + uzzx = uw + uz

ut = uwwt + uzzt = c(uw − uz)

uxx = uww + 2uzw + uzz

utt = c2(uww − 2uzw + uzz)

In the new coordinates, the wave equation satisfies uwz = 0.
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Integrating twice, we have u(w , z) = F (w) + G (z), for some arbitrary
functions F and G . Thus, u(x , t) = F (x + ct) + G (x − ct) is a
general solution of the wave equation.

Consider the case where G is chosen to be zero function. Then
u(x , t) = F (x + ct) solves the wave equation. At t = 0, the solution
is simply the graph of F and at t = t0 the solution is the graph of F
with origin translated to the left by ct0.

Similarly, choosing F = 0, we have u(x , t) = G (x − ct) also solves
wave equation and at time t is the translation to the right of the
graph of G by ct.

This motivates the name “travelling waves” and “wave equation”.
The graph of F or G is shifted to left or right, respectively, with a
speed of c.
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Rectangular Property

For any four points A,B,C and D that form a rectangle bounded by the
characteristic curves in R× R+ we have u(A) + u(C ) = u(B) + u(D)
because u(A) = F (α) + G (β), u(C ) = F (γ) + G (δ), u(B) = F (α) + G (δ)
and u(D) = F (γ) + G (β).

x

t

δγ α β

A

B

C

D
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D’Alembert’s Formula

Theorem

Given g ∈ C 2(R) and h ∈ C 1(R), there is a unique C 2 solution u of the
Cauchy initial value problem (IVP) of the wave equation,

utt(x , t)− c2uxx(x , t) = 0 in R× (0,∞)
u(x , 0) = g(x) in R
ut(x , 0) = h(x) in R,

(5.1)

which is given by the d’Alembert’s formula

u(x , t) =
1

2
(g(x + ct) + g(x − ct)) +

1

2c

∫ x+ct

x−ct
h(y) dy . (5.2)
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Proof

The general solution is u(x , t) = F (x + ct) + G (x − ct) with
F ,G ∈ C 2(R). Using the initial position we get F (x) + G (x) = g(x).
Thus, g should be C 2(R). Now, ut(x , t) = c (F ′(w)− G ′(z)) and putting
t = 0, we get F ′(x)− G ′(x) = 1

c h(x). Thus, h should be C 1(R). Now
solving for F ′ and G ′, we get 2F ′(x) = g ′(x) + h(x)/c . Similarly,
2G ′(x) = g ′(x)− h(x)/c . Integrating both these equations, we get

F (x) =
1

2

(
g(x) +

1

c

∫ x

0
h(y) dy

)
+ c1

and

G (x) =
1

2

(
g(x)− 1

c

∫ x

0
h(y) dy

)
+ c2.

Since F (x) + G (x) = g(x), we get c1 + c2 = 0. Therefore, the solution to
the wave equation is given by (5.2).
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Aliter

Let us derive the d’Alembert’s formula in an alternate way. Note that the
wave equation can be factored as(

∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c

∂

∂x

)
u = utt − c2uxx = 0.

We set v(x , t) =
(
∂
∂t − c ∂

∂x

)
u(x , t) and hence

vt(x , t) + cvx(x , t) = 0 in R× (0,∞).

Notice that the above first order PDE obtained is in the form of
homogeneous linear transport equation, which we have already solved.
Hence, for some smooth function φ,

v(x , t) = φ(x − ct)

and φ(x) := v(x , 0).
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Aliter

Using v in the original equation, we get the inhomogeneous transport
equation ut(x , t)− cux(x , t) = φ(x − ct).Recall the formula for
inhomogenoeus transport equation

u(x , t) = g(x − at) +

∫ t

0
φ(x − a(t − s), s) ds.

Since u(x , 0) = g(x) and a = −c , in our case the solution reduces to,

u(x , t) = g(x + ct) +

∫ t

0
φ(x + c(t − s)− cs) ds

= g(x + ct) +

∫ t

0
φ(x + ct − 2cs) ds

= g(x + ct) +
−1

2c

∫ x−ct

x+ct
φ(y) dy

= g(x + ct) +
1

2c

∫ x+ct

x−ct
φ(y) dy .
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Aliter

But φ(x) = v(x , 0) = ut(x , 0)− cux(x , 0) = h(x)− cg ′(x) and
substituting this in the formula for u, we get

u(x , t) = g(x + ct) +
1

2c

∫ x+ct

x−ct

(
h(y)− cg ′(y)

)
dy

= g(x + ct) +
1

2
(g(x − ct)− g(x + ct))

+
1

2c

∫ x+ct

x−ct
h(y) dy

=
1

2
(g(x − ct) + g(x + ct)) +

1

2c

∫ x+ct

x−ct
h(y) dy

A useful observation from the d’Alembert’s formula is that the regularity
of u is same as the regularity of its initial value g .
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Domain of Dependence

Note that the value u(x0, t0) depends only on the interval
[x0 − ct0, x0 + ct0] because g takes values only on the end-points of
this interval

and h takes values between this interval.

The closed interval [x0 − ct0, x0 + ct0] is called the domain of
dependence of u(x0, t0).

The domain of dependence of (x0, t0) is marked on the x-axis by the
characteristic curves passing through (x0, t0).

x

t

(x0, 0)(x0 − ct0, 0) (x0 + ct0, 0)

(x0, t0)
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Range of Influence

Given a point (p0, 0) on the x-axis, what is the region in the
x − t-plane where the solution u depends on the value of g(p0, 0) and
h(p0, 0)?

This region turns out to be a cone with vertex at (p0, 0)

and is called the range of influence.

The range of influence is the region bounded by the characteristic
curves passing through (p0, 0).

x

t

(p0, 0)

x
+
ct =

p
0 x

−
ct

=
p 0
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Finite Speed of Propagation

If the initial data g and h are “supported” in the interval Bx0(R)

then the solution u at (x , t) is supported in the region Bx0(R + ct).

This phenomenon is called the finite speed of propagation.
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Standing Waves: Separation of Variable

The method of separation of variables was introduced by d’Alembert
(1747) and Euler (1748) for the wave equation.

This technique was also employed by Laplace (1782) and Legendre
(1782) while studying the Laplace equation and also by Fourier while
studying the heat equation.

Recall the set-up of the vibrating string given by the equation
utt = uxx , we have normalised the constant c .

Initially at time t, let us say the string has the shape of the graph of
v , i.e., u(x , 0) = v(x).

The snapshot of the vibrating string at each time are called the
“standing waves”.

The shape of the string at time t0 can be thought of as some factor
(depending on time) of v .

This observation motivates the idea of “separation of variable”, i.e.,
u(x , t) = v(x)w(t), where w(t) is the factor depending on time,
which scales v at time t to fit with the shape of u(x , t).
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Finite length Vibrating String

Solve the Cauchy problem
utt(x , t)− c2uxx(x , t) = 0 in (0, L)× (0,∞)

u(x , 0) = g(x) in [0, L]
ut(x , 0) = h(x) in [0, L]
u(0, t) = φ(t) in (0,∞)
u(L, t) = ψ(t) in (0,∞),

(5.3)

where φ, ψ, g , h satisfies the compatibility condition

g(0) = φ(0), c2g ′′(0) = φ′′(0), h(0) = φ′(0)

and
g(L) = ψ(0), c2g ′′(L) = ψ′′(0), h(L) = ψ′(0).

We are given the initial position u(x , 0) = g(x) (at time t = 0) and initial
velocity of the string at time t = 0, ut(x , 0) = h(x) where g , h : [0, L]→ R
are such that g(0) = g(L) = 0 and h(0) = h(L). The fact that endpoints
are fixed is given by the boundary condition u(0, t) = u(L, t) = 0, i.e.
φ = ψ ≡ 0.
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Let us seek solutions u(x , t) whose variables can be separated, i.e.
u(x , t) = v(x)w(t). Differentiating and substituting in the wave equation,
we get

v(x)w ′′(t) = c2v ′′(x)w(t).

Hence
w ′′(t)

c2w(t)
=

v ′′(x)

v(x)
.

Since RHS is a function of x and LHS is a function t, they must be equal
a constant, say λ. Thus,

v ′′(x)

v(x)
=

w ′′(t)

c2w(t)
= λ.

Using the boundary condition u(0, t) = u(L, t) = 0, we get

v(0)w(t) = v(L)w(t) = 0.

If w ≡ 0, then u ≡ 0 and this cannot be a solution to (5.3). Hence, w 6≡ 0
and v(0) = v(L) = 0.
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Thus, we need to solve the eigen value problem for the second order
differential operator.{

v ′′(x) = λv(x), x ∈ (0, L)
v(0) = v(L) = 0,

Note that the λ can be either zero, positive or negative. If λ = 0, then
v ′′ = 0 and the general solution is v(x) = αx + β, for some constants α
and β. Since v(0) = 0, we get β = 0, and v(L) = 0 and L 6= 0 implies
that α = 0. Thus, v ≡ 0 and hence u ≡ 0. But, this cannot be a solution
to (5.3).

If λ > 0, then v(x) = αe
√
λx + βe−

√
λx . Equivalently,

v(x) = c1 cosh(
√
λx) + c2 sinh(

√
λx)

such that α = (c1 + c2)/2 and β = (c1 − c2)/2. Using the boundary
condition v(0) = 0, we get c1 = 0 and hence

v(x) = c2 sinh(
√
λx).

Now using v(L) = 0, we have c2 sinh
√
λL = 0. Thus, c2 = 0 and

v(x) = 0. We have seen this cannot be a solution.
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Finally, if λ < 0, then set ω =
√
−λ. We need to solve the simple

harmonic oscillator problem{
v ′′(x) + ω2v(x) = 0 x ∈ (0, L)

v(0) = v(L) = 0.

The general solution is

v(x) = α cos(ωx) + β sin(ωx).

Using v(0) = 0, we get α = 0 and hence v(x) = β sin(ωx). Now using
v(L) = 0, we have β sinωL = 0. Thus, either β = 0 or sinωL = 0. But
β = 0 does not yield a solution. Hence ωL = kπ or ω = kπ/L, for all
non-zero k ∈ Z. Since ω > 0, we can consider only k ∈ N. Hence, for
each k ∈ N, there is a solution (vk , λk) for the eigen value problem with

vk(x) = βk sin

(
kπx

L

)
,

for some constant bk and λk = −(kπ/L)2.
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It now remains to solve w for each of these λk . For each k ∈ N, we solve
for wk in the ODE

w ′′k (t) + (ckπ/L)2wk(t) = 0.

The general solution is

wk(t) = ak cos

(
ckπt

L

)
+ bk sin

(
ckπt

L

)
.

For each k ∈ N, we have

uk(x , t) =

[
ak cos

(
ckπt

L

)
+ bk sin

(
ckπt

L

)]
sin

(
kπx

L

)
for some constants ak and bk .

The situation corresponding to k = 1 is called the fundamental mode

and the frequency of the fundamental mode is

c
√
−λ1

2π
=

1

2π

cπ

L
=

c

2L
.
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The frequency of higher modes are integral multiples of the
fundamental frequency.
Note that the frequency of the vibration is related to eigenvalues of
the second order differential operator.

The general solution of (5.3), by principle of superposition, is

u(x , t) =
∞∑
k=1

[
ak cos

(
ckπt

L

)
+ bk sin

(
ckπt

L

)]
sin

(
kπx

L

)
.

Note that the solution is expressed as series, which raises the question of
convergence of the series. Another concern is whether all solutions of
(5.3) have this form. We ignore these two concerns at this moment.
Since we know the initial position of the string as the graph of g , we get

g(x) = u(x , 0) =
∞∑
k=1

ak sin

(
kπx

L

)
.

This expression is again troubling and rises the question: Can any arbitrary
function g be expressed as an infinite sum of trigonometric functions? But
we have answered it in the study of “Fourier series”.
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Therefore, the constants ak are given as

ak =
2

L

∫ L

0
g(x) sin

(
kπx

L

)
.

Finally, by differentiating u w.r.t t, we get

ut(x , t) =
∞∑
k=1

ckπ

L

[
bk cos

ckπt

L
− ak sin

ckπt

L

]
sin

(
kπx

L

)
.

Employing similar arguments and using ut(x , 0) = h(x), we get

h(x) = ut(x , 0) =
∞∑
k=1

bkkcπ

L
sin

(
kπx

L

)
and hence

bk =
2

kcπ

∫ L

0
h(x) sin

(
kπx

L

)
.
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Heat Flow on a Bar

Solve the Cauchy Problem:
ut(x , t)− c2uxx(x , t) = 0 in (0, L)× (0,∞)

u(0, t) = u(L, t) = 0 in (0,∞)
u(x , 0) = g(x) on [0, L]

where c is a constant, (0, L) denotes a homogeneous rod of length L and
the Dirichlet boundary condition u(0, t) = u(L, t) = 0 signifies that the
rod is insulated along sides and its ends to keep the temperature at zero
temperature. The initial temperature of the rod, at time t = 0, is given by
u(x , 0) = g(x), where g : [0, L]→ R be such that g(0) = g(L) = 0.
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Separation of Variable Method

We begin with the ansatz that u(x , t) = v(x)w(t) (variable separated).
Substituting u in separated form in the equation, we get

v(x)w ′(t) = c2v ′′(x)w(t)

and, hence,
w ′(t)

c2w(t)
=

v ′′(x)

v(x)
.

Since LHS, a function of t, and RHS, a function x , are equal they must be
equal to some constant, say λ. Thus,

w ′(t)

c2w(t)
=

v ′′(x)

v(x)
= λ.

Therefore, we need to solve two ODE to obtain v and w ,

w ′(t) = λc2w(t) and v ′′(x) = λv(x).
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We first solve the eigenvalue problem involving v . For each k ∈ N, there is
a pair (λk , vk) which solves the eigenvalue problem involving v , where
λk = −(kπ)2/L2 and vk(x) = sin

(
kπx
L

)
. For each k ∈ N, we solve for wk

to get
lnwk(t) = λkc

2t + lnα,

where α is integration constant. Thus, wk(t) = αe−(kcπ/L)2t . Hence,

uk(x , t) = vk(x)wk(t) = βk sin

(
kπx

L

)
e−(kcπ/L)2t ,

for some constants βk , is a solution to the heat equation. By superposition
principle, the general solution is

u(x , t) =
∞∑
k=1

uk(x , t) =
∞∑
k=1

βk sin

(
kπx

L

)
e−(kcπ/L)2t .
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We now use the initial temperature of the rod, given as g : [0, L]→ R to
compute the constants. Since u(x , 0) = g(x),

g(x) = u(x , 0) =
∞∑
k=1

βk sin

(
kπx

L

)
.

Further, g(0) = g(L) = 0. Thus, g admits a Fourier Sine expansion and
hence its coefficients βk are given as

βk =
2

L

∫ L

0
g(x) sin

(
kπx

L

)
.
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Circular Wire

Let Ω be a circle (circular wire) of radius one insulated along its sides. Let
the initial temperature of the wire, at time t = 0, be given by a
2π-periodic function g : R→ R. Then there is a solution u(r , θ) of

ut(θ, t)− c2uθθ(θ, t) = 0 in R× (0,∞)
u(θ + 2π, t) = u(θ, t) in R× (0,∞)

u(θ, 0) = g(θ) on R× {t = 0}

where c is a constant.
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Proof

Note that u(θ, t) is 2π-periodic in θ-variable, i.e., u(θ + 2π, t) = u(θ, t)
for all θ ∈ R and t ≥ 0. We begin with ansatz u(θ, t) = v(θ)w(t) with
variables separated. Substituting for u in the equation, we get

w ′(t)

c2w(t)
=

v ′′(θ)

v(θ)
= λ.

For each k ∈ N ∪ {0}, the pair (λk , vk) is a solution to the eigenvalue
problem where λk = −k2 and

vk(θ) = ak cos(kθ) + bk sin(kθ).

For each k ∈ N ∪ {0}, we get wk(t) = αe−(kc)2t . For k = 0

u0(θ, t) = a0/2 (To maintain consistency with Fourier series)

and for each k ∈ N, we have

uk(θ, t) = [ak cos(kθ) + bk sin(kθ)] e−k
2c2t .
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Therefore, the general solution is

u(θ, t) =
a0

2
+
∞∑
k=1

[ak cos(kθ) + bk sin(kθ)] e−k
2c2t .

We now use the initial temperature on the circle to find the constants.
Since u(θ, 0) = g(θ),

g(θ) = u(θ, 0) =
a0

2
+
∞∑
k=1

[ak cos(kθ) + bk sin(kθ)] .

Further, g is 2π-periodic and, hence, admits a Fourier series expansion.
Thus,

ak =
1

π

∫ π

−π
g(θ) cos(kθ) dθ

and

bk =
1

π

∫ π

−π
g(θ) sin(kθ) dθ.

Note that as t →∞ the temperature of the wire approaches a constant
a0/2.
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Motivation to Duhamel’s Principle

The Duhamel’s principle states that one can obtain a solution of the
inhomogeneous IVP for heat from its homogeneous IVP. Recall that{

y ′(t) + cy(t) = f (t) for t > 0
y(0) = y0

has the solution y(t) = y0e
−ct +

∫ t
0 e−c(t−s)f (s) ds.In particular, the

solution to the homogeneous equation{
z ′(t) + cz(t) = 0 for t > 0

z(0) = z0.

is z(t) = z0e
−ct . Therefore, for any fixed s, if we choose z0 = f (s) then

the corresponding solution is z(t; s) = f (s)e−ct . Then the solution to
inhomogeneous problem with zero initial condition is

y(t) =

∫ t

0
z(t − s; s) ds.
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Inhomogeneous Heat equation

For a given f and Ω ⊂ Rn, let u(x , t) be the solution of the
inhomogeneous heat equation,

ut(x , t)− c2∆u(x , t) = f (x , t) in Ω× (0,T )
u(x , t) = 0 in ∂Ω× (0,T )
u(x , 0) = 0 in Ω.

(6.1)

As a first step, for each s ∈ (0,∞), consider w(x , t; s) as the solution of
the homogeneous problem (auxiliary)

w s
t (x , t)− c2∆w s(x , t) = 0 in Ω× (s,T )

w s(x , t) = 0 in ∂Ω× (s,T )
w s(x , s) = f (x , s) on Ω× {s}.
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Since t ∈ (s,T ), introducing a change of variable r = t − s, we have
w s(x , t) := w(x , t − s) as a solution of

wr (x , r)− c2∆w(x , r) = 0 in Ω× (0,T − s)
w(x , r) = 0 in ∂Ω× (0,T − s)
w(x , 0) = f (x , s) on Ω× {0}.

Theorem (Duhamel’s Principle)

The function u(x , t) defined as

u(x , t) :=

∫ t

0
w s(x , t) ds =

∫ t

0
w(x , t − s) ds

solves (6.1).
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Proof

Suppose w is C 2,1(Rn × (0,T )), we get

ut(x , t) =
∂

∂t

∫ t

0
w(x , t − s) ds

=

∫ t

0
wt(x , t − s) ds + w(x , t − t)

d(t)

dt

− w(x , t − 0)
d(0)

dt

=

∫ t

0
wt(x , t − s) ds + w(x , 0)

=

∫ t

0
wt(x , t − s) ds + f (x , t).

Similarly,

∆u(x , t) =

∫ t

0
∆w(x , t − s) ds.

T. Muthukumar tmk@iitk.ac.in Partial Differential EquationsMSO-203-B November 14, 2019 157 / 193

Thus,

ut − c2∆u = f (x , t) +

∫ t

0

(
wt(x , t − s)− c2∆w(x , t − s)

)
ds

= f (x , t).
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Second Order Elliptic: The Laplacian

The Laplacian is the trace of the Hessain matrix, ∆ :=
∑n

i=1
∂2

∂x2
i

.

Note that in one dimension, ∆ = d2

dx2 .

Our interest is to solve, for any open subset Ω ⊂ Rn, −∆u(x) = f (x).

Since a Cauchy problem for elliptic is over-determined, it is reasonable
to seek the solution of −∆u(x) = f (x) in Ω and one of the following
(or mixture) on ∂Ω.

(i) (Dirichlet condition) u = g ;
(ii) (Neumann condition) ∇u · ν = g , where ν(x) is the unit outward

normal of x ∈ ∂Ω;
(iii) (Robin condition) ∇u · ν + cu = g for any c > 0.
(iv) (Mixed condition) u = g on Γ1 and ∇u · ν = h on Γ2, where

Γ1 ∪ Γ2 = ∂Ω and Γ1 ∩ Γ2 = ∅.
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By the linearity of Laplacian, u = v + w where v is a harmonic function of{
∆v(x) = 0 in Ω
one of the above inhomogeneous boudary condition on ∂Ω,

and w is a solution of Poisson equation{
−∆w(x) = f (x) in Ω
one of the above homogeneous boudary condition on ∂Ω.

Therefore, we shall solve for u by solving for v and w separately.

Definition

Let Ω be an open subset of Rn. A function u ∈ C 2(Ω) is said to be
harmonic on Ω if ∆u(x) = 0 in Ω.
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Harmonic Functions

The one dimensional Laplace equation is an ODE ( d2

dx2 ) and is
solvable with solutions u(x) = ax + b for some constants a and b.

But in higher dimensions solving Laplace equation is not so simple.

For instance, a two dimensional Laplace equation

uxx + uyy = 0

has the trivial solution, u(x , y) = ax + by + c , all one degree
polynomials of two variables.

In addition, xy , x2 − y2, x3 − 3xy2, 3x2y − y3, ex sin y and ex cos y
are all solutions to the two variable Laplace equation.

In Rn, it is trivial to check that all polynomials up to degree one, i.e.∑
|α|≤1

aαx
α

is a solution to ∆u = 0 in Rn. However, note that u(x) =
∏n

i=1 xi is
a solution to ∆u = 0 in Rn.
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Is there a formula to harmonic functions similar to one dimensions?

Is it possible to identify properties of harmonic functions without
knowing its form?

In two dimension, one associates with a harmonic function u(x , y), a
conjugate harmonic function, v(x , y) defined as the solution of a first
order system of PDE called the Cauchy-Riemann equations,

ux(x , y) = vy (x , y) and uy (x , y) = −vx(x , y).

Harmonic functions and holomorphic functions (differentiable complex
functions) are related in the sense that, for any pair (u, v), harmonic
and its conjugate, gives a holomorphic function
f (z) = u(x , y) + iv(x , y) where z = x + iy . Conversely, for any
holomorphic function f , its real part and imaginary part are conjugate
harmonic functions.
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This observation gives us more examples of harmonic functions, for
instance,

since all complex polynomials f (z) = zm are holomorphic we have
(using the polar coordinates) the real part u(r , θ) = rm cosmθ and
the imaginary part v(r , θ) = rm sinmθ are harmonic functions in R2

for all m ∈ N.

Similarly, since f (z) = log z = ln r + ıθ is holomorphic in certain
region, we have u(r , θ) = ln r and v(r , θ) = θ are harmonic in
R2 \ (0, 0) and R2 \ {θ = 0}, respectively.
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Properties of Harmonic Functions

If u is a harmonic function on Ω then, by Gauss divergence theorem∫
∂Ω

∂u

∂ν
dσ = 0.

Theorem (Gauss)

Let Ω be an open bounded subset of Rn with C 1 boundary. If
V = (v1, . . . , vn) on Ω is a vector field such that vi ∈ C 1(Ω), for all
1 ≤ i ≤ n, then ∫

Ω
∇ · V dx =

∫
∂Ω

V · ν dσ. (6.2)
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Maximum Principle

Theorem (Maximum Principle)

Let Ω be an open, bounded subset of Rn. Let u ∈ C (Ω) be harmonic in Ω.
Then

max
y∈Ω

u(y) = max
y∈∂Ω

u(y).

Since ∂Ω ⊂ Ω, we have max∂Ω u ≤ maxΩ u. It only remains to prove the
other equality. For the given harmonic function u and for a fixed ε > 0, we
set vε(x) = u(x) + ε|x |2, for each x ∈ Ω. For each x ∈ Ω,
∆vε = ∆u + 2nε > 0. Recall that6 if a function v attains local maximum
at a point x ∈ Ω, then in each direction its second order partial derivative
vxixi (x) ≤ 0, for all i = 1, 2, . . . , n. Therefore ∆v(x) ≤ 0. Thus, we argue
that vε does not attain (even a local) maximum in Ω. But vε has to have
a maximum in Ω, hence it should be attained at some point x? ∈ ∂Ω, on
the boundary.

6v ∈ C 2(a, b) has a local maximum at x ∈ (a, b) then v ′(x) = 0 and v ′′(x) ≤ 0
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For all x ∈ Ω,

u(x) ≤ vε(x) ≤ vε(x
?) = u(x?) + ε|x?|2 ≤ max

x∈∂Ω
u(x) + ε max

x∈∂Ω
|x |2.

The above inequality is true for all ε > 0. Thus, u(x) ≤ maxx∈∂Ω u(x), for
all x ∈ Ω. Therefore, maxΩ u ≤ maxx∈∂Ω u(x) and hence we have equality.
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Strong Maximum Principle

In fact harmonic functions satisfy a much stronger maximum principle
whose proof is beyond the scope of this course.

Theorem (Strong Maximum Principle)

Let Ω be an open, connected (domain) subset of Rn. Let u be harmonic in
Ω and M := maxy∈Ω u(y). Then

u(x) < M ∀x ∈ Ω

or u ≡ M is constant in Ω.

By the strong maximum principle, if Ω is connected and g ≥ 0 and
g(x) > 0 for some x ∈ ∂Ω then u(x) > 0 for all x ∈ Ω.
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Uniqueness of Harmonic Functions

A consequence of the maximum principle is the uniqueness of the
harmonic functions.

Theorem (Uniqueness of Harmonic Functions)

Let Ω be an open, bounded subset of Rn. Let u1, u2 ∈ C 2(Ω) ∩ C (Ω) be
harmonic in Ω such that u1 = u2 on ∂Ω, then u1 = u2 in Ω.

Proof.

Note that u1 − u2 is a harmonic function and hence, by maximum
principle, should attain its maximum on ∂Ω. But u1 − u2 = 0 on ∂Ω.
Thus u1 − u2 ≤ 0 in Ω. Now, repeat the argument for u2 − u1, we get
u2 − u1 ≤ 0 in Ω. Thus, we get u1 − u2 = 0 in Ω.
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Comparison Principle

Theorem

Let Ω be an open bounded connected subset of Rn and g ∈ C (∂Ω). Then
the Dirichlet problem {

∆u(x) = 0 x ∈ Ω
u(x) = g(x) x ∈ ∂Ω.

(6.3)

has atmost one solution u ∈ C 2(Ω) ∩ C (Ω). Moreover, if u1 and u2 are
solution to the Dirichlet problem corresponding to g1 and g2 in C (∂Ω),
respectively, then

(a) (Comparison) g1 ≥ g2 on ∂Ω and g1(x0) > g2(x0) for some x ∈ ∂Ω
implies that u1 > u2 in Ω.

(b) (Stability) |u1(x)− u2(x)| ≤ maxy∈∂Ω |g1(y)− g2(y)| for all x ∈ Ω.
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Proof

The fact that there is atmost one solution to the Dirichlet problem follows
from Theorem 85. Let w = u1 − u2. Then w is harmonic. (a) Note that
w = g1 − g2 ≥ 0 on ∂Ω. Since g1(x0) > g2(x0) for some x0 ∈ ∂Ω, then
w(x) > 0 for all x ∈ ∂Ω. This proves the comparison result.
(b) Again, by maximum principle, we have

±w(x) ≤ max
y∈∂Ω

|g1(y)− g2(y)| ∀x ∈ Ω.

This proves the stability result.
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Existence of Solutions

We have shown above that if a solution exists for (6.3) then it is
unique (cf. Theorem 85).

But does it always exist for any given domain Ω?

In the modern theory, there are three different methods to address the
question of existence, viz., Perron’s Method, Layer Potential (Integral
Equations) and L2 methods which are beyond the scope of this course.

The existence of solution depends on the ‘smoothness’ of the
boundary of Ω and these are beyond the scope of this course!
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Neumann Boundary Condition

The Neumann problem is stated as follows: Given f : Ω→ R and
g : ∂Ω→ R, find u : Ω→ R such that{

−∆u = f in Ω
∂νu = g on ∂Ω

(6.4)

By Gauss divergence theorem, if u is a solution of the Neumann problem
then u satisfies, for every connected component ω of Ω,∫

ω
∆u =

∫
∂ω
∇u · ν (Using GDT)

−
∫
ω
f =

∫
∂ω

g .

Thus, for an inhomogeneous Laplace equation with Neumann boundary
condition, the given data f , g must necessarily satisfy the compatibility
condition. Otherwise, the Neumann problem does not make any sense.
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Non-uniqueness for Neumann Problem

If u is any solution of (6.4), then u + c for any constant c is also a
solution of (6.4). More generally, for any v such that v is constant on the
connected components of Ω, u + v is a solution of (6.4).
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Elliptic Equations

Theorem (Laplacian in 2D Rectangle)

Let Ω = {(x , y) ∈ R2 | 0 < x < a and 0 < y < b} be a rectangle in R2.
Let g : ∂Ω→ R which vanishes on three sides of the rectangle, i.e.,
g(0, y) = g(x , 0) = g(a, y) = 0 and g(x , b) = h(x) where h is a
continuous function h(0) = h(a) = 0. Then there is a unique solution to{

∆u(x) = 0 in Ω
u(x) = g(x) on ∂Ω,

on this rectangle with given boundary value g .
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Proof

We begin by looking for solution u(x , y) whose variables are separated,
i.e., u(x , y) = v(x)w(y). Substituting this form of u in the Laplace
equation, we get

v ′′(x)w(y) + v(x)w ′′(y) = 0.

Hence
v ′′(x)

v(x)
= −w ′′(y)

w(y)
.

Since LHS is function of x and RHS is function y , they must equal a
constant, say λ. Thus,

v ′′(x)

v(x)
= −w ′′(y)

w(y)
= λ.

Using the boundary condition on u,
u(0, y) = g(0, y) = g(a, y) = u(a, y) = 0, we get
v(0)w(y) = v(a)w(y) = 0. If w ≡ 0, then u ≡ 0 which is not a solution.
Hence, w 6≡ 0 and v(0) = v(a) = 0.
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Thus, we need to solve,{
v ′′(x) = λv(x), x ∈ (0, a)
v(0) = v(a) = 0,

the eigen value problem for the second order differential operator. Note
that the λ can be either zero, positive or negative.
If λ = 0, then v ′′ = 0 and the general solution is v(x) = αx + β, for some
constants α and β. Since v(0) = 0, we get β = 0, and v(a) = 0 and a 6= 0
implies that α = 0. Thus, v ≡ 0 and hence u ≡ 0. But, this can not be a
solution to (6.3).

If λ > 0, then v(x) = αe
√
λx + βe−

√
λx . Equivalently,

v(x) = c1 cosh(
√
λx) + c2 sinh(

√
λx)

such that α = (c1 + c2)/2 and β = (c1 − c2)/2. Using the boundary
condition v(0) = 0, we get c1 = 0 and hence

v(x) = c2 sinh(
√
λx).

Now using v(a) = 0, we have c2 sinh
√
λa = 0. Thus, c2 = 0 and

v(x) = 0. We have seen this cannot be a solution.
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If λ < 0, then set ω =
√
−λ. We need to solve{

v ′′(x) + ω2v(x) = 0 x ∈ (0, a)
v(0) = v(a) = 0.

(6.5)

The general solution is

v(x) = α cos(ωx) + β sin(ωx).

Using the boundary condition v(0) = 0, we get α = 0 and hence
v(x) = β sin(ωx). Now using v(a) = 0, we have β sinωa = 0. Thus, either
β = 0 or sinωa = 0. But β = 0 does not yield a solution. Hence ωa = kπ
or ω = kπ/a, for all non-zero k ∈ Z. Hence, for each k ∈ N, there is a
solution (vk , λk) for (6.5), with

vk(x) = βk sin

(
kπx

a

)
,

for some constant βk and λk = −(kπ/a)2.
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We now solve w corresponding to each λk . For each k ∈ N, we solve for
wk in the ODE {

w ′′k (y) =
(
kπ
a

)2
wk(y), y ∈ (0, b)

w(0) = 0.

Thus, wk(y) = ck sinh(kπy/a). Therefore, for each k ∈ N,

uk = δk sin

(
kπx

a

)
sinh

(
kπy

a

)
is a solution. The general solution is of the form (principle of
superposition) (convergence?)

u(x , y) =
∞∑
k=1

δk sin

(
kπx

a

)
sinh

(
kπy

a

)
.

The constant δk are obtained by using the boundary condition
u(x , b) = h(x) which yields

h(x) = u(x , b) =
∞∑
k=1

δk sinh

(
kπb

a

)
sin

(
kπx

a

)
.
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Since h(0) = h(a) = 0, the function h admits a Fourier Sine series. Thus
δk sinh

(
kπb
a

)
is the k-th Fourier sine coefficient of h, i.e.,

δk =

(
sinh

(
kπb

a

))−1 2

a

∫ a

0
h(x) sin

(
kπx

a

)
.
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Laplacian on 2D Disk

Theorem (2D Disk)

Let Ω = {(x , y) ∈ R2 | x2 + y2 < R2} be the disk of radius R in R2. Let
g : ∂Ω→ R is a continuous function. Then there is a unique solution to{

∆u(x) = 0 in Ω
u(x) = g(x) on ∂Ω,

on the unit disk with given boundary value g .

The Laplace operator in polar coordinates,

∆ :=
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂θ2

where r is the magnitude component (0 ≤ r <∞) and θ is the direction
component (0 ≤ θ < 2π). The direction component is also called the
azimuth angle or polar angle.
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This is easily seen by using the relation x = r cos θ and y = r sin θ. Then

∂x

∂r
= cos θ,

∂y

∂r
= sin θ and

∂u

∂r
= cos θ

∂u

∂x
+ sin θ

∂u

∂y
.

Also,
∂2u

∂r2
= cos2 θ

∂2u

∂x2
+ sin2 θ

∂2u

∂y2
+ 2 cos θ sin θ

∂2u

∂x∂y
.

Similarly,

∂x

∂θ
= −r sin θ,

∂y

∂θ
= r cos θ,

∂u

∂θ
= r cos θ

∂u

∂y
− r sin θ

∂u

∂x

and

1

r2

∂2u

∂θ2
= sin2 θ

∂2u

∂x2
+ cos2 θ

∂2u

∂y2
− 2 cos θ sin θ

∂2u

∂x∂y
− 1

r

∂u

∂r
.

Therefore, ∂2u
∂r2 + 1

r2
∂2u
∂θ2 = ∂2u

∂x2 + ∂2u
∂y2 − 1

r
∂u
∂r and, hence,

∆u =
∂2u

∂r2
+

1

r2

∂2u

∂θ2
+

1

r

∂u

∂r
.
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Proof

Then ∂Ω is the circle of radius R. Then, solving for u(x , y) in the
Dirichlet problem is to equivalent to finding U(r , θ) : Ω→ R such that

1
r
∂
∂r

(
r ∂U∂r

)
+ 1

r2
∂2U
∂θ2 = 0 in Ω

U(r , θ + 2π) = U(r , θ) in Ω
U(R, θ) = G (θ) on ∂Ω

(7.1)

where U(r , θ) = u(r cos θ, r sin θ), G : [0, 2π)→ R is
G (θ) = g(R cos θ,R sin θ). Note that both U and G are 2π periodic w.r.t
θ. We will look for solution U(r , θ) whose variables can be separated, i.e.,
U(r , θ) = v(r)w(θ) with both v and w non-zero.
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Substituting it in the polar form of Laplacian, we get

w

r

d

dr

(
r
dv

dr

)
+

v

r2

d2w

dθ2
= 0

and hence
−r
v

d

dr

(
r
dv

dr

)
=

1

w

(
d2w

dθ2

)
.

Since LHS is a function of r and RHS is a function of θ, they must equal a
constant, say λ. We need to solve the eigen value problem,{

w ′′(θ)− λw(θ) = 0 θ ∈ R
w(θ + 2π) = w(θ) ∀θ.

Note that the λ can be either zero, positive or negative. If λ = 0, then
w ′′ = 0 and the general solution is w(θ) = αθ + β, for some constants α
and β. Using the periodicity of w ,

αθ + β = w(θ) = w(θ + 2π) = αθ + 2απ + β

implies that α = 0. Thus, the pair λ = 0 and w(θ) = β is a solution.
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If λ > 0, then
w(θ) = αe

√
λθ + βe−

√
λθ.

If either of α and β is non-zero, then w(θ)→∞ as θ → ±∞, which
contradicts the periodicity of w . Thus, α = β = 0 and w ≡ 0, which
cannot be a solution. If λ < 0, then set ω =

√
−λ and the equation

becomes {
w ′′(θ) + ω2w(θ) = 0 θ ∈ R
w(θ + 2π) = w(θ) ∀θ

Its general solution is

w(θ) = α cos(ωθ) + β sin(ωθ).

Using the periodicity of w , we get ω = k where k is an integer. For each
k ∈ N, we have the solution (wk , λk) where

λk = −k2 and wk(θ) = αk cos(kθ) + βk sin(kθ).
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For the λk ’s, we solve for vk , for each k = 0, 1, 2, . . .,

r
d

dr

(
r
dvk
dr

)
= k2vk .

For k = 0, we get v0(r) = α ln r + β. But ln r blows up as r → 0, but any
solution U and, hence v , on the closed unit disk (compact subset) has to
be bounded. Thus, we must have the α = 0. Hence v0 ≡ β. For k ∈ N,
we need to solve for vk in

r
d

dr

(
r
dvk
dr

)
= k2vk .

Use the change of variable r = es . Then es dsdr = 1 and d
dr = d

ds
ds
dr = 1

es
d
ds .

Hence r d
dr = d

ds . vk(es) = αeks + βe−ks . vk(r) = αrk + βr−k . Since r−k

blows up as r → 0, we must have β = 0. Thus, vk = αrk . Therefore, for
each k = 0, 1, 2, . . .,

Uk(r , θ) = ak r
k cos(kθ) + bk r

k sin(kθ).
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The general solution is

U(r , θ) =
a0

2
+
∞∑
k=1

(
ak r

k cos(kθ) + bk r
k sin(kθ)

)
.

To find the constants, we must use U(R, θ) = G (θ). If G ∈ C 1[0, 2π],
then G admits Fourier series expansion. Therefore,

G (θ) =
a0

2
+
∞∑
k=1

[
Rkak cos(kθ) + Rkbk sin(kθ)

]
where

ak =
1

Rkπ

∫ π

−π
G (θ) cos(kθ) dθ,

bk =
1

Rkπ

∫ π

−π
G (θ) sin(kθ) dθ.
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Using this in the formula for U and the uniform convergence of Fourier
series, we get U(r , θ) =

=
1

π

∫ π

−π
G (η)

[
1

2
+
∞∑
k=1

( r

R

)k
(cos kη cos kθ + sin kη sin kθ)

]
dη

=
1

π

∫ π

−π
G (η)

[
1

2
+
∞∑
k=1

( r

R

)k
cos k(η − θ)

]
dη.

Using the relation

∞∑
k=1

( r

R

)k
cos k(η − θ) = Re

[ ∞∑
k=1

( r

R
e i(η−θ)

)k]
= Re

[
r
R e

i(η−θ)

1− r
R e

i(η−θ)

]

=
R2 − rR cos(η − θ)

R2 + r2 − 2rR cos(η − θ)
− 1

=
rR cos(η − θ)− r2

R2 + r2 − 2rR cos(η − θ)

in U(r , θ) we get
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Poisson Formula

U(r , θ) =
R2 − r2

2π

∫ π

−π

G (η)

R2 + r2 − 2rR cos(η − θ)
dη.

Note that the formula derived above for U(r , θ) can be rewritten in
Cartesian coordinates and will have the form

u(x) =
R2 − |x |2

2πR

∫
SR(0)

g(y)

|x − y |2
dy .

Any y ∈ SR(0) has the representation (R, η) and the integration is over
the arc length element, i.e. dy = Rdη. Further, by law of cosines,
|x − y |2 = R2 + r2 − 2rR cos(η − θ). This is called the Poisson formula.
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Laplacian on 3D Sphere

Theorem (3D Sphere)

Let Ω = {(x , y , z) ∈ R3 | x2 + y2 + z2 < 1} be the unit sphere in R3. Let
g : ∂Ω→ R is a continuous function. Then there is a unique solution to
the Dirichlet problem on the unit sphere with given boundary value g .

Given the nature of domain, the Laplace operator in spherical coordinates,

∆ :=
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sinφ

∂

∂φ

(
sinφ

∂

∂φ

)
+

1

r2 sin2 φ

∂2

∂θ2
.

where r ∈ [0,∞) is the magnitude component, φ ∈ [0, π] (zenith angle or
inclination) and θ ∈ [0, 2π) (azimuth angle).
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Proof

Solving for u is equivalent to finding U(r , φ, θ) : Ω→ R such that
1
r2

∂
∂r

(
r2 ∂U

∂r

)
+ 1

r2 sinφ
∂
∂φ

(
sinφ∂U∂φ

)
+ 1

r2 sin2 φ
∂2U
∂θ2 = 0 in Ω

U(1, φ, θ) = G (φ, θ) on ∂Ω

(7.2)

where U(r , φ, θ) and G (φ, θ) are appropriate spherical coordinate function
corresponding to u and g . We will look for solution U(r , φ, θ) whose
variables can be separated, i.e., U(r , φ, θ) = v(r)w(φ)z(θ) with v ,w and
z non-zero. Substituting it in the spherical form of Laplacian, we get

wz

r2

d

dr

(
r2 dv

dr

)
+

vz

r2 sinφ

d

dφ

(
sinφ

dw

dφ

)
+

vw

r2 sin2 φ

d2z

dθ2
= 0

and hence

1

v

d

dr

(
r2 dv

dr

)
=
−1

w sinφ

d

dφ

(
sinφ

dw

dφ

)
− 1

z sin2 φ

d2z

dθ2
.
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Since LHS is a function of r and RHS is a function of (φ, θ), they must
equal a constant, say λ. If azimuthal symmetry is present then z(θ) is
constant and hence dz

dθ = 0. We need to solve for w ,

sinφw ′′(φ) + cosφw ′(φ) + λ sinφw(φ) = 0, φ ∈ (0, π)

Set x = cosφ. Then dx
dφ = − sinφ.

w ′(φ) = − sinφ
dw

dx
and w ′′(φ) = sin2 φ

d2w

dx2
− cosφ

dw

dx

In the new variable x , we get the Legendre EVP

(1− x2)w ′′(x)− 2xw ′(x) + λw(x) = 0 x ∈ [−1, 1].

We have already seen that this is a singular S-L problem. For each
k ∈ N ∪ {0}, we have the solution (wk , λk) where

λk = k(k + 1) and wk(φ) = Pk(cosφ).
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For the λk ’s, we solve for vk . For each k = 0, 1, 2, . . .,

d

dr

(
r2 dvk

dr

)
= k(k + 1)vk .

For k = 0, we get v0(r) = −α/r + β. But 1/r blows up as r → 0 and U
must be bounded in the closed sphere. Thus, we must have the α = 0.
Hence v0 ≡ β. For k ∈ N, we need to solve for vk in

d

dr

(
r2 dvk

dr

)
= k(k + 1)vk .

Use the change of variable r = es . Then es dsdr = 1 and d
dr = d

ds
ds
dr = 1

es
d
ds .

Hence r d
dr = d

ds . Solving for m in the quadratic equation
m2 + m = k(k + 1). m1 = k and m2 = −k − 1.
vk(es) = αeks + βe(−k−1)s . vk(r) = αrk + βr−k−1.Since r−k−1 blows up
as r → 0, we must have β = 0. Thus, vk = αrk . Therefore, for each
k = 0, 1, 2, . . .,

Uk(r , φ, θ) = ak r
kPk(cosφ).
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The general solution is

U(r , φ, θ) =
∞∑
k=0

ak r
kPk(cosφ).

Since we have azimuthal symmetry, G (φ, θ) = G (φ). To find the
constants, we use U(1, φ, θ) = G (φ), hence

G (φ) =
∞∑
k=0

akPk(cosφ).

Using the orthogonality of Pk , we have

ak =
2k + 1

2

∫ π

0
G (φ)Pk(cosφ) sinφ dφ.
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