Analysis MTH-753A

T. Muthukumar
tmk@iitk.ac.in

November 25, 2020
(1) First Week

- Imaginary Number \imath
- Fundamental Theorem of Algebra
(2) Second Week
- Visualising Complex Numbers and Maps
- Holomorphic Functions and Cauchy-Riemann Equations
(3) Third Week
- Laplacian and Harmonic Functions
- Two Dimensional Harmonic Functions and Dirichlet Problem
- Contour Integration and Homotopy
(4) Fourth Week
- Cauchy Theorems
- Taylor Series and Zeroes of Holomorphic Functions
(5) Fifth Week
- Laurent, Fourier Series and Singularity
- Baire Category Theorem
(6) Sixth Week
- Space of Continuous Functions
- Dense Subsets of Continuous Functions
(7) Seventh Week
- Approximation of Periodic Continuous Functions and Fourier Series
- Regularization and Cut-off Technique
(8) Eighth Week
- Compact Subsets of $C(X)$
- Compact Subsets of $L^{p}\left(\mathbb{R}^{n}\right)$
- Space Filling Curves
(9) Ninth Week
- Nowhere Differentiable Continuous Functions
- No Complete Metric on Space of Polynomials
- Solution of Differential Equations as Fixed Point
(10) Tenth Week
- Existence Results for Nonlinear ODE
- Existence of Solution to Nonlinear Two Point Boundary Value Problem
(11) Eleventh Week
- Stability of two-point Boundary Value Problem
- Open Mapping Theorem (Non-Linear Version)
(12) Twelfth Week
- Inverse and Implicit Function Theorem

Purpose of the Course

- The course will recall and refresh selected topics from analysis that you may have come across in your bachelors and masters programme.

Purpose of the Course

- The course will recall and refresh selected topics from analysis that you may have come across in your bachelors and masters programme.
- Given the different academic backgrounds students may have come from, the purpose of the course is to the ensure that the student's understanding of concept in Analysis are on equal footing.

Purpose of the Course

- The course will recall and refresh selected topics from analysis that you may have come across in your bachelors and masters programme.
- Given the different academic backgrounds students may have come from, the purpose of the course is to the ensure that the student's understanding of concept in Analysis are on equal footing.
- However, to avoid boring repetition, an attempt is being made to present the topics in an application oriented perspective, thus compromising on the usual logical order.

Algebraic and Differential Equations

- Till the invention of calculus (differentiation and integration), all the mathematical modelling involved only algebraic equations.

Algebraic and Differential Equations

- Till the invention of calculus (differentiation and integration), all the mathematical modelling involved only algebraic equations.
- The invention of calculus gave rise to differential equations (DEs).

Algebraic and Differential Equations

- Till the invention of calculus (differentiation and integration), all the mathematical modelling involved only algebraic equations.
- The invention of calculus gave rise to differential equations (DEs).
- Modern topics in Analysis grew out of the attempt to understand and analyse the solutions of DEs.

One Variable Polynomials

While defining the n-th root of a real number, one naturally encounters the following algebraic equation: Given any $a \in \mathbb{R}$ and $n \in \mathbb{N}$, find all $x \in \mathbb{R}$ such that $x^{n}=a$.

One Variable Polynomials

While defining the n-th root of a real number, one naturally encounters the following algebraic equation: Given any $a \in \mathbb{R}$ and $n \in \mathbb{N}$, find all $x \in \mathbb{R}$ such that $x^{n}=a$.

Definition

A polynomial in one variable of degree n is a map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
f(x):=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}
$$

where $\left\{a_{0}, a_{1}, \ldots, a_{n-1}, a_{n}\right\} \subset \mathbb{R}$, the coefficients, and $\mathbb{N} \cup\{0\}$ are given such that $a_{n} \neq 0$.

A constant function is a polynomial of degree zero.

Zeroes or Roots of Polynomial

One is interested to find all $x \in \mathbb{R}$ where the polynomial attains zero.

Zero Degree Polynomial

- The constant function zero has infinitely many roots!

Zero Degree Polynomial

- The constant function zero has infinitely many roots!
- Every non-zero constant function has no roots!

One Degree Polynomial

- Consider the polynomial in one variable of degree one, $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as $f(x)=a x+b$ for any given $a, b \in \mathbb{R}$ and $a \neq 0$.

One Degree Polynomial

- Consider the polynomial in one variable of degree one, $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as $f(x)=a x+b$ for any given $a, b \in \mathbb{R}$ and $a \neq 0$.
- If f attains zero at some x, then $a x+b=0$ and hence $x=-b / a$. Thus, there is exactly one zero of f.

Quadratic Equations

- The polynomial in one variable of degree two, called quadratic function, is a map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as $f(x)=a x^{2}+b x+c$, for any given $a, b, c \in \mathbb{R}$ with $a \neq 0$.

Quadratic Equations

- The polynomial in one variable of degree two, called quadratic function, is a map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as $f(x)=a x^{2}+b x+c$, for any given $a, b, c \in \mathbb{R}$ with $a \neq 0$.
- If f attains zero at some x, we should have

$$
a x^{2}+b x+c=0
$$

Quadratic Equations

- The polynomial in one variable of degree two, called quadratic function, is a map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as $f(x)=a x^{2}+b x+c$, for any given $a, b, c \in \mathbb{R}$ with $a \neq 0$.
- If f attains zero at some x, we should have

$$
\begin{aligned}
a x^{2}+b x+c & =0 \\
x^{2}+\frac{b}{a} x & =-\frac{c}{a}
\end{aligned}
$$

Quadratic Equations

- The polynomial in one variable of degree two, called quadratic function, is a map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as $f(x)=a x^{2}+b x+c$, for any given $a, b, c \in \mathbb{R}$ with $a \neq 0$.
- If f attains zero at some x, we should have

$$
\begin{aligned}
a x^{2}+b x+c & =0 \\
x^{2}+\frac{b}{a} x & =-\frac{c}{a} \\
x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2} & =-\frac{c}{a}+\left(\frac{b}{2 a}\right)^{2}
\end{aligned}
$$

Quadratic Equations

- The polynomial in one variable of degree two, called quadratic function, is a map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as $f(x)=a x^{2}+b x+c$, for any given $a, b, c \in \mathbb{R}$ with $a \neq 0$.
- If f attains zero at some x, we should have

$$
\begin{aligned}
a x^{2}+b x+c & =0 \\
x^{2}+\frac{b}{a} x & =-\frac{c}{a} \\
x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2} & =-\frac{c}{a}+\left(\frac{b}{2 a}\right)^{2} \\
\left(x+\frac{b}{2 a}\right)^{2} & =\frac{b^{2}-4 a c}{4 a^{2}}
\end{aligned}
$$

Quadratic Equations

- The polynomial in one variable of degree two, called quadratic function, is a map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as $f(x)=a x^{2}+b x+c$, for any given $a, b, c \in \mathbb{R}$ with $a \neq 0$.
- If f attains zero at some x, we should have

$$
\begin{aligned}
a x^{2}+b x+c & =0 \\
x^{2}+\frac{b}{a} x & =-\frac{c}{a} \\
x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2} & =-\frac{c}{a}+\left(\frac{b}{2 a}\right)^{2} \\
\left(x+\frac{b}{2 a}\right)^{2} & =\frac{b^{2}-4 a c}{4 a^{2}} \\
x+\frac{b}{2 a} & = \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

Quadratic Equations

- The polynomial in one variable of degree two, called quadratic function, is a map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as $f(x)=a x^{2}+b x+c$, for any given $a, b, c \in \mathbb{R}$ with $a \neq 0$.
- If f attains zero at some x, we should have

$$
\begin{aligned}
a x^{2}+b x+c & =0 \\
x^{2}+\frac{b}{a} x & =-\frac{c}{a} \\
x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2} & =-\frac{c}{a}+\left(\frac{b}{2 a}\right)^{2} \\
\left(x+\frac{b}{2 a}\right)^{2} & =\frac{b^{2}-4 a c}{4 a^{2}} \\
x+\frac{b}{2 a} & = \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} \\
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

Positive Discriminant

- The \pm symbol denotes that we get at most two roots of f. We have three situations depending on the sign of the discriminant, $b^{2}-4 a c$.

Positive Discriminant

- The \pm symbol denotes that we get at most two roots of f. We have three situations depending on the sign of the discriminant, $b^{2}-4 a c$.
- The case $b^{2}-4 a c>0$ corresponds to two distinct real roots. The graph of the polynomial lies on both the upper and lower plane.

Zero Discriminant

- The case $b^{2}-4 a c=0$ corresponds to exactly one root. The graph of the polynomial lies on either upper or lower plane but touches the x-axis tangentially.

Zero Discriminant

- The case $b^{2}-4 a c=0$ corresponds to exactly one root. The graph of the polynomial lies on either upper or lower plane but touches the x-axis tangentially.

- Observe that in this case the zero is also a zero of the derivative (zero slope tangent). It is a repeated (double) root!

Negative Discriminant

- The case $b^{2}-4 a c<0$ corresponds to no real roots. The graph never intersects/touches the x-axis but lies completely in either the upper or lower plane.

Negative Discriminant

- The case $b^{2}-4 a c<0$ corresponds to no real roots. The graph never intersects/touches the x-axis but lies completely in either the upper or lower plane.

- For example, consider the function $f(x)=x^{2}+1$. Note that for any $x \in \mathbb{R}, x^{2}+1 \geq 1>0$. Hence the function f never attains zero.

Negative Discriminant

- The case $b^{2}-4 a c<0$ corresponds to no real roots. The graph never intersects/touches the x-axis but lies completely in either the upper or lower plane.

- For example, consider the function $f(x)=x^{2}+1$. Note that for any $x \in \mathbb{R}, x^{2}+1 \geq 1>0$. Hence the function f never attains zero.
- There is no reason to seek an 'imaginary' solution to $x^{2}+1=0$ yet!

Cubic Equations

- The formula for roots of cubic equation were discovered independently by Scipione del Ferro and Nicolo Tartaglia which were orally passed on to Girolamo Cardano who published it in 1545.

Cubic Equations

- The formula for roots of cubic equation were discovered independently by Scipione del Ferro and Nicolo Tartaglia which were orally passed on to Girolamo Cardano who published it in 1545.
- The polynomial in one variable of degree three, called cubic function, is $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as $f(x)=a x^{3}+b x^{2}+c x+d$, for any given $a, b, c, d \in \mathbb{R}$ with $a \neq 0$.

Cubic Equations

- The formula for roots of cubic equation were discovered independently by Scipione del Ferro and Nicolo Tartaglia which were orally passed on to Girolamo Cardano who published it in 1545.
- The polynomial in one variable of degree three, called cubic function, is $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as $f(x)=a x^{3}+b x^{2}+c x+d$, for any given $a, b, c, d \in \mathbb{R}$ with $a \neq 0$.
- The roots are given by the Cardan's Formula $x=y-\frac{b}{3 a}$

Cubic Equations

- The formula for roots of cubic equation were discovered independently by Scipione del Ferro and Nicolo Tartaglia which were orally passed on to Girolamo Cardano who published it in 1545.
- The polynomial in one variable of degree three, called cubic function, is $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as $f(x)=a x^{3}+b x^{2}+c x+d$, for any given $a, b, c, d \in \mathbb{R}$ with $a \neq 0$.
- The roots are given by the Cardan's Formula $x=y-\frac{b}{3 a}$ where

$$
y=\left(-\frac{q}{2 a}+\sqrt{\frac{q^{2}}{4 a^{2}}+\frac{p^{3}}{27}}\right)^{1 / 3}+\left(-\frac{q}{2 a}-\sqrt{\frac{q^{2}}{4 a^{2}}+\frac{p^{3}}{27}}\right)^{1 / 3}
$$

Cubic Equations

- The formula for roots of cubic equation were discovered independently by Scipione del Ferro and Nicolo Tartaglia which were orally passed on to Girolamo Cardano who published it in 1545.
- The polynomial in one variable of degree three, called cubic function, is $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as $f(x)=a x^{3}+b x^{2}+c x+d$, for any given $a, b, c, d \in \mathbb{R}$ with $a \neq 0$.
- The roots are given by the Cardan's Formula $x=y-\frac{b}{3 a}$ where

$$
\begin{gather*}
y=\left(-\frac{q}{2 a}+\sqrt{\frac{q^{2}}{4 a^{2}}+\frac{p^{3}}{27}}\right)^{1 / 3}+\left(-\frac{q}{2 a}-\sqrt{\frac{q^{2}}{4 a^{2}}+\frac{p^{3}}{27}}\right)^{1 / 3}, \\
p:=\frac{3 a c-b^{2}}{3 a} \tag{1.1}
\end{gather*}
$$

Cubic Equations

- The formula for roots of cubic equation were discovered independently by Scipione del Ferro and Nicolo Tartaglia which were orally passed on to Girolamo Cardano who published it in 1545.
- The polynomial in one variable of degree three, called cubic function, is $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as $f(x)=a x^{3}+b x^{2}+c x+d$, for any given $a, b, c, d \in \mathbb{R}$ with $a \neq 0$.
- The roots are given by the Cardan's Formula $x=y-\frac{b}{3 a}$ where

$$
\begin{gather*}
y=\left(-\frac{q}{2 a}+\sqrt{\frac{q^{2}}{4 a^{2}}+\frac{p^{3}}{27}}\right)^{1 / 3}+\left(-\frac{q}{2 a}-\sqrt{\frac{q^{2}}{4 a^{2}}+\frac{p^{3}}{27}}\right)^{1 / 3} \\
p:=\frac{3 a c-b^{2}}{3 a} \tag{1.1}
\end{gather*}
$$

and

$$
\begin{equation*}
q:=\left(\frac{b}{3 a}\right)^{3}(3 a-1)+\frac{3 a d-b c}{3 a} . \tag{1.2}
\end{equation*}
$$

The imaginary number \imath

- The need to introduce an 'imaginary' solution to $x^{2}=-1$ arose with the formula for roots of cubic equations.

The imaginary number \imath

- The need to introduce an 'imaginary' solution to $x^{2}=-1$ arose with the formula for roots of cubic equations.
- For instance, the cubic equation $x^{3}-3 x=0$ has exactly three real roots $0, \sqrt{3},-\sqrt{3}$ which is easily seen by rewriting $x^{3}-x=x\left(x^{2}-3\right)=x(x+\sqrt{3})(x-\sqrt{3})$.

The imaginary number \imath

- The need to introduce an 'imaginary' solution to $x^{2}=-1$ arose with the formula for roots of cubic equations.
- For instance, the cubic equation $x^{3}-3 x=0$ has exactly three real roots $0, \sqrt{3},-\sqrt{3}$ which is easily seen by rewriting $x^{3}-x=x\left(x^{2}-3\right)=x(x+\sqrt{3})(x-\sqrt{3})$.
- For $x^{3}-x=0, a=1, p=-3, q=0$. Therefore, $y=(\sqrt{-1})^{1 / 3}+(-\sqrt{-1})^{1 / 3}$. Thus, y takes us in to an unknown territory, $\sqrt{-1}$.

The imaginary number \imath

- The need to introduce an 'imaginary' solution to $x^{2}=-1$ arose with the formula for roots of cubic equations.
- For instance, the cubic equation $x^{3}-3 x=0$ has exactly three real roots $0, \sqrt{3},-\sqrt{3}$ which is easily seen by rewriting $x^{3}-x=x\left(x^{2}-3\right)=x(x+\sqrt{3})(x-\sqrt{3})$.
- For $x^{3}-x=0, a=1, p=-3, q=0$. Therefore, $y=(\sqrt{-1})^{1 / 3}+(-\sqrt{-1})^{1 / 3}$. Thus, y takes us in to an unknown territory, $\sqrt{-1}$.
- Thus, it seems that to obtain the real roots of the equation with real coefficients, using the Cardan's formula, one has to solve for $x^{2}=-1$ which, as already observed, admits no real solutions!

The imaginary number \imath

- The need to introduce an 'imaginary' solution to $x^{2}=-1$ arose with the formula for roots of cubic equations.
- For instance, the cubic equation $x^{3}-3 x=0$ has exactly three real roots $0, \sqrt{3},-\sqrt{3}$ which is easily seen by rewriting $x^{3}-x=x\left(x^{2}-3\right)=x(x+\sqrt{3})(x-\sqrt{3})$.
- For $x^{3}-x=0, a=1, p=-3, q=0$. Therefore, $y=(\sqrt{-1})^{1 / 3}+(-\sqrt{-1})^{1 / 3}$. Thus, y takes us in to an unknown territory, $\sqrt{-1}$.
- Thus, it seems that to obtain the real roots of the equation with real coefficients, using the Cardan's formula, one has to solve for $x^{2}=-1$ which, as already observed, admits no real solutions!
- This lead to the introduction of $\imath:=\sqrt{-1}$ for the purpose of computing real roots.

The imaginary number \imath

- The need to introduce an 'imaginary' solution to $x^{2}=-1$ arose with the formula for roots of cubic equations.
- For instance, the cubic equation $x^{3}-3 x=0$ has exactly three real roots $0, \sqrt{3},-\sqrt{3}$ which is easily seen by rewriting $x^{3}-x=x\left(x^{2}-3\right)=x(x+\sqrt{3})(x-\sqrt{3})$.
- For $x^{3}-x=0, a=1, p=-3, q=0$. Therefore, $y=(\sqrt{-1})^{1 / 3}+(-\sqrt{-1})^{1 / 3}$. Thus, y takes us in to an unknown territory, $\sqrt{-1}$.
- Thus, it seems that to obtain the real roots of the equation with real coefficients, using the Cardan's formula, one has to solve for $x^{2}=-1$ which, as already observed, admits no real solutions!
- This lead to the introduction of $\imath:=\sqrt{-1}$ for the purpose of computing real roots.
- To avoid the confusion that $\sqrt{-1} \sqrt{-1}=-1$ which contradicts the known formula $\sqrt{a b}=\sqrt{a} \sqrt{b}$, we denote $\imath=\sqrt{-1}$ and $\imath^{2}=-1$.

\mathbb{C} is Algebraically Closed

- The introduction of imaginary number, \imath, enables the possibility of including complex roots of polynomials.

\mathbb{C} is Algebraically Closed

- The introduction of imaginary number, \imath, enables the possibility of including complex roots of polynomials.
- For instance, $x^{2}+1=0$ has no real roots. But the complex polynomial extension $z^{2}+1$ has exactly two roots $\pm \imath$.

\mathbb{C} is Algebraically Closed

- The introduction of imaginary number, \imath, enables the possibility of including complex roots of polynomials.
- For instance, $x^{2}+1=0$ has no real roots. But the complex polynomial extension $z^{2}+1$ has exactly two roots $\pm \imath$.
- The complex extension of a real function is not unique.

\mathbb{C} is Algebraically Closed

- The introduction of imaginary number, \imath, enables the possibility of including complex roots of polynomials.
- For instance, $x^{2}+1=0$ has no real roots. But the complex polynomial extension $z^{2}+1$ has exactly two roots $\pm \imath$.
- The complex extension of a real function is not unique. For instance, $x^{2}+1$ also has the following possible extensions:

\mathbb{C} is Algebraically Closed

- The introduction of imaginary number, \imath, enables the possibility of including complex roots of polynomials.
- For instance, $x^{2}+1=0$ has no real roots. But the complex polynomial extension $z^{2}+1$ has exactly two roots $\pm \imath$.
- The complex extension of a real function is not unique. For instance, $x^{2}+1$ also has the following possible extensions: $[\Re(z)]^{2}+1$

\mathbb{C} is Algebraically Closed

- The introduction of imaginary number, \imath, enables the possibility of including complex roots of polynomials.
- For instance, $x^{2}+1=0$ has no real roots. But the complex polynomial extension $z^{2}+1$ has exactly two roots $\pm \imath$.
- The complex extension of a real function is not unique. For instance, $x^{2}+1$ also has the following possible extensions: $[\Re(z)]^{2}+1$ and

$$
\begin{cases}z^{2}+1 & \Im(z)=0 \\ 0 & \Im(z) \neq 0\end{cases}
$$

\mathbb{C} is Algebraically Closed

- The introduction of imaginary number, \imath, enables the possibility of including complex roots of polynomials.
- For instance, $x^{2}+1=0$ has no real roots. But the complex polynomial extension $z^{2}+1$ has exactly two roots $\pm \imath$.
- The complex extension of a real function is not unique. For instance, $x^{2}+1$ also has the following possible extensions: $[\Re(z)]^{2}+1$ and

$$
\begin{cases}z^{2}+1 & \Im(z)=0 \\ 0 & \Im(z) \neq 0\end{cases}
$$

- Which of the possible extensions are natural or nice choice? The theory of holomorphic functions and Analytic Continuation begins here!

\mathbb{C} is Algebraically Closed

- The introduction of imaginary number, \imath, enables the possibility of including complex roots of polynomials.
- For instance, $x^{2}+1=0$ has no real roots. But the complex polynomial extension $z^{2}+1$ has exactly two roots $\pm \imath$.
- The complex extension of a real function is not unique. For instance, $x^{2}+1$ also has the following possible extensions: $[\Re(z)]^{2}+1$ and

$$
\begin{cases}z^{2}+1 & \Im(z)=0 \\ 0 & \Im(z) \neq 0\end{cases}
$$

- Which of the possible extensions are natural or nice choice? The theory of holomorphic functions and Analytic Continuation begins here!
- In contrast to \mathbb{R}, \mathbb{C} is algebraically closed, i.e. all complex polynomials admit complex roots? This is the statement of the Fundamental theorem of Algebra.

Quartic Equations

- The formula for roots of a general fourth degree equation was solved by Lodovico Ferrari (1522-1565) in 1540, much before the solution of cubic equation was published, but was published much later.

Quartic Equations

- The formula for roots of a general fourth degree equation was solved by Lodovico Ferrari (1522-1565) in 1540, much before the solution of cubic equation was published, but was published much later.
- The roots of general quartic equation $x^{4}+a x^{3}+b x^{2}+c x+d=0$ can be obtained by solving for x in the two quadratic equations:

$$
x^{2}+\frac{a x}{2}+\frac{y}{2}=\sqrt{A} x+\sqrt{C} \text { and } x^{2}+\frac{a x}{2}+\frac{y}{2}=-\sqrt{A} x-\sqrt{C}
$$

Quartic Equations

- The formula for roots of a general fourth degree equation was solved by Lodovico Ferrari (1522-1565) in 1540, much before the solution of cubic equation was published, but was published much later.
- The roots of general quartic equation $x^{4}+a x^{3}+b x^{2}+c x+d=0$ can be obtained by solving for x in the two quadratic equations:

$$
x^{2}+\frac{a x}{2}+\frac{y}{2}=\sqrt{A} x+\sqrt{C} \text { and } x^{2}+\frac{a x}{2}+\frac{y}{2}=-\sqrt{A} x-\sqrt{C}
$$

where $A=\frac{a^{2}}{4}-b+y$,

Quartic Equations

- The formula for roots of a general fourth degree equation was solved by Lodovico Ferrari (1522-1565) in 1540, much before the solution of cubic equation was published, but was published much later.
- The roots of general quartic equation $x^{4}+a x^{3}+b x^{2}+c x+d=0$ can be obtained by solving for x in the two quadratic equations:

$$
x^{2}+\frac{a x}{2}+\frac{y}{2}=\sqrt{A} x+\sqrt{C} \text { and } x^{2}+\frac{a x}{2}+\frac{y}{2}=-\sqrt{A} x-\sqrt{C}
$$

where $A=\frac{a^{2}}{4}-b+y, C=\frac{y^{2}}{4}-d$

Quartic Equations

- The formula for roots of a general fourth degree equation was solved by Lodovico Ferrari (1522-1565) in 1540, much before the solution of cubic equation was published, but was published much later.
- The roots of general quartic equation $x^{4}+a x^{3}+b x^{2}+c x+d=0$ can be obtained by solving for x in the two quadratic equations:

$$
x^{2}+\frac{a x}{2}+\frac{y}{2}=\sqrt{A} x+\sqrt{C} \text { and } x^{2}+\frac{a x}{2}+\frac{y}{2}=-\sqrt{A} x-\sqrt{C}
$$

where $A=\frac{a^{2}}{4}-b+y, C=\frac{y^{2}}{4}-d$ and y is chosen as one of the roots to the cubic equation:

$$
y^{3}-b y^{2}+(a c-4 d) y-\left[d\left(a^{2}-4 b\right)+c^{2}\right]=0
$$

Quartic Equations

- The formula for roots of a general fourth degree equation was solved by Lodovico Ferrari (1522-1565) in 1540, much before the solution of cubic equation was published, but was published much later.
- The roots of general quartic equation $x^{4}+a x^{3}+b x^{2}+c x+d=0$ can be obtained by solving for x in the two quadratic equations:

$$
x^{2}+\frac{a x}{2}+\frac{y}{2}=\sqrt{A} x+\sqrt{C} \text { and } x^{2}+\frac{a x}{2}+\frac{y}{2}=-\sqrt{A} x-\sqrt{C}
$$

where $A=\frac{a^{2}}{4}-b+y, C=\frac{y^{2}}{4}-d$ and y is chosen as one of the roots to the cubic equation:

$$
y^{3}-b y^{2}+(a c-4 d) y-\left[d\left(a^{2}-4 b\right)+c^{2}\right]=0
$$

- There are three choices for y and every choice will give the same root.

Quartic Equations

- The formula for roots of a general fourth degree equation was solved by Lodovico Ferrari (1522-1565) in 1540, much before the solution of cubic equation was published, but was published much later.
- The roots of general quartic equation $x^{4}+a x^{3}+b x^{2}+c x+d=0$ can be obtained by solving for x in the two quadratic equations:

$$
x^{2}+\frac{a x}{2}+\frac{y}{2}=\sqrt{A} x+\sqrt{C} \text { and } x^{2}+\frac{a x}{2}+\frac{y}{2}=-\sqrt{A} x-\sqrt{C}
$$

where $A=\frac{a^{2}}{4}-b+y, C=\frac{y^{2}}{4}-d$ and y is chosen as one of the roots to the cubic equation:

$$
y^{3}-b y^{2}+(a c-4 d) y-\left[d\left(a^{2}-4 b\right)+c^{2}\right]=0 .
$$

- There are three choices for y and every choice will give the same root. Solving the two quadratic equations for x, we get all four roots of the quartic equation.

Polynomials of Degree Five and More

- In 1823 Niels Henrick Abel proved that no 'formula' exists to compute the roots of a polynomial of degree 5 .

Polynomials of Degree Five and More

- In 1823 Niels Henrick Abel proved that no 'formula' exists to compute the roots of a polynomial of degree 5 .
- By a 'formula', we refer to finite expression which involves elementary operations and extraction of roots.

Polynomials of Degree Five and More

- In 1823 Niels Henrick Abel proved that no 'formula' exists to compute the roots of a polynomial of degree 5 .
- By a 'formula', we refer to finite expression which involves elementary operations and extraction of roots.
- In 1832, Evariste Galois showed that no such 'formula' exists for a general polynomial of degree greater than or equal to 5 .

Polynomials of Degree Five and More

- In 1823 Niels Henrick Abel proved that no 'formula' exists to compute the roots of a polynomial of degree 5 .
- By a 'formula', we refer to finite expression which involves elementary operations and extraction of roots.
- In 1832, Evariste Galois showed that no such 'formula' exists for a general polynomial of degree greater than or equal to 5 .
- Thus, it becomes interesting to prove the existence of roots without having an explicit formula for roots.

Polynomials of Degree Five and More

- In 1823 Niels Henrick Abel proved that no 'formula' exists to compute the roots of a polynomial of degree 5 .
- By a 'formula', we refer to finite expression which involves elementary operations and extraction of roots.
- In 1832, Evariste Galois showed that no such 'formula' exists for a general polynomial of degree greater than or equal to 5 .
- Thus, it becomes interesting to prove the existence of roots without having an explicit formula for roots. This is the statement of 'Fundamental Theorem of Algebra'.

Polynomials of Degree Five and More

- In 1823 Niels Henrick Abel proved that no 'formula' exists to compute the roots of a polynomial of degree 5 .
- By a 'formula', we refer to finite expression which involves elementary operations and extraction of roots.
- In 1832, Evariste Galois showed that no such 'formula' exists for a general polynomial of degree greater than or equal to 5 .
- Thus, it becomes interesting to prove the existence of roots without having an explicit formula for roots. This is the statement of 'Fundamental Theorem of Algebra'.
- The proof of the Fundamental theorem of Algebra, is a result in Analysis!

Polynomials are Unbounded in \mathbb{C}

- Any polynomial $p: \mathbb{C} \rightarrow \mathbb{C}$ of degree n has the form $p(z)=\sum_{i=0}^{n} a_{i} z^{i}$ where $a_{i} \in \mathbb{C}$ are given.

Polynomials are Unbounded in \mathbb{C}

- Any polynomial $p: \mathbb{C} \rightarrow \mathbb{C}$ of degree n has the form $p(z)=\sum_{i=0}^{n} a_{i} z^{i}$ where $a_{i} \in \mathbb{C}$ are given.

$$
\lim _{|z| \rightarrow \infty}|p(z)|=\lim _{|z| \rightarrow \infty}\left(\left|z^{n}\right|\left|a_{n}+\frac{a_{n-1}}{z}+\ldots+\frac{a_{0}}{z^{n}}\right|\right)=\infty .
$$

Polynomials are Unbounded in \mathbb{C}

- Any polynomial $p: \mathbb{C} \rightarrow \mathbb{C}$ of degree n has the form $p(z)=\sum_{i=0}^{n} a_{i} z^{i}$ where $a_{i} \in \mathbb{C}$ are given.

$$
\lim _{|z| \rightarrow \infty}|p(z)|=\lim _{|z| \rightarrow \infty}\left(\left|z^{n}\right|\left|a_{n}+\frac{a_{n-1}}{z}+\ldots+\frac{a_{0}}{z^{n}}\right|\right)=\infty .
$$

- Since $\left|z^{n}\right| \rightarrow \infty$ as $|z| \rightarrow \infty$, we have $|p(z)| \rightarrow \infty$, as well. Thus, any polynomial is unbounded in \mathbb{C}.

Polynomials are Unbounded in \mathbb{C}

- Any polynomial $p: \mathbb{C} \rightarrow \mathbb{C}$ of degree n has the form $p(z)=\sum_{i=0}^{n} a_{i} z^{i}$ where $a_{i} \in \mathbb{C}$ are given.

$$
\lim _{|z| \rightarrow \infty}|p(z)|=\lim _{|z| \rightarrow \infty}\left(\left|z^{n}\right|\left|a_{n}+\frac{a_{n-1}}{z}+\ldots+\frac{a_{0}}{z^{n}}\right|\right)=\infty .
$$

- Since $\left|z^{n}\right| \rightarrow \infty$ as $|z| \rightarrow \infty$, we have $|p(z)| \rightarrow \infty$, as well. Thus, any polynomial is unbounded in \mathbb{C}.
- Above arguments also reveals that $\lim _{|z| \rightarrow \infty} \frac{p(z)}{a_{n} z^{n}}=1$.

Fundamental Theorem of Algebra

- The fundamental theorem of algebra (FTA) states that any non-constant polynomial with complex coefficients of positive degree admits, at least, one complex root.

Fundamental Theorem of Algebra

- The fundamental theorem of algebra (FTA) states that any non-constant polynomial with complex coefficients of positive degree admits, at least, one complex root.
- This statement is enough to conclude that any non-constant polynomial has exactly as many roots as its degree, counting multiplicities.

Fundamental Theorem of Algebra

- The fundamental theorem of algebra (FTA) states that any non-constant polynomial with complex coefficients of positive degree admits, at least, one complex root.
- This statement is enough to conclude that any non-constant polynomial has exactly as many roots as its degree, counting multiplicities.
- This follows from the observation that if z_{0} is a root of a polynomial $p(z)$ of degree $n \geq 1$,

Fundamental Theorem of Algebra

- The fundamental theorem of algebra (FTA) states that any non-constant polynomial with complex coefficients of positive degree admits, at least, one complex root.
- This statement is enough to conclude that any non-constant polynomial has exactly as many roots as its degree, counting multiplicities.
- This follows from the observation that if z_{0} is a root of a polynomial $p(z)$ of degree $n \geq 1$, then $p(z)=\left(z-z_{0}\right) q(z)$ where q is a polynomial of degree $n-1$

Fundamental Theorem of Algebra

- The fundamental theorem of algebra (FTA) states that any non-constant polynomial with complex coefficients of positive degree admits, at least, one complex root.
- This statement is enough to conclude that any non-constant polynomial has exactly as many roots as its degree, counting multiplicities.
- This follows from the observation that if z_{0} is a root of a polynomial $p(z)$ of degree $n \geq 1$, then $p(z)=\left(z-z_{0}\right) q(z)$ where q is a polynomial of degree $n-1$ which, in turn, will admit atleast one complex root.

Fundamental Theorem of Algebra

- The fundamental theorem of algebra (FTA) states that any non-constant polynomial with complex coefficients of positive degree admits, at least, one complex root.
- This statement is enough to conclude that any non-constant polynomial has exactly as many roots as its degree, counting multiplicities.
- This follows from the observation that if z_{0} is a root of a polynomial $p(z)$ of degree $n \geq 1$, then $p(z)=\left(z-z_{0}\right) q(z)$ where q is a polynomial of degree $n-1$ which, in turn, will admit atleast one complex root.
- The first correct proof of FTA for real and complex coefficient polynomial was presented by Carl-Friedrich Gauss in 1816 and 1849, respectively.

Fundamental Theorem of Algebra

Theorem

If $p: \mathbb{C} \rightarrow \mathbb{C}$ is a non-constant polynomial with constant coefficients then there is a complex number $z_{0} \in \mathbb{C}$ such that $p\left(z_{0}\right)=0$.

Fundamental Theorem of Algebra

Theorem

If $p: \mathbb{C} \rightarrow \mathbb{C}$ is a non-constant polynomial with constant coefficients then there is a complex number $z_{0} \in \mathbb{C}$ such that $p\left(z_{0}\right)=0$.

Proof.

Suppose $p(z) \neq 0$ for all $z \in \mathbb{C}$.

Fundamental Theorem of Algebra

Theorem

If $p: \mathbb{C} \rightarrow \mathbb{C}$ is a non-constant polynomial with constant coefficients then there is a complex number $z_{0} \in \mathbb{C}$ such that $p\left(z_{0}\right)=0$.

Proof.

Suppose $p(z) \neq 0$ for all $z \in \mathbb{C}$. Set $q(z):=1 / p(z)$

Fundamental Theorem of Algebra

```
Theorem
If \(p: \mathbb{C} \rightarrow \mathbb{C}\) is a non-constant polynomial with constant coefficients then there is a complex number \(z_{0} \in \mathbb{C}\) such that \(p\left(z_{0}\right)=0\).
```


Proof.

Suppose $p(z) \neq 0$ for all $z \in \mathbb{C}$. Set $q(z):=1 / p(z)$ is an analytic fuction on \mathbb{C} (entire function).

Fundamental Theorem of Algebra

Theorem

If $p: \mathbb{C} \rightarrow \mathbb{C}$ is a non-constant polynomial with constant coefficients then there is a complex number $z_{0} \in \mathbb{C}$ such that $p\left(z_{0}\right)=0$.

Proof.

Suppose $p(z) \neq 0$ for all $z \in \mathbb{C}$. Set $q(z):=1 / p(z)$ is an analytic fuction on \mathbb{C} (entire function). By Cauchy's integral formula, for all $r>0$, we have

$$
q(0)=\frac{1}{2 \pi i} \int_{|z|=r} \frac{q(z)}{z} d z
$$

Fundamental Theorem of Algebra

Theorem

If $p: \mathbb{C} \rightarrow \mathbb{C}$ is a non-constant polynomial with constant coefficients then there is a complex number $z_{0} \in \mathbb{C}$ such that $p\left(z_{0}\right)=0$.

Proof.

Suppose $p(z) \neq 0$ for all $z \in \mathbb{C}$. Set $q(z):=1 / p(z)$ is an analytic fuction on \mathbb{C} (entire function). By Cauchy's integral formula, for all $r>0$, we have

$$
q(0)=\frac{1}{2 \pi i} \int_{|z|=r} \frac{q(z)}{z} d z=\frac{1}{2 \pi} \int_{0}^{2 \pi} q\left(r e^{i \theta}\right) d \theta
$$

Fundamental Theorem of Algebra

Theorem

If $p: \mathbb{C} \rightarrow \mathbb{C}$ is a non-constant polynomial with constant coefficients then there is a complex number $z_{0} \in \mathbb{C}$ such that $p\left(z_{0}\right)=0$.

Proof.

Suppose $p(z) \neq 0$ for all $z \in \mathbb{C}$. Set $q(z):=1 / p(z)$ is an analytic fuction on \mathbb{C} (entire function). By Cauchy's integral formula, for all $r>0$, we have

$$
q(0)=\frac{1}{2 \pi i} \int_{|z|=r} \frac{q(z)}{z} d z=\frac{1}{2 \pi} \int_{0}^{2 \pi} q\left(r e^{i \theta}\right) d \theta
$$

The integral on RHS tends to zero as $r \rightarrow \infty$ because $p(z)$ is unbounded on \mathbb{C}.

Fundamental Theorem of Algebra

Theorem

If $p: \mathbb{C} \rightarrow \mathbb{C}$ is a non-constant polynomial with constant coefficients then there is a complex number $z_{0} \in \mathbb{C}$ such that $p\left(z_{0}\right)=0$.

Proof.

Suppose $p(z) \neq 0$ for all $z \in \mathbb{C}$. Set $q(z):=1 / p(z)$ is an analytic fuction on \mathbb{C} (entire function). By Cauchy's integral formula, for all $r>0$, we have

$$
q(0)=\frac{1}{2 \pi i} \int_{|z|=r} \frac{q(z)}{z} d z=\frac{1}{2 \pi} \int_{0}^{2 \pi} q\left(r e^{i \theta}\right) d \theta
$$

The integral on RHS tends to zero as $r \rightarrow \infty$ because $p(z)$ is unbounded on \mathbb{C}. But the LHS, $q(0)=1 / p(0)$ is non-zero, which is a contradiction.

Linear Maps

- For any two vector spaces V and W over a field \mathbb{F}, the map $T: V \rightarrow W$ is said to be linear if $T(\alpha x+\beta y)=\alpha T(x)+\beta T(y)$ for all $x, y \in V$ and $\alpha, \beta \in \mathbb{F}$.

Linear Maps

- For any two vector spaces V and W over a field \mathbb{F}, the map $T: V \rightarrow W$ is said to be linear if $T(\alpha x+\beta y)=\alpha T(x)+\beta T(y)$ for all $x, y \in V$ and $\alpha, \beta \in \mathbb{F}$.
- If V and W are vector spaces of finite dimension, say n and m respectively with some chosen basis then $T: V \rightarrow W$ is linear iff there is an $m \times n$ matrix A such that $T x=A x$.

Linear Maps

- For any two vector spaces V and W over a field \mathbb{F}, the map $T: V \rightarrow W$ is said to be linear if $T(\alpha x+\beta y)=\alpha T(x)+\beta T(y)$ for all $x, y \in V$ and $\alpha, \beta \in \mathbb{F}$.
- If V and W are vector spaces of finite dimension, say n and m respectively with some chosen basis then $T: V \rightarrow W$ is linear iff there is an $m \times n$ matrix A such that $T x=A x$.
- The dimension of range of T is the rank of T or A and the dimension of null space of T is the nullity of T or A.

Linear Maps

- For any two vector spaces V and W over a field \mathbb{F}, the map $T: V \rightarrow W$ is said to be linear if $T(\alpha x+\beta y)=\alpha T(x)+\beta T(y)$ for all $x, y \in V$ and $\alpha, \beta \in \mathbb{F}$.
- If V and W are vector spaces of finite dimension, say n and m respectively with some chosen basis then $T: V \rightarrow W$ is linear iff there is an $m \times n$ matrix A such that $T x=A x$.
- The dimension of range of T is the rank of T or A and the dimension of null space of T is the nullity of T or A.
- The dimension of V is the sum of the rank and nullity of T.

Real Numbers Dilate

- For instance, a map $T: \mathbb{R} \rightarrow \mathbb{R}$ is linear iff $T_{x}=\alpha x$ for some $\alpha \in \mathbb{R}$, i.e. the graphs are straight lines in \mathbb{R}^{2} passing through origin with slope α and angle of inclination $\tan ^{-1}(\alpha)$.

Real Numbers Dilate

- For instance, a map $T: \mathbb{R} \rightarrow \mathbb{R}$ is linear iff $T_{x}=\alpha x$ for some $\alpha \in \mathbb{R}$, i.e. the graphs are straight lines in \mathbb{R}^{2} passing through origin with slope α and angle of inclination $\tan ^{-1}(\alpha)$.

- The real numbers are in on-to-one correspondence with real valued linear maps on \mathbb{R}.
- The real linear maps dilates points. i.e. it stretches $(|\alpha|>1)$ or shrinks $(|\alpha|<1)$ points in \mathbb{R}.

Complex Numbers Rotate and Dilate

- For every $\omega \in \mathbb{C}, T_{\omega}: \mathbb{C} \rightarrow \mathbb{C}$ defined by the complex multiplication, $T_{\omega}(z)=\omega z$, is linear.

Complex Numbers Rotate and Dilate

- For every $\omega \in \mathbb{C}, T_{\omega}: \mathbb{C} \rightarrow \mathbb{C}$ defined by the complex multiplication, $T_{\omega}(z)=\omega z$, is linear. Conversely, any linear map $T: \mathbb{C} \rightarrow \mathbb{C}$ is of the form T_{ω} with $\omega=T(1)$.

Complex Numbers Rotate and Dilate

- For every $\omega \in \mathbb{C}, T_{\omega}: \mathbb{C} \rightarrow \mathbb{C}$ defined by the complex multiplication, $T_{\omega}(z)=\omega z$, is linear. Conversely, any linear map $T: \mathbb{C} \rightarrow \mathbb{C}$ is of the form T_{ω} with $\omega=T(1)$.
- Given any complex number $\omega:=x+\imath y$

Complex Numbers Rotate and Dilate

- For every $\omega \in \mathbb{C}, T_{\omega}: \mathbb{C} \rightarrow \mathbb{C}$ defined by the complex multiplication, $T_{\omega}(z)=\omega z$, is linear. Conversely, any linear map $T: \mathbb{C} \rightarrow \mathbb{C}$ is of the form T_{ω} with $\omega=T(1)$.
- Given any complex number $\omega:=x+\imath y$, for all $z:=\xi+\imath \eta \in \mathbb{C}$, the complex multiplication gives

$$
(x+\imath y)(\xi+\imath \eta)=\binom{x \xi-y \eta}{y \xi+x \eta}
$$

Complex Numbers Rotate and Dilate

- For every $\omega \in \mathbb{C}, T_{\omega}: \mathbb{C} \rightarrow \mathbb{C}$ defined by the complex multiplication, $T_{\omega}(z)=\omega z$, is linear. Conversely, any linear map $T: \mathbb{C} \rightarrow \mathbb{C}$ is of the form T_{ω} with $\omega=T(1)$.
- Given any complex number $\omega:=x+\imath y$, for all $z:=\xi+\imath \eta \in \mathbb{C}$, the complex multiplication gives

$$
(x+\imath y)(\xi+\imath \eta)=\binom{x \xi-y \eta}{y \xi+x \eta}=\left(\begin{array}{cc}
x & -y \\
y & x
\end{array}\right)\binom{\xi}{\eta}
$$

Complex Numbers Rotate and Dilate

- For every $\omega \in \mathbb{C}, T_{\omega}: \mathbb{C} \rightarrow \mathbb{C}$ defined by the complex multiplication, $T_{\omega}(z)=\omega z$, is linear. Conversely, any linear map $T: \mathbb{C} \rightarrow \mathbb{C}$ is of the form T_{ω} with $\omega=T(1)$.
- Given any complex number $\omega:=x+\imath y$, for all $z:=\xi+\imath \eta \in \mathbb{C}$, the complex multiplication gives

$$
(x+\imath y)(\xi+\imath \eta)=\binom{x \xi-y \eta}{y \xi+x \eta}=\left(\begin{array}{cc}
x & -y \\
y & x
\end{array}\right)\binom{\xi}{\eta}
$$

- Thus, every linear map on \mathbb{C} (or complex number $x+\imath y$ or $r e^{\imath \theta}$) can be associated with the real linear map on \mathbb{R}^{2} of the form

$$
\left(\begin{array}{cc}
x & -y \\
y & x
\end{array}\right)=\left(\begin{array}{cc}
r \cos \theta & -r \sin \theta \\
r \sin \theta & r \cos \theta
\end{array}\right)
$$

Complex Numbers Rotate and Dilate

- For every $\omega \in \mathbb{C}, T_{\omega}: \mathbb{C} \rightarrow \mathbb{C}$ defined by the complex multiplication, $T_{\omega}(z)=\omega z$, is linear. Conversely, any linear map $T: \mathbb{C} \rightarrow \mathbb{C}$ is of the form T_{ω} with $\omega=T(1)$.
- Given any complex number $\omega:=x+\imath y$, for all $z:=\xi+\imath \eta \in \mathbb{C}$, the complex multiplication gives

$$
(x+\imath y)(\xi+\imath \eta)=\binom{x \xi-y \eta}{y \xi+x \eta}=\left(\begin{array}{cc}
x & -y \\
y & x
\end{array}\right)\binom{\xi}{\eta}
$$

- Thus, every linear map on \mathbb{C} (or complex number $x+\imath y$ or $r e^{\imath \theta}$) can be associated with the real linear map on \mathbb{R}^{2} of the form

$$
\left(\begin{array}{cc}
x & -y \\
y & x
\end{array}\right)=\left(\begin{array}{cc}
r \cos \theta & -r \sin \theta \\
r \sin \theta & r \cos \theta
\end{array}\right)
$$

- There is a one-to-one correspondence between complex numbers (or linear maps) and rotation-dilation matrices on \mathbb{R}^{2}.

Multiplication in Polar Form

- The polar form of any complex number $z=(|z|, \arg (z))$ can be written as $z=|z| e^{\imath \arg (z)}$ using Euler's formula.

Multiplication in Polar Form

- The polar form of any complex number $z=(|z|, \arg (z))$ can be written as $z=|z| e^{\imath \arg (z)}$ using Euler's formula.
- Thus, multiplication of complex numbers $w z=|w||z| e^{\imath(\arg (z)+\arg (w))}$.

Complex Linearity Vs Real Linearity

- Recall that, geometrically, derivative at a point is the linear approximation of the given function at that point.

Complex Linearity Vs Real Linearity

- Recall that, geometrically, derivative at a point is the linear approximation of the given function at that point.
- The complex linearity is a stronger (more restrictive) requirement than real linearity

Complex Linearity Vs Real Linearity

- Recall that, geometrically, derivative at a point is the linear approximation of the given function at that point.
- The complex linearity is a stronger (more restrictive) requirement than real linearity because the complex scalars include real scalars. Complex linearity means, for any $\alpha+\imath \beta \in \mathbb{C}$, $T[(\alpha+\imath \beta) z)=(\alpha+\imath \beta) T(z)$. The case $\beta=0$ corresponds to real linearity.

Complex Linearity Vs Real Linearity

- Recall that, geometrically, derivative at a point is the linear approximation of the given function at that point.
- The complex linearity is a stronger (more restrictive) requirement than real linearity because the complex scalars include real scalars.
Complex linearity means, for any $\alpha+\imath \beta \in \mathbb{C}$, $T[(\alpha+\imath \beta) z)=(\alpha+\imath \beta) T(z)$. The case $\beta=0$ corresponds to real linearity.
- Consequently, the complex derivative (or complex linear approximation) is a stronger requirement than the total derivative in \mathbb{R}^{2}.

Complex Linearity Vs Real Linearity

- Recall that, geometrically, derivative at a point is the linear approximation of the given function at that point.
- The complex linearity is a stronger (more restrictive) requirement than real linearity because the complex scalars include real scalars.
Complex linearity means, for any $\alpha+\imath \beta \in \mathbb{C}$, $T[(\alpha+\imath \beta) z)=(\alpha+\imath \beta) T(z)$. The case $\beta=0$ corresponds to real linearity.
- Consequently, the complex derivative (or complex linear approximation) is a stronger requirement than the total derivative in \mathbb{R}^{2}.
- For instance, the map $z \mapsto \bar{z}$ is not complex linear while its analogue map in $\mathbb{R}^{2},(x, y) \mapsto(x,-y)$ is real linear.

Complex Linearity Vs Real Linearity

- Recall that, geometrically, derivative at a point is the linear approximation of the given function at that point.
- The complex linearity is a stronger (more restrictive) requirement than real linearity because the complex scalars include real scalars.
Complex linearity means, for any $\alpha+\imath \beta \in \mathbb{C}$, $T[(\alpha+\imath \beta) z)=(\alpha+\imath \beta) T(z)$. The case $\beta=0$ corresponds to real linearity.
- Consequently, the complex derivative (or complex linear approximation) is a stronger requirement than the total derivative in \mathbb{R}^{2}.
- For instance, the map $z \mapsto \bar{z}$ is not complex linear while its analogue map in $\mathbb{R}^{2},(x, y) \mapsto(x,-y)$ is real linear.
- Thus, while the map $(x, y) \mapsto(x,-y)$ is differentiable everywhere and its derivative is itself (being linear) the complex valued function $z \mapsto \bar{z}$ is nowhere complex differentiable.

Visualising Functions

- A function from \mathbb{R} to itself can be geometrically understood via its graph in \mathbb{R}^{2}. The graph of a function from \mathbb{C} to itself is contained in \mathbb{R}^{4} which cannot be visualised!

Visualising Functions

- A function from \mathbb{R} to itself can be geometrically understood via its graph in \mathbb{R}^{2}. The graph of a function from \mathbb{C} to itself is contained in \mathbb{R}^{4} which cannot be visualised!
- An alternate way to visualise $f: \mathbb{C} \rightarrow \mathbb{C}$ which are injective is by studying the images of lines and circles.

Visualising Functions

- A function from \mathbb{R} to itself can be geometrically understood via its graph in \mathbb{R}^{2}. The graph of a function from \mathbb{C} to itself is contained in \mathbb{R}^{4} which cannot be visualised!
- An alternate way to visualise $f: \mathbb{C} \rightarrow \mathbb{C}$ which are injective is by studying the images of lines and circles.
- Lines in \mathbb{C} can be thought of as circle of infinite radius, i.e. passing through infinity. The complex plane with infinity $(\mathbb{C} \cup\{\infty\})$ is the Riemann sphere with the north pole identified with infinity.

Visualising Functions

- A function from \mathbb{R} to itself can be geometrically understood via its graph in \mathbb{R}^{2}. The graph of a function from \mathbb{C} to itself is contained in \mathbb{R}^{4} which cannot be visualised!
- An alternate way to visualise $f: \mathbb{C} \rightarrow \mathbb{C}$ which are injective is by studying the images of lines and circles.
- Lines in \mathbb{C} can be thought of as circle of infinite radius, i.e. passing through infinity. The complex plane with infinity $(\mathbb{C} \cup\{\infty\})$ is the Riemann sphere with the north pole identified with infinity.

- For functions that are not injective or is multi-valued can be visualised using the concept of Riemann surfaces!

Plot for z^{2}

$z^{2}=\left(x^{2}-y^{2}\right)+22 x y$ is not injective.

Plot for e^{z}

$e^{z}=e^{x} e^{\imath y}$ is not injective because $e^{z+\imath 2 \pi k}=e^{z}$ for integral k.

The inversion map $\frac{1}{z}$

- The inversion map $f(z)=\frac{1}{z}$ with $1 / 0=\infty$ (in Riemann sphere) also preserves the family of lines and circles, i.e. curves of the form $a\left(x^{2}+y^{2}\right)+b x+c y+d=0$ such that $b^{2}+c^{2}>4 a d$.

The inversion map $\frac{1}{z}$

- The inversion map $f(z)=\frac{1}{z}$ with $1 / 0=\infty$ (in Riemann sphere) also preserves the family of lines and circles, i.e. curves of the form $a\left(x^{2}+y^{2}\right)+b x+c y+d=0$ such that $b^{2}+c^{2}>4 a d$.
- The image of $2 a z \bar{z}+(b-\imath c) z+(b+\imath c) \bar{z}+2 d=0$ is $2 d w \bar{w}+(b+\imath c) z+(b-\imath c) \bar{z}+2 a=0$ which rewritten in terms its real and imaginary part is $d\left(u^{2}+v^{2}\right)+B u-c v+a=0$.

The inversion map $\frac{1}{z}$

- The inversion map $f(z)=\frac{1}{z}$ with $1 / 0=\infty$ (in Riemann sphere) also preserves the family of lines and circles, i.e. curves of the form $a\left(x^{2}+y^{2}\right)+b x+c y+d=0$ such that $b^{2}+c^{2}>4 a d$.
- The image of $2 a z \bar{z}+(b-\imath c) z+(b+\imath c) \bar{z}+2 d=0$ is $2 d w \bar{w}+(b+\imath c) z+(b-\imath c) \bar{z}+2 a=0$ which rewritten in terms its real and imaginary part is $d\left(u^{2}+v^{2}\right)+B u-c v+a=0$.
- The image of line through the origin $(a=d=0)$ is a line through origin.

The inversion map $\frac{1}{z}$

- The inversion map $f(z)=\frac{1}{z}$ with $1 / 0=\infty$ (in Riemann sphere) also preserves the family of lines and circles, i.e. curves of the form $a\left(x^{2}+y^{2}\right)+b x+c y+d=0$ such that $b^{2}+c^{2}>4 a d$.
- The image of $2 a z \bar{z}+(b-\imath c) z+(b+\imath c) \bar{z}+2 d=0$ is $2 d w \bar{w}+(b+\imath c) z+(b-\imath c) \bar{z}+2 a=0$ which rewritten in terms its real and imaginary part is $d\left(u^{2}+v^{2}\right)+B u-c v+a=0$.
- The image of line through the origin $(a=d=0)$ is a line through origin.
- The image of line not through the origin $(a=0)$ is a circle through the origin.

The inversion map $\frac{1}{z}$

- The inversion map $f(z)=\frac{1}{z}$ with $1 / 0=\infty$ (in Riemann sphere) also preserves the family of lines and circles, i.e. curves of the form $a\left(x^{2}+y^{2}\right)+b x+c y+d=0$ such that $b^{2}+c^{2}>4 a d$.
- The image of $2 a z \bar{z}+(b-\imath c) z+(b+\imath c) \bar{z}+2 d=0$ is $2 d w \bar{w}+(b+\imath c) z+(b-\imath c) \bar{z}+2 a=0$ which rewritten in terms its real and imaginary part is $d\left(u^{2}+v^{2}\right)+B u-c v+a=0$.
- The image of line through the origin $(a=d=0)$ is a line through origin.
- The image of line not through the origin $(a=0)$ is a circle through the origin.
- The image of a circle through origin $(d=0)$ is a line not through the origin.

The inversion map $\frac{1}{2}$

- The inversion map $f(z)=\frac{1}{z}$ with $1 / 0=\infty$ (in Riemann sphere) also preserves the family of lines and circles, i.e. curves of the form $a\left(x^{2}+y^{2}\right)+b x+c y+d=0$ such that $b^{2}+c^{2}>4 a d$.
- The image of $2 a z \bar{z}+(b-\imath c) z+(b+\imath c) \bar{z}+2 d=0$ is $2 d w \bar{w}+(b+\imath c) z+(b-\imath c) \bar{z}+2 a=0$ which rewritten in terms its real and imaginary part is $d\left(u^{2}+v^{2}\right)+B u-c v+a=0$.
- The image of line through the origin $(a=d=0)$ is a line through origin.
- The image of line not through the origin $(a=0)$ is a circle through the origin.
- The image of a circle through origin $(d=0)$ is a line not through the origin.
- The image of a circle not through origin is a circle not through the origin.

Fractional Linear Maps

- Recall that linear maps $f(z)=a z+b$, for $a \neq 0$, also preserve the family of lines and circles (Rotation, dilation and translation).

Fractional Linear Maps

- Recall that linear maps $f(z)=a z+b$, for $a \neq 0$, also preserve the family of lines and circles (Rotation, dilation and translation).
- Thus, the composition of linear and inverse maps also preserve the family of circles and lines.
- More generally, the fractional linear maps given by

$$
f(z)=\frac{a z+b}{c z+d}
$$

such that $a d-b c \neq 0$ (to exclude constant functions) preserve the family of circles and lines because $f(z)=\frac{a}{c}+\frac{1}{c z+d}\left(b-\frac{a d}{c}\right)$, composition of linear and inverse map.

Conformal maps

- The Fractional Linear Transformation are conformal maps.

Conformal maps

- The Fractional Linear Transformation are conformal maps.
- Conformal maps are functions on \mathbb{C} that preserves angles between curves.

Conformal maps

- The Fractional Linear Transformation are conformal maps.
- Conformal maps are functions on \mathbb{C} that preserves angles between curves.
- More precisely, a map $f: \mathbb{C} \rightarrow \mathbb{C}$ is conformal at z_{0} if for any smooth curve γ passing through z_{0} there is an angle θ and a scale $r>0$ (both depending on z_{0} and not on γ) such that f rotates the tangent vector at z_{0} of γ by θ and scales by r.

Conformal maps

- The Fractional Linear Transformation are conformal maps.
- Conformal maps are functions on \mathbb{C} that preserves angles between curves.
- More precisely, a map $f: \mathbb{C} \rightarrow \mathbb{C}$ is conformal at z_{0} if for any smooth curve γ passing through z_{0} there is an angle θ and a scale $r>0$ (both depending on z_{0} and not on γ) such that f rotates the tangent vector at z_{0} of γ by θ and scales by r.
- f is conformal at z_{0} iff f multiplies all tangent vectors at z_{0} by a complex number re ${ }^{\imath \theta}$.

Conformal maps

- The Fractional Linear Transformation are conformal maps.
- Conformal maps are functions on \mathbb{C} that preserves angles between curves.
- More precisely, a map $f: \mathbb{C} \rightarrow \mathbb{C}$ is conformal at z_{0} if for any smooth curve γ passing through z_{0} there is an angle θ and a scale $r>0$ (both depending on z_{0} and not on γ) such that f rotates the tangent vector at z_{0} of γ by θ and scales by r.
- f is conformal at z_{0} iff f multiplies all tangent vectors at z_{0} by a complex number re ${ }^{\imath \theta}$.
- If f is holomorphic at z_{0} such that $f^{\prime}\left(z_{0}\right) \neq 0$ then f is conformal because, for any $\gamma,(f \circ \gamma)^{\prime}\left(t_{0}\right)=f^{\prime}\left(z_{0}\right) \gamma^{\prime}\left(t_{0}\right)$ where $\gamma\left(t_{0}\right)=z_{0}$.

Conformal maps

- The Fractional Linear Transformation are conformal maps.
- Conformal maps are functions on \mathbb{C} that preserves angles between curves.
- More precisely, a map $f: \mathbb{C} \rightarrow \mathbb{C}$ is conformal at z_{0} if for any smooth curve γ passing through z_{0} there is an angle θ and a scale $r>0$ (both depending on z_{0} and not on γ) such that f rotates the tangent vector at z_{0} of γ by θ and scales by r.
- f is conformal at z_{0} iff f multiplies all tangent vectors at z_{0} by a complex number re ${ }^{\imath \theta}$.
- If f is holomorphic at z_{0} such that $f^{\prime}\left(z_{0}\right) \neq 0$ then f is conformal because, for any $\gamma,(f \circ \gamma)^{\prime}\left(t_{0}\right)=f^{\prime}\left(z_{0}\right) \gamma^{\prime}\left(t_{0}\right)$ where $\gamma\left(t_{0}\right)=z_{0}$.
- The map $z \mapsto \bar{z}$ is not conformal because it reflects tangent vectors changing its orientation!

Real Differentiation

Definition

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be differentiable at a, denoted as $f^{\prime}(a)$ or $\frac{d f}{d x}(a)$, if the limit

$$
f^{\prime}(a):=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

exists.

Real Differentiation

Definition

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be differentiable at a, denoted as $f^{\prime}(a)$ or $\frac{d f}{d x}(a)$, if the limit

$$
f^{\prime}(a):=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

exists.

Example

The real valued function $x \mapsto|x|$ is not differentiable at 0 .

Differentiation in Normed Space

Definition

Let $\Omega \subset E$ be an open subset of the normed linear space E. We say $f: \Omega \rightarrow F$, where F is another normed linear space, is said to be Fréchet differentiable or, simply, differentiable at $a \in \Omega$ if there exists a linear map $D f(a) \in \mathcal{L}(E, F)$ such that

$$
\lim _{x \rightarrow a} \frac{\|f(x)-f(a)-D f(a)(x-a)\|}{\|x-a\|}=0
$$

Differentiation in Normed Space

Definition

Let $\Omega \subset E$ be an open subset of the normed linear space E. We say $f: \Omega \rightarrow F$, where F is another normed linear space, is said to be Fréchet differentiable or, simply, differentiable at $a \in \Omega$ if there exists a linear map $D f(a) \in \mathcal{L}(E, F)$ such that

$$
\lim _{x \rightarrow a} \frac{\|f(x)-f(a)-D f(a)(x-a)\|}{\|x-a\|}=0
$$

- We say f is Fréchet differentiable in Ω if f is Fréchet differentiable at all $a \in \Omega$ and $D f: \Omega \rightarrow \mathcal{L}(E, F)$ is a map defined as $a \mapsto \operatorname{Df}(a)$.

Differentiation in Normed Space

Definition

Let $\Omega \subset E$ be an open subset of the normed linear space E. We say $f: \Omega \rightarrow F$, where F is another normed linear space, is said to be Fréchet differentiable or, simply, differentiable at $a \in \Omega$ if there exists a linear map $D f(a) \in \mathcal{L}(E, F)$ such that

$$
\lim _{x \rightarrow a} \frac{\|f(x)-f(a)-D f(a)(x-a)\|}{\|x-a\|}=0
$$

- We say f is Fréchet differentiable in Ω if f is Fréchet differentiable at all $a \in \Omega$ and $D f: \Omega \rightarrow \mathcal{L}(E, F)$ is a map defined as $a \mapsto \operatorname{Df}(a)$.
- In particular, one can choose $E=\mathbb{R}^{n}$ and $F=\mathbb{R}^{m}$ and the derivative is referred to as total derivative.

Differentiation in Normed Space

Definition

Let $\Omega \subset E$ be an open subset of the normed linear space E. We say $f: \Omega \rightarrow F$, where F is another normed linear space, is said to be Fréchet differentiable or, simply, differentiable at $a \in \Omega$ if there exists a linear map $D f(a) \in \mathcal{L}(E, F)$ such that

$$
\lim _{x \rightarrow a} \frac{\|f(x)-f(a)-D f(a)(x-a)\|}{\|x-a\|}=0
$$

- We say f is Fréchet differentiable in Ω if f is Fréchet differentiable at all $a \in \Omega$ and $D f: \Omega \rightarrow \mathcal{L}(E, F)$ is a map defined as $a \mapsto \operatorname{Df}(a)$.
- In particular, one can choose $E=\mathbb{R}^{n}$ and $F=\mathbb{R}^{m}$ and the derivative is referred to as total derivative.
- The hypothesis that Ω is open ensures that $\operatorname{Df}(a)$ is unique.

Directional Derivative in Vector Spaces

Definition

Let V be a vector space. The directional or Gâteau derivative of $f: V \rightarrow \mathbb{R}$ at $a \in V$, along the direction $v \in V \backslash\{0\}$, is defined as

$$
D_{v} f(a):=\lim _{h \rightarrow 0} \frac{1}{h}[f(a+h v)-f(a)]
$$

Directional Derivative in Vector Spaces

Definition

Let V be a vector space. The directional or Gâteau derivative of $f: V \rightarrow \mathbb{R}$ at $a \in V$, along the direction $v \in V \backslash\{0\}$, is defined as

$$
D_{v} f(a):=\lim _{h \rightarrow 0} \frac{1}{h}[f(a+h v)-f(a)] .
$$

- If $V=\mathbb{R}^{n}$ and $v=e_{j}$, the standard unit j-th basis vector

Directional Derivative in Vector Spaces

Definition

Let V be a vector space. The directional or Gâteau derivative of $f: V \rightarrow \mathbb{R}$ at $a \in V$, along the direction $v \in V \backslash\{0\}$, is defined as

$$
D_{v} f(a):=\lim _{h \rightarrow 0} \frac{1}{h}[f(a+h v)-f(a)]
$$

- If $V=\mathbb{R}^{n}$ and $v=e_{j}$, the standard unit j-th basis vector, then $D_{e_{j}} f(a)$, also denoted as $D_{j} f(a)$ or $\frac{\partial f}{\partial x_{j}}(a)$, is called the j-th partial derivative of f at a.

Directional Derivative in Vector Spaces

Definition

Let V be a vector space. The directional or Gâteau derivative of $f: V \rightarrow \mathbb{R}$ at $a \in V$, along the direction $v \in V \backslash\{0\}$, is defined as

$$
D_{v} f(a):=\lim _{h \rightarrow 0} \frac{1}{h}[f(a+h v)-f(a)]
$$

- If $V=\mathbb{R}^{n}$ and $v=e_{j}$, the standard unit j-th basis vector, then $D_{e_{j}} f(a)$, also denoted as $D_{j} f(a)$ or $\frac{\partial f}{\partial x_{j}}(a)$, is called the j-th partial derivative of f at a.
- Also, $D_{v} f(a)=\operatorname{Df}(a) \cdot v$.

Jacobian Matrix

- In the finite dimensional case, the total derivative (being a linear map) admits a matrix representation.

Jacobian Matrix

- In the finite dimensional case, the total derivative (being a linear map) admits a matrix representation.
- The matrix representation of $\operatorname{Df}(a)$, called the Jacobian matrix, corresponding to the standard basis vectors of \mathbb{R}^{n} and \mathbb{R}^{m}, is

$$
\operatorname{Df}(a):=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(a) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(a) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(a) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(a)
\end{array}\right)
$$

where $f=\left(f_{1}, \ldots, f_{m}\right)$ has m components.

Jacobian Matrix

- In the finite dimensional case, the total derivative (being a linear map) admits a matrix representation.
- The matrix representation of $\operatorname{Df}(a)$, called the Jacobian matrix, corresponding to the standard basis vectors of \mathbb{R}^{n} and \mathbb{R}^{m}, is

$$
\operatorname{Df}(a):=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(a) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(a) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(a) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(a)
\end{array}\right)
$$

where $f=\left(f_{1}, \ldots, f_{m}\right)$ has m components.

- Let $J_{f}(a)$ denote the determinant of the Jacobian matrix $\operatorname{Df}(a)$.

Complex Differentiation

Definition

A function $f: \mathbb{C} \rightarrow \mathbb{C}$ is said to be complex differentiable at a, denoted as $f^{\prime}(a)$, if the limit

$$
f^{\prime}(a):=\lim _{z \rightarrow a} \frac{f(z)-f(a)}{z-a}
$$

exists.

Complex Differentiation

Definition

A function $f: \mathbb{C} \rightarrow \mathbb{C}$ is said to be complex differentiable at a, denoted as $f^{\prime}(a)$, if the limit

$$
f^{\prime}(a):=\lim _{z \rightarrow a} \frac{f(z)-f(a)}{z-a}
$$

exists. If f is complex differentiable in a neighbourhood of a then f is said to be holomorphic at a.

Complex Differentiation

Definition

A function $f: \mathbb{C} \rightarrow \mathbb{C}$ is said to be complex differentiable at a, denoted as $f^{\prime}(a)$, if the limit

$$
f^{\prime}(a):=\lim _{z \rightarrow a} \frac{f(z)-f(a)}{z-a}
$$

exists. If f is complex differentiable in a neighbourhood of a then f is said to be holomorphic at a.

- $z \mapsto|z|^{2}$ is differentiable at $a=0$ but not holomorphic at a.

Complex Differentiation

Definition

A function $f: \mathbb{C} \rightarrow \mathbb{C}$ is said to be complex differentiable at a, denoted as $f^{\prime}(a)$, if the limit

$$
f^{\prime}(a):=\lim _{z \rightarrow a} \frac{f(z)-f(a)}{z-a}
$$

exists. If f is complex differentiable in a neighbourhood of a then f is said to be holomorphic at a.

- $z \mapsto|z|^{2}$ is differentiable at $a=0$ but not holomorphic at a.
- For a holomorphic f at z_{0} its derivative at z_{0} is continuous.

Complex Differentiation

Definition

A function $f: \mathbb{C} \rightarrow \mathbb{C}$ is said to be complex differentiable at a, denoted as $f^{\prime}(a)$, if the limit

$$
f^{\prime}(a):=\lim _{z \rightarrow a} \frac{f(z)-f(a)}{z-a}
$$

exists. If f is complex differentiable in a neighbourhood of a then f is said to be holomorphic at a.

- $z \mapsto|z|^{2}$ is differentiable at $a=0$ but not holomorphic at a.
- For a holomorphic f at z_{0} its derivative at z_{0} is continuous.
- Above property is not true for real derivatives. The derivative of $x^{2} \sin (1 / x)$ for $x \neq 0$ with 0 for $x=0$ is not continuous.

Complex Differentiation

Definition

A function $f: \mathbb{C} \rightarrow \mathbb{C}$ is said to be complex differentiable at a, denoted as $f^{\prime}(a)$, if the limit

$$
f^{\prime}(a):=\lim _{z \rightarrow a} \frac{f(z)-f(a)}{z-a}
$$

exists. If f is complex differentiable in a neighbourhood of a then f is said to be holomorphic at a.

- $z \mapsto|z|^{2}$ is differentiable at $a=0$ but not holomorphic at a.
- For a holomorphic f at z_{0} its derivative at z_{0} is continuous.
- Above property is not true for real derivatives. The derivative of $x^{2} \sin (1 / x)$ for $x \neq 0$ with 0 for $x=0$ is not continuous.
- Real derivatives satisfy the intermediate value theorem, a property weaker than continuity!

Cauchy-Riemann Equations

- If $f:=u+\imath v$ is complex differentiable then taking the limit along reals, i.e. $z-a$ being purely real and choosing $z-a$ purely imaginary, respectively, we get

Cauchy-Riemann Equations

- If $f:=u+\imath v$ is complex differentiable then taking the limit along reals, i.e. $z-a$ being purely real and choosing $z-a$ purely imaginary, respectively, we get

$$
u_{x}(a)+\imath v_{x}(a)=f^{\prime}(a)=v_{y}(a)-\imath u_{y}(a) .
$$

Cauchy-Riemann Equations

- If $f:=u+\imath v$ is complex differentiable then taking the limit along reals, i.e. $z-a$ being purely real and choosing $z-a$ purely imaginary, respectively, we get

$$
u_{x}(a)+\imath v_{x}(a)=f^{\prime}(a)=v_{y}(a)-\imath u_{y}(a) .
$$

- Equating the real and imaginary parts we get the necessary condition of first order system of PDE called Cauchy-Riemann equations.

Cauchy-Riemann Equations

- If $f:=u+\imath v$ is complex differentiable then taking the limit along reals, i.e. $z-a$ being purely real and choosing $z-a$ purely imaginary, respectively, we get

$$
u_{x}(a)+\imath v_{x}(a)=f^{\prime}(a)=v_{y}(a)-\imath u_{y}(a) .
$$

- Equating the real and imaginary parts we get the necessary condition of first order system of PDE called Cauchy-Riemann equations.
- A complex valued function is holomorphic iff its real and imaginary parts are solution of the Cauchy-Riemann equations.

Cauchy-Riemann Equations

- If $f:=u+\imath v$ is complex differentiable then taking the limit along reals, i.e. $z-a$ being purely real and choosing $z-a$ purely imaginary, respectively, we get

$$
u_{x}(a)+\imath v_{x}(a)=f^{\prime}(a)=v_{y}(a)-\imath u_{y}(a) .
$$

- Equating the real and imaginary parts we get the necessary condition of first order system of PDE called Cauchy-Riemann equations.
- A complex valued function is holomorphic iff its real and imaginary parts are solution of the Cauchy-Riemann equations.
- Cauchy-Riemann equations is a first order elliptic system of PDE

$$
\left\{\begin{array}{l}
u_{y}(x, y)=-v_{x}(x, y) \\
v_{y}(x, y)=u_{x}(x, y)
\end{array}\right.
$$

Cauchy-Riemann Equations

- If $f:=u+\imath v$ is complex differentiable then taking the limit along reals, i.e. $z-a$ being purely real and choosing $z-a$ purely imaginary, respectively, we get

$$
u_{x}(a)+\imath v_{x}(a)=f^{\prime}(a)=v_{y}(a)-\imath u_{y}(a)
$$

- Equating the real and imaginary parts we get the necessary condition of first order system of PDE called Cauchy-Riemann equations.
- A complex valued function is holomorphic iff its real and imaginary parts are solution of the Cauchy-Riemann equations.
- Cauchy-Riemann equations is a first order elliptic system of PDE

$$
\left\{\begin{array}{l}
u_{y}(x, y)=-v_{x}(x, y) \\
v_{y}(x, y)=u_{x}(x, y)
\end{array} \text { or }\binom{u_{y}}{v_{y}}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{u_{x}}{v_{x}}\right.
$$

where the unknowns $u, v: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Cauchy-Riemann Equations

- It also means that the gradient of the imaginary part (v_{x}, v_{y}) can be obtained by a $\pi / 2$ rotation of the gradient of the real part $\left(u_{x}, u_{y}\right)$.

Cauchy-Riemann Equations

- It also means that the gradient of the imaginary part (v_{x}, v_{y}) can be obtained by a $\pi / 2$ rotation of the gradient of the real part $\left(u_{x}, u_{y}\right)$.
- Equivalently, $\nabla u \cdot \nabla v=0$.

Cauchy-Riemann Equations

- It also means that the gradient of the imaginary part (v_{x}, v_{y}) can be obtained by a $\pi / 2$ rotation of the gradient of the real part $\left(u_{x}, u_{y}\right)$.
- Equivalently, $\nabla u \cdot \nabla v=0$.
- This means that the level curves $\{u(x, y)=c\}$ and $\{v(x, y)=d$ form an orthgonal system of curves because ∇v is tangetial to $\{u=a\}$ and viceversa.

Cauchy-Riemann Equations

- It also means that the gradient of the imaginary part (v_{x}, v_{y}) can be obtained by a $\pi / 2$ rotation of the gradient of the real part $\left(u_{x}, u_{y}\right)$.
- Equivalently, $\nabla u \cdot \nabla v=0$.
- This means that the level curves $\{u(x, y)=c\}$ and $\{v(x, y)=d$ form an orthgonal system of curves because ∇v is tangetial to $\{u=a\}$ and viceversa.
- Observe that the $\pi / 2$ rotation matrix corresponds to the complex number \imath and square of the matrix is negative of identity matrix.

Cauchy-Riemann Equations

- It also means that the gradient of the imaginary part (v_{x}, v_{y}) can be obtained by a $\pi / 2$ rotation of the gradient of the real part $\left(u_{x}, u_{y}\right)$.
- Equivalently, $\nabla u \cdot \nabla v=0$.
- This means that the level curves $\{u(x, y)=c\}$ and $\{v(x, y)=d$ form an orthgonal system of curves because ∇v is tangetial to $\{u=a\}$ and viceversa.
- Observe that the $\pi / 2$ rotation matrix corresponds to the complex number \imath and square of the matrix is negative of identity matrix.
- In short, the real and imaginary parts of a holomorphic function cannot be chosen independently.

Complex Derivative Vs Total Derivative

- A complex differentiable map $f: \mathbb{C} \rightarrow \mathbb{C}$ can be viewed as a map from $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.

Complex Derivative Vs Total Derivative

- A complex differentiable map $f: \mathbb{C} \rightarrow \mathbb{C}$ can be viewed as a map from $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Thus, if $f=u+\imath v$ and $z=x+\imath y$ then the total derivative $f^{\prime}(a)$ has the (Jacobian) matrix form

$$
\left(\begin{array}{ll}
u_{x}(a) & u_{y}(a) \\
v_{x}(a) & v_{y}(a)
\end{array}\right)
$$

Complex Derivative Vs Total Derivative

- A complex differentiable map $f: \mathbb{C} \rightarrow \mathbb{C}$ can be viewed as a map from $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Thus, if $f=u+\imath v$ and $z=x+\imath y$ then the total derivative $f^{\prime}(a)$ has the (Jacobian) matrix form

$$
\left(\begin{array}{cc}
u_{x}(a) & u_{y}(a) \\
v_{x}(a) & v_{y}(a)
\end{array}\right)=\left(\begin{array}{cc}
u_{x}(a) & -v_{x}(a) \\
v_{x}(a) & u_{x}(a)
\end{array}\right) \text { or }\left(\begin{array}{cc}
v_{y}(a) & u_{y}(a) \\
-u_{y}(a) & v_{y}(a)
\end{array}\right) .
$$

The equality is a consequence of Cauchy-Riemann equations.

Complex Derivative Vs Total Derivative

- A complex differentiable map $f: \mathbb{C} \rightarrow \mathbb{C}$ can be viewed as a map from $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Thus, if $f=u+\imath v$ and $z=x+\imath y$ then the total derivative $f^{\prime}(a)$ has the (Jacobian) matrix form

$$
\left(\begin{array}{cc}
u_{x}(a) & u_{y}(a) \\
v_{x}(a) & v_{y}(a)
\end{array}\right)=\left(\begin{array}{cc}
u_{x}(a) & -v_{x}(a) \\
v_{x}(a) & u_{x}(a)
\end{array}\right) \text { or }\left(\begin{array}{cc}
v_{y}(a) & u_{y}(a) \\
-u_{y}(a) & v_{y}(a)
\end{array}\right) .
$$

The equality is a consequence of Cauchy-Riemann equations.

- The RHS has the rotational-dilation matrix form that corresponds to a complex number.

Complex Derivative Vs Total Derivative

- A complex differentiable map $f: \mathbb{C} \rightarrow \mathbb{C}$ can be viewed as a map from $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Thus, if $f=u+\imath v$ and $z=x+\imath y$ then the total derivative $f^{\prime}(a)$ has the (Jacobian) matrix form

$$
\left(\begin{array}{cc}
u_{x}(a) & u_{y}(a) \\
v_{x}(a) & v_{y}(a)
\end{array}\right)=\left(\begin{array}{cc}
u_{x}(a) & -v_{x}(a) \\
v_{x}(a) & u_{x}(a)
\end{array}\right) \text { or }\left(\begin{array}{cc}
v_{y}(a) & u_{y}(a) \\
-u_{y}(a) & v_{y}(a)
\end{array}\right) .
$$

The equality is a consequence of Cauchy-Riemann equations.

- The RHS has the rotational-dilation matrix form that corresponds to a complex number.
- Thus $f^{\prime}(a)=\partial_{x} f(a)=-\imath \partial_{y} f(a)$ and $J_{f}(a)=\left|\partial_{x} f(a)\right|^{2}=\left|\partial_{y} f(a)\right|^{2}$.

Cauchy-Riemann Equations and Ideal Fluid

- An ideal fluid flow is both incompressible and irrotational.

Cauchy-Riemann Equations and Ideal Fluid

- An ideal fluid flow is both incompressible and irrotational.
- Incompressibility is given by vanishing divergence and irrotational is given by vanishing curl.

Cauchy-Riemann Equations and Ideal Fluid

- An ideal fluid flow is both incompressible and irrotational.
- Incompressibility is given by vanishing divergence and irrotational is given by vanishing curl.
- Let (u, v) denote the velocity vector field of a planar steady state fluid. Then, the fluid is ideal iff $\nabla \cdot(u, v):=u_{x}+v_{y}=0$ and $\nabla \times(u, v):=v_{x}-u_{y}=0$.

Cauchy-Riemann Equations and Ideal Fluid

- An ideal fluid flow is both incompressible and irrotational.
- Incompressibility is given by vanishing divergence and irrotational is given by vanishing curl.
- Let (u, v) denote the velocity vector field of a planar steady state fluid. Then, the fluid is ideal iff $\nabla \cdot(u, v):=u_{x}+v_{y}=0$ and $\nabla \times(u, v):=v_{x}-u_{y}=0$.
- The incompressibility and irrotational condition is precisely the CR equations satisfied by the pair $(u,-v)$.

Cauchy-Riemann Equations and Ideal Fluid

- An ideal fluid flow is both incompressible and irrotational.
- Incompressibility is given by vanishing divergence and irrotational is given by vanishing curl.
- Let (u, v) denote the velocity vector field of a planar steady state fluid. Then, the fluid is ideal iff $\nabla \cdot(u, v):=u_{x}+v_{y}=0$ and $\nabla \times(u, v):=v_{x}-u_{y}=0$.
- The incompressibility and irrotational condition is precisely the CR equations satisfied by the pair $(u,-v)$.
- A velocity vector field (u, v) induces an ideal planar fluid flow iff $u-\imath v$ is holomorphic.

Real-Valued Complex Functions

- The real valued complex function $z \mapsto|z|^{2}$ is not complex differentiable except at 0

Real-Valued Complex Functions

- The real valued complex function $z \mapsto|z|^{2}$ is not complex differentiable except at 0 while the \mathbb{R}^{2} analogue $(x, y) \mapsto x^{2}+y^{2}$ is differentiable everywhere (admits continuous partial derivatives).

Real-Valued Complex Functions

- The real valued complex function $z \mapsto|z|^{2}$ is not complex differentiable except at 0 while the \mathbb{R}^{2} analogue $(x, y) \mapsto x^{2}+y^{2}$ is differentiable everywhere (admits continuous partial derivatives).
- The function $z \mapsto \Re(z)$ when restricted to \mathbb{R} is the function $x \mapsto x$. While the latter is real differentiable, the former is not complex differentiable.

Real-Valued Complex Functions

- The real valued complex function $z \mapsto|z|^{2}$ is not complex differentiable except at 0 while the \mathbb{R}^{2} analogue $(x, y) \mapsto x^{2}+y^{2}$ is differentiable everywhere (admits continuous partial derivatives).
- The function $z \mapsto \Re(z)$ when restricted to \mathbb{R} is the function $x \mapsto x$. While the latter is real differentiable, the former is not complex differentiable.
- The function $z \mapsto z$ when restricted to \mathbb{R} is also the function $x \mapsto x$ and they are complex and real differentiable, respectively.

Real-Valued Complex Functions

- The real valued complex function $z \mapsto|z|^{2}$ is not complex differentiable except at 0 while the \mathbb{R}^{2} analogue $(x, y) \mapsto x^{2}+y^{2}$ is differentiable everywhere (admits continuous partial derivatives).
- The function $z \mapsto \Re(z)$ when restricted to \mathbb{R} is the function $x \mapsto x$. While the latter is real differentiable, the former is not complex differentiable.
- The function $z \mapsto z$ when restricted to \mathbb{R} is also the function $x \mapsto x$ and they are complex and real differentiable, respectively.
- A map $f: \mathbb{C} \rightarrow \mathbb{R}$ is either not holomorphic or is a constant.

Laplacian Commutes with Translations

- The n-dimensional Laplacian $\Delta:=\sum_{i=1}^{n} \partial_{x_{i}}^{2}=\operatorname{Tr}\left(\nabla \nabla^{t}\right)$ is a linear operator from $C^{2}(\Omega) \rightarrow C(\Omega)$.

Laplacian Commutes with Translations

- The n-dimensional Laplacian $\Delta:=\sum_{i=1}^{n} \partial_{x_{i}}^{2}=\operatorname{Tr}\left(\nabla \nabla^{t}\right)$ is a linear operator from $C^{2}(\Omega) \rightarrow C(\Omega)$.
- For any $a \in \mathbb{R}^{n}$, the translation operator $T_{a}: C(\Omega) \rightarrow C(\Omega)$ is defined as $\left(T_{a} u\right)(x)=u(x+a)$.

Laplacian Commutes with Translations

- The n-dimensional Laplacian $\Delta:=\sum_{i=1}^{n} \partial_{x_{i}}^{2}=\operatorname{Tr}\left(\nabla \nabla^{t}\right)$ is a linear operator from $C^{2}(\Omega) \rightarrow C(\Omega)$.
- For any $a \in \mathbb{R}^{n}$, the translation operator $T_{a}: C(\Omega) \rightarrow C(\Omega)$ is defined as $\left(T_{a} u\right)(x)=u(x+a)$.
- The Laplace operator commutes with the translation operator, i.e., $\Delta \circ T_{a}=T_{a} \circ \Delta$.

Laplacian Commutes with Translations

- The n-dimensional Laplacian $\Delta:=\sum_{i=1}^{n} \partial_{x_{i}}^{2}=\operatorname{Tr}\left(\nabla \nabla^{t}\right)$ is a linear operator from $C^{2}(\Omega) \rightarrow C(\Omega)$.
- For any $a \in \mathbb{R}^{n}$, the translation operator $T_{a}: C(\Omega) \rightarrow C(\Omega)$ is defined as $\left(T_{a} u\right)(x)=u(x+a)$.
- The Laplace operator commutes with the translation operator, i.e., $\Delta \circ T_{a}=T_{a} \circ \Delta$.
- Because, for any $u \in C^{2}(\Omega),\left(T_{a} u\right)_{x_{i}}(x)=u_{x_{i}}(x+a)$ and $\left(T_{a} u\right)_{x_{i} x_{i}}(x)=u_{x_{i} x_{i}}(x+a)$. Thus, $\Delta\left(T_{a} u\right)(x)=\Delta u(x+a)$.

Laplacian Commutes with Rotations

- Let O be an orthogonal $\left(O^{-1}=O^{t}\right) n \times n$ matrix which leaves $\Omega \subset \mathbb{R}^{n}$ invariant O, the rotation operator $R: C(\Omega) \rightarrow C(\Omega)$ is defined as $R u(x)=u(O x)$.

Laplacian Commutes with Rotations

- Let O be an orthogonal $\left(O^{-1}=O^{t}\right) n \times n$ matrix which leaves $\Omega \subset \mathbb{R}^{n}$ invariant O, the rotation operator $R: C(\Omega) \rightarrow C(\Omega)$ is defined as $R u(x)=u(O x)$.
- The Laplace operator commutes with rotation operator, i.e., $\Delta \circ R=R \circ \Delta$.

Laplacian Commutes with Rotations

- Let O be an orthogonal $\left(O^{-1}=O^{t}\right) n \times n$ matrix which leaves $\Omega \subset \mathbb{R}^{n}$ invariant O, the rotation operator $R: C(\Omega) \rightarrow C(\Omega)$ is defined as $R u(x)=u(O x)$.
- The Laplace operator commutes with rotation operator, i.e., $\Delta \circ R=R \circ \Delta$.
- Let $y=O x$.

Laplacian Commutes with Rotations

- Let O be an orthogonal $\left(O^{-1}=O^{t}\right) n \times n$ matrix which leaves $\Omega \subset \mathbb{R}^{n}$ invariant O, the rotation operator $R: C(\Omega) \rightarrow C(\Omega)$ is defined as $R u(x)=u(O x)$.
- The Laplace operator commutes with rotation operator, i.e., $\Delta \circ R=R \circ \Delta$.
- Let $y=O x$. Then, $y_{j}=\sum_{i=1}^{n} O_{j i} x_{i}$

Laplacian Commutes with Rotations

- Let O be an orthogonal $\left(O^{-1}=O^{t}\right) n \times n$ matrix which leaves $\Omega \subset \mathbb{R}^{n}$ invariant O, the rotation operator $R: C(\Omega) \rightarrow C(\Omega)$ is defined as $R u(x)=u(O x)$.
- The Laplace operator commutes with rotation operator, i.e., $\Delta \circ R=R \circ \Delta$.
- Let $y=O x$. Then, $y_{j}=\sum_{i=1}^{n} O_{j i} x_{i}$ and, by chain rule,

$$
(R u)_{x_{i}}=\sum_{j=1}^{n} u_{y_{j}} \frac{\partial y_{j}}{\partial x_{i}}=\sum_{j=1}^{n} u_{y_{j}} O_{j i}
$$

Laplacian Commutes with Rotations

- Let O be an orthogonal $\left(O^{-1}=O^{t}\right) n \times n$ matrix which leaves $\Omega \subset \mathbb{R}^{n}$ invariant O, the rotation operator $R: C(\Omega) \rightarrow C(\Omega)$ is defined as $R u(x)=u(O x)$.
- The Laplace operator commutes with rotation operator, i.e., $\Delta \circ R=R \circ \Delta$.
- Let $y=O x$. Then, $y_{j}=\sum_{i=1}^{n} O_{j i} x_{i}$ and, by chain rule,

$$
(R u)_{x_{i}}=\sum_{j=1}^{n} u_{y_{j}} \frac{\partial y_{j}}{\partial x_{i}}=\sum_{j=1}^{n} u_{y_{j}} O_{j i}
$$

Therefore, $\nabla_{x} R u=O^{t} \nabla_{y} u$

Laplacian Commutes with Rotations

- Let O be an orthogonal $\left(O^{-1}=O^{t}\right) n \times n$ matrix which leaves $\Omega \subset \mathbb{R}^{n}$ invariant O, the rotation operator $R: C(\Omega) \rightarrow C(\Omega)$ is defined as $R u(x)=u(O x)$.
- The Laplace operator commutes with rotation operator, i.e., $\Delta \circ R=R \circ \Delta$.
- Let $y=O x$. Then, $y_{j}=\sum_{i=1}^{n} O_{j i} x_{i}$ and, by chain rule,

$$
(R u)_{x_{i}}=\sum_{j=1}^{n} u_{y_{j}} \frac{\partial y_{j}}{\partial x_{i}}=\sum_{j=1}^{n} u_{y_{j}} O_{j i} .
$$

Therefore, $\nabla_{x} R u=O^{t} \nabla_{y} u$ and

$$
(\Delta \circ R) u(x)
$$

Laplacian Commutes with Rotations

- Let O be an orthogonal $\left(O^{-1}=O^{t}\right) n \times n$ matrix which leaves $\Omega \subset \mathbb{R}^{n}$ invariant O, the rotation operator $R: C(\Omega) \rightarrow C(\Omega)$ is defined as $R u(x)=u(O x)$.
- The Laplace operator commutes with rotation operator, i.e., $\Delta \circ R=R \circ \Delta$.
- Let $y=O x$. Then, $y_{j}=\sum_{i=1}^{n} O_{j i} x_{i}$ and, by chain rule,

$$
(R u)_{x_{i}}=\sum_{j=1}^{n} u_{y_{j}} \frac{\partial y_{j}}{\partial x_{i}}=\sum_{j=1}^{n} u_{y_{j}} O_{j i}
$$

Therefore, $\nabla_{x} R u=O^{t} \nabla_{y} u$ and

$$
(\Delta \circ R) u(x)=\operatorname{Tr}\left[\nabla_{x} \nabla_{x}^{t} u(O x)\right]
$$

Laplacian Commutes with Rotations

- Let O be an orthogonal $\left(O^{-1}=O^{t}\right) n \times n$ matrix which leaves $\Omega \subset \mathbb{R}^{n}$ invariant O, the rotation operator $R: C(\Omega) \rightarrow C(\Omega)$ is defined as $R u(x)=u(O x)$.
- The Laplace operator commutes with rotation operator, i.e., $\Delta \circ R=R \circ \Delta$.
- Let $y=O x$. Then, $y_{j}=\sum_{i=1}^{n} O_{j i} x_{i}$ and, by chain rule,

$$
(R u)_{x_{i}}=\sum_{j=1}^{n} u_{y_{j}} \frac{\partial y_{j}}{\partial x_{i}}=\sum_{j=1}^{n} u_{y_{j}} O_{j i}
$$

Therefore, $\nabla_{x} R u=O^{t} \nabla_{y} u$ and

$$
(\Delta \circ R) u(x)=\operatorname{Tr}\left[\nabla_{x} \nabla_{x}^{t} u(O x)\right]=\operatorname{Tr}\left[\nabla_{x} \nabla_{y}^{t} u(y) O\right]
$$

Laplacian Commutes with Rotations

- Let O be an orthogonal $\left(O^{-1}=O^{t}\right) n \times n$ matrix which leaves $\Omega \subset \mathbb{R}^{n}$ invariant O, the rotation operator $R: C(\Omega) \rightarrow C(\Omega)$ is defined as $R u(x)=u(O x)$.
- The Laplace operator commutes with rotation operator, i.e., $\Delta \circ R=R \circ \Delta$.
- Let $y=O x$. Then, $y_{j}=\sum_{i=1}^{n} O_{j i} x_{i}$ and, by chain rule,

$$
(R u)_{x_{i}}=\sum_{j=1}^{n} u_{y_{j}} \frac{\partial y_{j}}{\partial x_{i}}=\sum_{j=1}^{n} u_{y_{j}} O_{j i}
$$

Therefore, $\nabla_{x} R u=O^{t} \nabla_{y} u$ and

$$
\begin{aligned}
(\Delta \circ R) u(x) & =\operatorname{Tr}\left[\nabla_{x} \nabla_{x}^{t} u(O x)\right]=\operatorname{Tr}\left[\nabla_{x} \nabla_{y}^{t} u(y) O\right] \\
& =\operatorname{Tr}\left[O^{t} \nabla_{y} \nabla_{y}^{t} u(y) O\right]
\end{aligned}
$$

Laplacian Commutes with Rotations

- Let O be an orthogonal $\left(O^{-1}=O^{t}\right) n \times n$ matrix which leaves $\Omega \subset \mathbb{R}^{n}$ invariant O, the rotation operator $R: C(\Omega) \rightarrow C(\Omega)$ is defined as $R u(x)=u(O x)$.
- The Laplace operator commutes with rotation operator, i.e., $\Delta \circ R=R \circ \Delta$.
- Let $y=O x$. Then, $y_{j}=\sum_{i=1}^{n} O_{j i} x_{i}$ and, by chain rule,

$$
(R u)_{x_{i}}=\sum_{j=1}^{n} u_{y_{j}} \frac{\partial y_{j}}{\partial x_{i}}=\sum_{j=1}^{n} u_{y_{j}} O_{j i}
$$

Therefore, $\nabla_{x} R u=O^{t} \nabla_{y} u$ and

$$
\begin{aligned}
(\Delta \circ R) u(x) & =\operatorname{Tr}\left[\nabla_{x} \nabla_{x}^{t} u(O x)\right]=\operatorname{Tr}\left[\nabla_{x} \nabla_{y}^{t} u(y) O\right] \\
& =\operatorname{Tr}\left[O^{t} \nabla_{y} \nabla_{y}^{t} u(y) O\right]=\Delta_{y} u=(R \circ \Delta) u(x) .
\end{aligned}
$$

Laplacian Commutes with Rotations

- Let O be an orthogonal $\left(O^{-1}=O^{t}\right) n \times n$ matrix which leaves $\Omega \subset \mathbb{R}^{n}$ invariant O, the rotation operator $R: C(\Omega) \rightarrow C(\Omega)$ is defined as $R u(x)=u(O x)$.
- The Laplace operator commutes with rotation operator, i.e., $\Delta \circ R=R \circ \Delta$.
- Let $y=O x$. Then, $y_{j}=\sum_{i=1}^{n} O_{j i} x_{i}$ and, by chain rule,

$$
(R u)_{x_{i}}=\sum_{j=1}^{n} u_{y_{j}} \frac{\partial y_{j}}{\partial x_{i}}=\sum_{j=1}^{n} u_{y_{j}} O_{j i}
$$

Therefore, $\nabla_{x} R u=O^{t} \nabla_{y} u$ and

$$
\begin{aligned}
(\Delta \circ R) u(x) & =\operatorname{Tr}\left[\nabla_{x} \nabla_{x}^{t} u(O x)\right]=\operatorname{Tr}\left[\nabla_{x} \nabla_{y}^{t} u(y) O\right] \\
& =\operatorname{Tr}\left[O^{t} \nabla_{y} \nabla_{y}^{t} u(y) O\right]=\Delta_{y} u=(R \circ \Delta) u(x) .
\end{aligned}
$$

- The class of all radial functions is invariant under Laplacian.

Harmonic Functions

Definition

Let Ω be an open subset of \mathbb{R}^{n}. A function $u \in C^{2}(\Omega)$ is said to be harmonic on Ω if $\Delta u(x):=\sum_{i=1}^{n} \partial_{x_{i}}^{2} u=0$ in Ω.

Harmonic Functions

Definition

Let Ω be an open subset of \mathbb{R}^{n}. A function $u \in C^{2}(\Omega)$ is said to be harmonic on Ω if $\Delta u(x):=\sum_{i=1}^{n} \partial_{x_{i}}^{2} u=0$ in Ω.

- Harmonic functions naturally arose with Newtonian gravitation potential which is given by

$$
u(x)=\frac{1}{4 \pi} \int_{\Omega} \frac{\rho(y)}{|x-y|} d y
$$

where $\rho(y)$ is the density at y of a mass occupying the region $\Omega \subset \mathbb{R}^{3}$.

Harmonic Functions

Definition

Let Ω be an open subset of \mathbb{R}^{n}. A function $u \in C^{2}(\Omega)$ is said to be harmonic on Ω if $\Delta u(x):=\sum_{i=1}^{n} \partial_{x_{i}}^{2} u=0$ in Ω.

- Harmonic functions naturally arose with Newtonian gravitation potential which is given by

$$
u(x)=\frac{1}{4 \pi} \int_{\Omega} \frac{\rho(y)}{|x-y|} d y
$$

where $\rho(y)$ is the density at y of a mass occupying the region $\Omega \subset \mathbb{R}^{3}$.

- In 1782, Laplace discovered that the Newton's gravitational potential satisfies the equation: $\Delta u=0$ in $\mathbb{R}^{3} \backslash \bar{\Omega}$. This is the reason the operator Δ is called Laplacian.

Harmonic Functions

Definition

Let Ω be an open subset of \mathbb{R}^{n}. A function $u \in C^{2}(\Omega)$ is said to be harmonic on Ω if $\Delta u(x):=\sum_{i=1}^{n} \partial_{x_{i}}^{2} u=0$ in Ω.

- Harmonic functions naturally arose with Newtonian gravitation potential which is given by

$$
u(x)=\frac{1}{4 \pi} \int_{\Omega} \frac{\rho(y)}{|x-y|} d y
$$

where $\rho(y)$ is the density at y of a mass occupying the region $\Omega \subset \mathbb{R}^{3}$.

- In 1782, Laplace discovered that the Newton's gravitational potential satisfies the equation: $\Delta u=0$ in $\mathbb{R}^{3} \backslash \bar{\Omega}$. This is the reason the operator Δ is called Laplacian.
- Later, in 1813, Poisson discovered that on Ω the Newtonian potential satisfies the equation: $-\Delta u=\rho$ in Ω. Inhomogeneous Laplace equations are called Poisson equations.

1D Harmonic Functions

- The one dimensional Laplace equation, $\frac{d^{2} u}{d x^{2}}=0$ can be solved in full generality by fundamental theorem of calculus.

1D Harmonic Functions

- The one dimensional Laplace equation, $\frac{d^{2} u}{d x^{2}}=0$ can be solved in full generality by fundamental theorem of calculus.
- All the solutions are the one degree polynomial $u(x)=a x+b$ for some real constants a and b, the linear combination of the linearly independent polynomials $\{1, x\}$.

1D Harmonic Functions

- The one dimensional Laplace equation, $\frac{d^{2} u}{d x^{2}}=0$ can be solved in full generality by fundamental theorem of calculus.
- All the solutions are the one degree polynomial $u(x)=a x+b$ for some real constants a and b, the linear combination of the linearly independent polynomials $\{1, x\}$.
- However, it is not easy to compute all solutions of Laplace equation in higher dimensions.

1D Harmonic Functions

- The one dimensional Laplace equation, $\frac{d^{2} u}{d x^{2}}=0$ can be solved in full generality by fundamental theorem of calculus.
- All the solutions are the one degree polynomial $u(x)=a x+b$ for some real constants a and b, the linear combination of the linearly independent polynomials $\{1, x\}$.
- However, it is not easy to compute all solutions of Laplace equation in higher dimensions.
- For instance, a two dimensional Laplace equation $u_{x x}+u_{y y}=0$

1D Harmonic Functions

- The one dimensional Laplace equation, $\frac{d^{2} u}{d x^{2}}=0$ can be solved in full generality by fundamental theorem of calculus.
- All the solutions are the one degree polynomial $u(x)=a x+b$ for some real constants a and b, the linear combination of the linearly independent polynomials $\{1, x\}$.
- However, it is not easy to compute all solutions of Laplace equation in higher dimensions.
- For instance, a two dimensional Laplace equation $u_{x x}+u_{y y}=0$ has the solution, $u(x, y)=a x+b y+c$.

1D Harmonic Functions

- The one dimensional Laplace equation, $\frac{d^{2} u}{d x^{2}}=0$ can be solved in full generality by fundamental theorem of calculus.
- All the solutions are the one degree polynomial $u(x)=a x+b$ for some real constants a and b, the linear combination of the linearly independent polynomials $\{1, x\}$.
- However, it is not easy to compute all solutions of Laplace equation in higher dimensions.
- For instance, a two dimensional Laplace equation $u_{x x}+u_{y y}=0$ has the solution, $u(x, y)=a x+b y+c$. In addition, $x y, x^{2}-y^{2}$, $x^{3}-3 x y^{2}, 3 x^{2} y-y^{3}, e^{x} \sin y$ and $e^{x} \cos y$ are all solutions.

Wirtinger Derivatives

- Note that any complex function of (x, y) can be changed to a function of (z, \bar{z}).

Wirtinger Derivatives

- Note that any complex function of (x, y) can be changed to a function of (z, \bar{z}).
- Thus, $\partial_{x}=\partial_{z} z_{x}+\partial_{\bar{z}} \bar{z}_{x}=\partial_{z}+\partial_{\bar{z}}$ and $\partial_{y}=\partial_{z} z_{y}+\partial_{\bar{z}} \bar{z}_{y}=\imath\left(\partial_{z}-\partial_{\bar{z}}\right)$.

Wirtinger Derivatives

- Note that any complex function of (x, y) can be changed to a function of (z, \bar{z}).
- Thus, $\partial_{x}=\partial_{z} z_{x}+\partial_{\bar{z}} \bar{z}_{x}=\partial_{z}+\partial_{\bar{z}}$ and $\partial_{y}=\partial_{z} z_{y}+\partial_{\bar{z}} \bar{z}_{y}=\imath\left(\partial_{z}-\partial_{\bar{z}}\right)$.
- $2 \partial_{z}=\partial_{x}-\imath \partial_{y}$ and $2 \partial_{\bar{z}}=\partial_{x}+\imath \partial_{y}$.

Wirtinger Derivatives

- Note that any complex function of (x, y) can be changed to a function of (z, \bar{z}).
- Thus, $\partial_{x}=\partial_{z} z_{x}+\partial_{\bar{z}} \bar{z}_{x}=\partial_{z}+\partial_{\bar{z}}$ and $\partial_{y}=\partial_{z} z_{y}+\partial_{\bar{z}} \bar{z}_{y}=\imath\left(\partial_{z}-\partial_{\bar{z}}\right)$.
- $2 \partial_{z}=\partial_{x}-\imath \partial_{y}$ and $2 \partial_{\bar{z}}=\partial_{x}+\imath \partial_{y}$.
- A complex function f is holomorphic iff $\partial_{\bar{z}} f=0$, alternate way of writing $C R$ equations.

Wirtinger Derivatives

- Note that any complex function of (x, y) can be changed to a function of (z, \bar{z}).
- Thus, $\partial_{x}=\partial_{z} z_{x}+\partial_{\bar{z}} \bar{z}_{x}=\partial_{z}+\partial_{\bar{z}}$ and $\partial_{y}=\partial_{z} z_{y}+\partial_{\bar{z}} \bar{z}_{y}=\imath\left(\partial_{z}-\partial_{\bar{z}}\right)$.
- $2 \partial_{z}=\partial_{x}-\imath \partial_{y}$ and $2 \partial_{\bar{z}}=\partial_{x}+\imath \partial_{y}$.
- A complex function f is holomorphic iff $\partial_{\bar{z}} f=0$, alternate way of writing $C R$ equations.
- A function u is harmonic iff $\partial_{z \bar{z}} u=0$ because the Laplacian $\Delta=4 \partial_{z \bar{z}}$, the complex mixed derivative.

2D Laplacian and Complex Wave Operator

- The Laplace operator can be viewed as

$$
\Delta:=\partial_{x}^{2}+\partial_{y}^{2}=\partial_{x}^{2}-\imath^{2} \partial_{y}^{2}
$$

the wave equation with complex speed $\pm \imath$.

2D Laplacian and Complex Wave Operator

- The Laplace operator can be viewed as

$$
\Delta:=\partial_{x}^{2}+\partial_{y}^{2}=\partial_{x}^{2}-\imath^{2} \partial_{y}^{2}
$$

the wave equation with complex speed $\pm \imath$.

- Using the general solution of the wave equation, we get $u(x, y)=F(x+\imath y)+G(x-\imath y)=F(z)+G(\bar{z})$.

2D Laplacian and Complex Wave Operator

- The Laplace operator can be viewed as

$$
\Delta:=\partial_{x}^{2}+\partial_{y}^{2}=\partial_{x}^{2}-\imath^{2} \partial_{y}^{2}
$$

the wave equation with complex speed $\pm \imath$.

- Using the general solution of the wave equation, we get $u(x, y)=F(x+\imath y)+G(x-\imath y)=F(z)+G(\bar{z})$.
- If we are seeking real solutions u, then

$$
u(x, y)=\frac{1}{2}(u(x, y)+\overline{u(x, y)})=\Re[F(z)+G(\bar{z})]
$$

real part of a complex function.

Holomorphic and Harmonic Functions

- For any holomorphic function $f=u+\imath v$, its real part u and imaginary part v are harmonic functions, a consequence of CR equations, $u_{x x}+u_{y y}=v_{x y}-v_{y x}=0$.

Holomorphic and Harmonic Functions

- For any holomorphic function $f=u+\imath v$, its real part u and imaginary part v are harmonic functions, a consequence of CR equations, $u_{x x}+u_{y y}=v_{x y}-v_{y x}=0$.
- Conversely, any harmonic function u on a simply connected domain in \mathbb{R}^{2} is the real part of a holomorphic function.

Holomorphic and Harmonic Functions

- For any holomorphic function $f=u+\imath v$, its real part u and imaginary part v are harmonic functions, a consequence of $C R$ equations, $u_{x x}+u_{y y}=v_{x y}-v_{y x}=0$.
- Conversely, any harmonic function u on a simply connected domain in \mathbb{R}^{2} is the real part of a holomorphic function.
- For $u(x, y)=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$ is harmonic in the non-simple connected domain $\mathbb{C} \backslash\{0\}$ is the real part of the multivalued $\log z$.

Holomorphic and Harmonic Functions

- For any holomorphic function $f=u+\imath v$, its real part u and imaginary part v are harmonic functions, a consequence of CR equations, $u_{x x}+u_{y y}=v_{x y}-v_{y x}=0$.
- Conversely, any harmonic function u on a simply connected domain in \mathbb{R}^{2} is the real part of a holomorphic function.
- For $u(x, y)=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$ is harmonic in the non-simple connected domain $\mathbb{C} \backslash\{0\}$ is the real part of the multivalued $\log z$.
- Properties of harmonic functions can be obtained from properties of holomorphic functions. Compare (Mean value property with Cauchy Integral formula, Maximum Principle with Maximum Modulus and Liouville theorem etc.)

Complex Polynomials

- For any $\alpha \in \mathbb{R}, z^{\alpha}=r^{\alpha} e^{\imath \theta \alpha}$

Complex Polynomials

- For any $\alpha \in \mathbb{R}, z^{\alpha}=r^{\alpha} e^{\imath \theta \alpha}=r^{\alpha} e^{\imath(\theta+2 k \pi) \alpha}$

Complex Polynomials

- For any $\alpha \in \mathbb{R}, z^{\alpha}=r^{\alpha} e^{\imath \theta \alpha}=r^{\alpha} e^{\imath(\theta+2 k \pi) \alpha}=z^{\alpha} e^{\imath 2 \pi k \alpha}$, for all $k \in \mathbb{Z}$.

Complex Polynomials

- For any $\alpha \in \mathbb{R}, z^{\alpha}=r^{\alpha} e^{\imath \theta \alpha}=r^{\alpha} e^{\imath(\theta+2 k \pi) \alpha}=z^{\alpha} e^{\imath 2 \pi k \alpha}$, for all $k \in \mathbb{Z}$.
- For $\alpha \in \mathbb{Z}, k \alpha \in \mathbb{Z}$ and z^{α} is a single valued functions.

Complex Polynomials

- For any $\alpha \in \mathbb{R}, z^{\alpha}=r^{\alpha} e^{\imath \theta \alpha}=r^{\alpha} e^{\imath(\theta+2 k \pi) \alpha}=z^{\alpha} e^{\imath 2 \pi k \alpha}$, for all $k \in \mathbb{Z}$.
- For $\alpha \in \mathbb{Z}, k \alpha \in \mathbb{Z}$ and z^{α} is a single valued functions.
- For positive integer α, z^{α} is holomorphic everywhere in \mathbb{C} and its real and imaginary parts $r^{\alpha} \cos \alpha \theta$ and $r^{\alpha} \sin \alpha \theta$ are harmonic functions in \mathbb{R}^{2}. For instance, $x^{2}-y^{2}$ and $2 x y$ are harmonic because they are the real and imaginary part of the holomorphic z^{2}.

Complex Polynomials

- For any $\alpha \in \mathbb{R}, z^{\alpha}=r^{\alpha} e^{\imath \theta \alpha}=r^{\alpha} e^{\imath(\theta+2 k \pi) \alpha}=z^{\alpha} e^{\imath 2 \pi k \alpha}$, for all $k \in \mathbb{Z}$.
- For $\alpha \in \mathbb{Z}, k \alpha \in \mathbb{Z}$ and z^{α} is a single valued functions.
- For positive integer α, z^{α} is holomorphic everywhere in \mathbb{C} and its real and imaginary parts $r^{\alpha} \cos \alpha \theta$ and $r^{\alpha} \sin \alpha \theta$ are harmonic functions in \mathbb{R}^{2}. For instance, $x^{2}-y^{2}$ and $2 x y$ are harmonic because they are the real and imaginary part of the holomorphic z^{2}.
- For negative integer α, z^{α} is holomorphic in $\mathbb{C} \backslash\{0\}$. For instance, $1 / z$ is holomorphic and its real and imaginary parts $\frac{x}{x^{2}+y^{2}}$ and $\frac{-y}{x^{2}+y^{2}}$ are harmonic except at $z=0$.

Complex Polynomials

- For any $\alpha \in \mathbb{R}, z^{\alpha}=r^{\alpha} e^{\imath \theta \alpha}=r^{\alpha} e^{\imath(\theta+2 k \pi) \alpha}=z^{\alpha} e^{\imath 2 \pi k \alpha}$, for all $k \in \mathbb{Z}$.
- For $\alpha \in \mathbb{Z}, k \alpha \in \mathbb{Z}$ and z^{α} is a single valued functions.
- For positive integer α, z^{α} is holomorphic everywhere in \mathbb{C} and its real and imaginary parts $r^{\alpha} \cos \alpha \theta$ and $r^{\alpha} \sin \alpha \theta$ are harmonic functions in \mathbb{R}^{2}. For instance, $x^{2}-y^{2}$ and $2 x y$ are harmonic because they are the real and imaginary part of the holomorphic z^{2}.
- For negative integer α, z^{α} is holomorphic in $\mathbb{C} \backslash\{0\}$. For instance, $1 / z$ is holomorphic and its real and imaginary parts $\frac{x}{x^{2}+y^{2}}$ and $\frac{-y}{x^{2}+y^{2}}$ are harmonic except at $z=0$.
- For irrational α, z^{α} takes different value for each k. Thus, it is multi-valued!

Complex Polynomials

- For any $\alpha \in \mathbb{R}, z^{\alpha}=r^{\alpha} e^{\imath \theta \alpha}=r^{\alpha} e^{\imath(\theta+2 k \pi) \alpha}=z^{\alpha} e^{\imath 2 \pi k \alpha}$, for all $k \in \mathbb{Z}$.
- For $\alpha \in \mathbb{Z}, k \alpha \in \mathbb{Z}$ and z^{α} is a single valued functions.
- For positive integer α, z^{α} is holomorphic everywhere in \mathbb{C} and its real and imaginary parts $r^{\alpha} \cos \alpha \theta$ and $r^{\alpha} \sin \alpha \theta$ are harmonic functions in \mathbb{R}^{2}. For instance, $x^{2}-y^{2}$ and $2 x y$ are harmonic because they are the real and imaginary part of the holomorphic z^{2}.
- For negative integer α, z^{α} is holomorphic in $\mathbb{C} \backslash\{0\}$. For instance, $1 / z$ is holomorphic and its real and imaginary parts $\frac{x}{x^{2}+y^{2}}$ and $\frac{-y}{x^{2}+y^{2}}$ are harmonic except at $z=0$.
- For irrational α, z^{α} takes different value for each k. Thus, it is multi-valued!
- For rational $\alpha=p / q$ with $\operatorname{gcd}(p, q)=1, z^{\alpha}$ is also multivalued and takes exactly q different values corresponding to the q-th roots of unity.

Exponential, Logarithm and Trigonometric

- The complex exponential e^{z} is defined using the power series $\sum_{k=0}^{\infty} \frac{z^{k}}{k!}$. It is many-to-one function because $e^{z+22 \pi k}=e^{z}$. Its real and imaginary parts $e^{x} \cos y$ and $e^{x} \sin y$ are harmonic.

Exponential, Logarithm and Trigonometric

- The complex exponential e^{z} is defined using the power series $\sum_{k=0}^{\infty} \frac{z^{k}}{k!}$. It is many-to-one function because $e^{z+22 \pi k}=e^{z}$. Its real and imaginary parts $e^{x} \cos y$ and $e^{x} \sin y$ are harmonic.
- The complex trigonometric function $\cos z$ and $\sin z$ are holomorphic and its real and imaginary parts, respectively, $\cos x \cosh y$, $-\sin x \sinh y, \sin x \cosh y$ and $\cos x \sinh y$.

Exponential, Logarithm and Trigonometric

- The complex exponential e^{z} is defined using the power series $\sum_{k=0}^{\infty} \frac{z^{k}}{k!}$. It is many-to-one function because $e^{z+22 \pi k}=e^{z}$. Its real and imaginary parts $e^{x} \cos y$ and $e^{x} \sin y$ are harmonic.
- The complex trigonometric function $\cos z$ and $\sin z$ are holomorphic and its real and imaginary parts, respectively, $\cos x \cosh y$, $-\sin x \sinh y, \sin x \cosh y$ and $\cos x \sinh y$.
- The inverse of exponential is $\log z=\log r+\imath \theta$. It is holomorphic except at $z=0$ and is multivalued because $\log z=\log |z|+\imath(\theta+2 k \pi)$ has different value for eack $k \in \mathbb{Z}^{+}$.

Exponential, Logarithm and Trigonometric

- The complex exponential e^{z} is defined using the power series $\sum_{k=0}^{\infty} \frac{z^{k}}{k!}$. It is many-to-one function because $e^{z+22 \pi k}=e^{z}$. Its real and imaginary parts $e^{x} \cos y$ and $e^{x} \sin y$ are harmonic.
- The complex trigonometric function $\cos z$ and $\sin z$ are holomorphic and its real and imaginary parts, respectively, $\cos x \cosh y$, $-\sin x \sinh y, \sin x \cosh y$ and $\cos x \sinh y$.
- The inverse of exponential is $\log z=\log r+\imath \theta$. It is holomorphic except at $z=0$ and is multivalued because $\log z=\log |z|+\imath(\theta+2 k \pi)$ has different value for eack $k \in \mathbb{Z}^{+}$.
- For instance, real logarithm of 1 is zero but complex $\log (1)=\imath 2 k \pi$ for all $k \in \mathbb{Z}^{+}$.

Exponential, Logarithm and Trigonometric

- The complex exponential e^{z} is defined using the power series $\sum_{k=0}^{\infty} \frac{z^{k}}{k!}$. It is many-to-one function because $e^{z+22 \pi k}=e^{z}$. Its real and imaginary parts $e^{x} \cos y$ and $e^{x} \sin y$ are harmonic.
- The complex trigonometric function $\cos z$ and $\sin z$ are holomorphic and its real and imaginary parts, respectively, $\cos x \cosh y$, $-\sin x \sinh y, \sin x \cosh y$ and $\cos x \sinh y$.
- The inverse of exponential is $\log z=\log r+\imath \theta$. It is holomorphic except at $z=0$ and is multivalued because $\log z=\log |z|+\imath(\theta+2 k \pi)$ has different value for eack $k \in \mathbb{Z}^{+}$.
- For instance, real logarithm of 1 is zero but complex $\log (1)=\imath 2 k \pi$ for all $k \in \mathbb{Z}^{+}$.
- Logarithm of negative real numbers is $\log (x)=\log |x|+\imath \pi(1+2 k)$ for all $k \in \mathbb{Z}^{+}$.

Dirichlet Problem

- The boundary value problem of seeking a harmonic function with Dirichlet boundary conditions (prescribed value of the harmonic function on the boundary) is:

$$
\left\{\begin{array}{rll}
\Delta u & =0 & \text { in } \Omega \subset \mathbb{R}^{n} \tag{3.1}\\
u & =g & \text { on } \partial \Omega
\end{array}\right.
$$

Dirichlet Problem

- The boundary value problem of seeking a harmonic function with Dirichlet boundary conditions (prescribed value of the harmonic function on the boundary) is:

$$
\left\{\begin{align*}
\Delta u & =0 & \text { in } \Omega \subset \mathbb{R}^{n} \tag{3.1}\\
u & =g & \text { on } \partial \Omega .
\end{align*}\right.
$$

- In two dimensions, the solution to above problem can be reduced to the Dirichlet problem on the unit disk $\mathbb{D}=\{|z|<1\}$ for large class of Ω !

Theorem (Riemann Mapping Theorem)

Every simply connected proper subset Ω of \mathbb{C} is conformally equivalent to \mathbb{D}, i.e. there is a biholomorphism (inverse holomorphic too) $f: \Omega \rightarrow \mathbb{D}$.
For each $z_{0} \in \Omega$ there is a unique biholomorphism such that $f\left(z_{0}\right)=0$ and $f^{\prime}\left(z_{0}\right)>0$.

Note that the above result allows Ω to be unbounded!

Multiplicity of Conformality of Unit Disk to Itself

- For any $z_{0} \in \mathbb{D}$, the map $T(z)=\frac{z-z_{0}}{1-\overline{z_{0}} z}$ maps \mathbb{D} onto itself with $T\left(z_{0}\right)=0$ (verify that $|T(z)|<1$!).

Multiplicity of Conformality of Unit Disk to Itself

- For any $z_{0} \in \mathbb{D}$, the map $T(z)=\frac{z-z_{0}}{1-\overline{z_{0}} z}$ maps \mathbb{D} onto itself with $T\left(z_{0}\right)=0$ (verify that $|T(z)|<1$!).
- The map stills works on composition with rotations, i.e. $T(z)=e^{\imath \theta}\left(\frac{z-z_{0}}{\bar{z}_{0} z-1}\right)$ for all $\theta \in(-\pi, \pi)$ and $z_{0} \in \mathbb{D}$.

Multiplicity of Conformality of Unit Disk to Itself

- For any $z_{0} \in \mathbb{D}$, the map $T(z)=\frac{z-z_{0}}{1-\overline{z_{0}} z}$ maps \mathbb{D} onto itself with $T\left(z_{0}\right)=0$ (verify that $|T(z)|<1$!).
- The map stills works on composition with rotations, i.e. $T(z)=e^{\imath \theta}\left(\frac{z-z_{0}}{\bar{z}_{0} z-1}\right)$ for all $\theta \in(-\pi, \pi)$ and $z_{0} \in \mathbb{D}$.
- However, once z_{0} and θ are fixed, there is a unique biholomorphism on \mathbb{D} such that $T\left(z_{0}\right)=0$ and $T^{\prime}\left(z_{0}\right)>0$.

Poisson Kernel for Disk

Theorem (2D Disk)
Let Ω be \mathbb{D}, the unit disk in \mathbb{R}^{2}. Let $g: \partial \Omega \rightarrow \mathbb{R}$ be a continuous function. Then there is a unique solution to (3.1) on the unit disk with given boundary value g.

Poisson Kernel for Disk

Theorem (2D Disk)

Let Ω be \mathbb{D}, the unit disk in \mathbb{R}^{2}. Let $g: \partial \Omega \rightarrow \mathbb{R}$ be a continuous function. Then there is a unique solution to (3.1) on the unit disk with given boundary value g.

Proof: Setting $U(r, \theta)=u\left(r e^{2 \theta}\right)$, (3.1) is

$$
\left\{\begin{align*}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial U}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} U}{\partial \theta^{2}} & =0 & & \text { in } \Omega \tag{3.2}\\
U(r, \theta+2 \pi) & =U(r, \theta) & & \text { in } \Omega \\
U(1, \theta) & =g\left(e^{\imath \theta}\right) & & \text { on } \partial \Omega
\end{align*}\right.
$$

and the Poisson formula

$$
u(z)=\frac{1-|z|^{2}}{2 \pi} \int_{0}^{2 \pi} \frac{g\left(e^{\imath \theta}\right)}{\left|z-e^{\imath \theta}\right|^{2}} d \theta
$$

Use method of separation of variable, Fourier series and uniqueness of Dirichlet problem for bounded domains. If g is real valued then u is real valued!

Solution on Arbitrary Simple Connected Set

- Thus, to solve the Dirichlet problem on any arbitrary proper simply connected subset of \mathbb{R}^{2} it is enough to solve it in the unit disk \mathbb{D} as long as the conformal mapping between Ω and \mathbb{D} is known explicitly.

Solution on Arbitrary Simple Connected Set

- Thus, to solve the Dirichlet problem on any arbitrary proper simply connected subset of \mathbb{R}^{2} it is enough to solve it in the unit disk \mathbb{D} as long as the conformal mapping between Ω and \mathbb{D} is known explicitly.
- If $u: \Omega_{1} \rightarrow \mathbb{R}$ is harmonic and $T: \Omega_{2} \rightarrow \Omega_{1}$ is holomorphic then $u \circ T$ is harmonic in Ω_{2} because $u \circ T$ is the real part of the holomorphic function $(u+\imath v) \circ T$ and composition of holomorphic fuctions are holomorphic.

Solution on Arbitrary Simple Connected Set

- Thus, to solve the Dirichlet problem on any arbitrary proper simply connected subset of \mathbb{R}^{2} it is enough to solve it in the unit disk \mathbb{D} as long as the conformal mapping between Ω and \mathbb{D} is known explicitly.
- If $u: \Omega_{1} \rightarrow \mathbb{R}$ is harmonic and $T: \Omega_{2} \rightarrow \Omega_{1}$ is holomorphic then $u \circ T$ is harmonic in Ω_{2} because $u \circ T$ is the real part of the holomorphic function $(u+\imath v) \circ T$ and composition of holomorphic fuctions are holomorphic.
- Given a conformal mapping $T: \Omega \rightarrow \mathbb{D}$ such that $T(\partial \Omega)=\partial \mathbb{D}$ the solution to Dirichlet problem on Ω is given by $u \circ T: \Omega \rightarrow \mathbb{R}$

$$
u\left(T_{z}\right)=\frac{1-|T z|^{2}}{2 \pi} \int_{0}^{2 \pi} \frac{g \circ T^{-1}\left(e^{\imath \theta}\right)}{\left|T z-e^{\imath \theta}\right|^{2}} d \theta
$$

Some Unbounded Domains Conformal to Unit Disk

- The conformal map $\frac{z-1}{z+1}$ maps the right half-plane to \mathbb{D}.

Some Unbounded Domains Conformal to Unit Disk

- The conformal map $\frac{z-1}{z+1}$ maps the right half-plane to \mathbb{D}.
- The conformal map $\frac{z+\imath}{z-\imath}$ maps the upper half-plane to \mathbb{D}.

Some Unbounded Domains Conformal to Unit Disk

- The conformal map $\frac{z-1}{z+1}$ maps the right half-plane to \mathbb{D}.
- The conformal map $\frac{z+\imath}{z-\imath}$ maps the upper half-plane to \mathbb{D}. This is obtained by rotating the right half-plane map by $\pi / 2$, i.e. composing with the map $z \mapsto \imath z$.

Some Unbounded Domains Conformal to Unit Disk

- The conformal map $\frac{z-1}{z+1}$ maps the right half-plane to \mathbb{D}.
- The conformal map $\frac{z+\imath}{z-\imath}$ maps the upper half-plane to \mathbb{D}. This is obtained by rotating the right half-plane map by $\pi / 2$, i.e. composing with the map $z \mapsto \imath z$.
- The conformal map $\frac{z^{2}+\imath}{z^{2}-\imath}$ maps the first quadrant to \mathbb{D} because $z \mapsto z^{2}$ maps first quadrant to upper half-plane.

Some Unbounded Domains Conformal to Unit Disk

- The conformal map $\frac{z-1}{z+1}$ maps the right half-plane to \mathbb{D}.
- The conformal map $\frac{z+\imath}{z-\imath}$ maps the upper half-plane to \mathbb{D}. This is obtained by rotating the right half-plane map by $\pi / 2$, i.e. composing with the map $z \mapsto \imath z$.
- The conformal map $\frac{z^{2}+\imath}{z^{2}-\imath}$ maps the first quadrant to \mathbb{D} because $z \mapsto z^{2}$ maps first quadrant to upper half-plane.
- The conformal map $\frac{e^{z}-1}{e^{z}+1}$ maps the horizontal strip $-\pi / 2<\Im(z)<\pi / 2$ to \mathbb{D} because $z \mapsto e^{z}$ maps the strip to right half-plane.

Discontinuous Boundary Data

Exercise

Solve (3.1) in the upper half-plane with discontinuous boundary data

$$
g(x, 0)= \begin{cases}0 & x>0 \\ 1 & x<0\end{cases}
$$

Verify that $u(x, y)=\frac{\theta}{\pi}=\Re\left(\frac{1}{\imath \pi} \log (z)\right)$ is a solution, after solving in \mathbb{D} and using the conformal maps.

Curves in Complex Plane

- A parametrized curve is a continuous map $\gamma: I \subset \mathbb{R} \rightarrow \mathbb{C}$ where I is either an open or closed interval and, possibly, infinite.

Curves in Complex Plane

- A parametrized curve is a continuous map $\gamma: I \subset \mathbb{R} \rightarrow \mathbb{C}$ where I is either an open or closed interval and, possibly, infinite.

- A curve is regular if $\gamma^{\prime}(t) \neq 0$, for all $t \in I$. Thus, points are not regular curves!

Curves in Complex Plane

- A parametrized curve is a continuous map $\gamma: I \subset \mathbb{R} \rightarrow \mathbb{C}$ where I is either an open or closed interval and, possibly, infinite.

- A curve is regular if $\gamma^{\prime}(t) \neq 0$, for all $t \in I$. Thus, points are not regular curves!
- A contour is a union of finite number of smooth curves.

Simple Loop

- A path (or curve) in \mathbb{C} is a loop if there is a continuous map $\gamma:[a, b] \rightarrow \mathbb{C}$ with $\gamma(a)=\gamma(b)$.

Simple Loop

- A path (or curve) in \mathbb{C} is a loop if there is a continuous map $\gamma:[a, b] \rightarrow \mathbb{C}$ with $\gamma(a)=\gamma(b)$.

- A loop is simple if $\gamma(s) \neq \gamma(t)$ for all $a<s \neq t<b$.

Jordan Curve Theorem

Theorem

The complement of a simple closed curve in \mathbb{C} is a disconnected set and has exactly two connected components, one bounded (interior) component and the other unbounded (exterior).

Jordan Curve Theorem

To

Figure: Image Courtesy: Google Images

Orientation

Definition

A simple closed curve is said to be positively oriented (or counter-clockwise) if moving along the direction the bounded component (interior) is always to the left.

Orientation

Definition

A simple closed curve is said to be positively oriented (or counter-clockwise) if moving along the direction the bounded component (interior) is always to the left.

- For a positively oriented curve the $\gamma(t)+\varepsilon N(t)$ lies in the bounded component for sufficiently small ε and all t, where $N(t)$ is the normal in the positive direction.

Orientation

Definition

A simple closed curve is said to be positively oriented (or counter-clockwise) if moving along the direction the bounded component (interior) is always to the left.

- For a positively oriented curve the $\gamma(t)+\varepsilon N(t)$ lies in the bounded component for sufficiently small ε and all t, where $N(t)$ is the normal in the positive direction.
- The parametrization can be chosen to fix an orientation.

Orientation

Definition

A simple closed curve is said to be positively oriented (or counter-clockwise) if moving along the direction the bounded component (interior) is always to the left.

- For a positively oriented curve the $\gamma(t)+\varepsilon N(t)$ lies in the bounded component for sufficiently small ε and all t, where $N(t)$ is the normal in the positive direction.
- The parametrization can be chosen to fix an orientation.
- For instance, for $t \in[0,1], \gamma(t)=(\cos 2 \pi t, \sin 2 \pi t)$ is positively oriented while $\gamma(t)=(\cos 2 \pi t,-\sin 2 \pi t)$ is oriented clockwise (negatively).

Contour or Path Integral

Definition

The integral of a function $f: \mathbb{C} \rightarrow \mathbb{C}$ along a path or contour $\gamma:[a, b] \rightarrow \mathbb{C}$ is defined as

$$
\int_{\gamma} f(z) d z:=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t
$$

Contour or Path Integral

Definition

The integral of a function $f: \mathbb{C} \rightarrow \mathbb{C}$ along a path or contour $\gamma:[a, b] \rightarrow \mathbb{C}$ is defined as

$$
\int_{\gamma} f(z) d z:=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t
$$

- As an abuse of notation, we are using γ to denote the curve in \mathbb{C} and also to denote its parametrisation map.

Contour or Path Integral

Definition

The integral of a function $f: \mathbb{C} \rightarrow \mathbb{C}$ along a path or contour $\gamma:[a, b] \rightarrow \mathbb{C}$ is defined as

$$
\int_{\gamma} f(z) d z:=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t
$$

- As an abuse of notation, we are using γ to denote the curve in \mathbb{C} and also to denote its parametrisation map.
- If z is a point on the curve γ then $z=\gamma(t)$ and $d z=\gamma^{\prime}(t) d t$, by usual chain rule.

Properties of Path Integral

- The contour integration is independent of the choice of parametrization of the path. (Exercise! Using chain rule.)

Properties of Path Integral

- The contour integration is independent of the choice of parametrization of the path. (Exercise! Using chain rule.)
- If $-\gamma$ is the curve γ traced in the opposite direction then

$$
\int_{-\gamma} f(z) d z=-\int_{\gamma} f(z) d z
$$

Properties of Path Integral

- The contour integration is independent of the choice of parametrization of the path. (Exercise! Using chain rule.)
- If $-\gamma$ is the curve γ traced in the opposite direction then

$$
\int_{-\gamma} f(z) d z=-\int_{\gamma} f(z) d z
$$

- The parametrisation of $-\gamma$ can be given by the map $\gamma_{-}:[0,1] \rightarrow \mathbb{C}$ defined as $\gamma_{-}(t):=\gamma[t a+(1-t) b]$.

Path Independence

- Is the contour integral path independent, i.e. for two different paths γ_{1} and γ_{2} joining z_{1} and z_{2}, is $\int_{\gamma_{1}} f(z) d z=\int_{\gamma_{2}} f(z) d z$?

Path Independence

- Is the contour integral path independent, i.e. for two different paths γ_{1} and γ_{2} joining z_{1} and z_{2}, is $\int_{\gamma_{1}} f(z) d z=\int_{\gamma_{2}} f(z) d z$?

- Set $\gamma:=\gamma_{1} \cup\left(-\gamma_{2}\right)$ which is a loop at z_{1}. Then the question on path independence is same as asking: under what conditions on γ and f,

$$
\int_{\gamma} f(z) d z=0
$$

- For a continuous f on a domain Ω, f admits single-valued primitive in Ω iff $\int_{\gamma} f(z) d z=0$ for every loop in Ω. (Exercise!)

Prototype Examples

- If γ be the unit circle and $k \in \mathbb{Z}$. Then

$$
\int_{\gamma} z^{k} d z
$$

Prototype Examples

- If γ be the unit circle and $k \in \mathbb{Z}$. Then

$$
\int_{\gamma} z^{k} d z=\imath \int_{0}^{2 \pi} e^{\imath(k+1) \theta} d \theta= \begin{cases}0 & k \neq-1 \\ 2 \pi \imath & k=-1\end{cases}
$$

The case $k=-1$ has a multi-valued primitive $\log z$.

Prototype Examples

- If γ be the unit circle and $k \in \mathbb{Z}$. Then

$$
\int_{\gamma} z^{k} d z=\imath \int_{0}^{2 \pi} e^{\imath(k+1) \theta} d \theta= \begin{cases}0 & k \neq-1 \\ 2 \pi \imath & k=-1\end{cases}
$$

The case $k=-1$ has a multi-valued primitive $\log z$.

- If γ_{1} is the straight line joining -1 and \imath, and γ_{2} is the arc of unit circle joining -1 and \imath then

Then

$$
\int_{\gamma_{1} \cup-\gamma_{2}}|z|^{2} d z=\int_{\gamma_{1}}|z|^{2} d z-\int_{\gamma_{2}}|z|^{2} d z=\frac{2}{3}(1+\imath)-1-\imath \neq 0
$$

Homotopy and Simply Connected

- Two paths γ_{1} and γ_{2} are homotopic in a topological space X

Homotopy and Simply Connected

- Two paths γ_{1} and γ_{2} are homotopic in a topological space X if there is a continuous map $T:[0,1] \times[0,1] \rightarrow X$

Homotopy and Simply Connected

- Two paths γ_{1} and γ_{2} are homotopic in a topological space X if there is a continuous map $T:[0,1] \times[0,1] \rightarrow X$ with $T(t, 0)=\gamma_{1}(t)$ and $T(t, 1)=\gamma_{2}(t)$.

Homotopy and Simply Connected

- Two paths γ_{1} and γ_{2} are homotopic in a topological space X if there is a continuous map $T:[0,1] \times[0,1] \rightarrow X$ with $T(t, 0)=\gamma_{1}(t)$ and $T(t, 1)=\gamma_{2}(t)$.

Homotopy and Simply Connected

- Two paths γ_{1} and γ_{2} are homotopic in a topological space X if there is a continuous map $T:[0,1] \times[0,1] \rightarrow X$ with $T(t, 0)=\gamma_{1}(t)$ and $T(t, 1)=\gamma_{2}(t)$.

- A topological space X is simply connected if every loop or closed path in X is homotopic to a point in X.

Fundamental Theroem of Calculus: Complex Version

- If f admits a primitive F, i.e. $F^{\prime}=f$ and γ is piecewise differentiable curve then, using the fundamental theorem of calculus, we get

$$
\begin{aligned}
\int_{\gamma} f(z) d z & =\int_{\gamma} F^{\prime}(z) d z=\int_{a}^{b} F^{\prime}(\gamma(t)) \gamma^{\prime}(t) d t \\
& =\int_{a}^{b} \frac{d}{d t}(F \circ \gamma)(t) d t=F(\gamma(b))-F(\gamma(a))
\end{aligned}
$$

Fundamental Theroem of Calculus: Complex Version

- If f admits a primitive F, i.e. $F^{\prime}=f$ and γ is piecewise differentiable curve then, using the fundamental theorem of calculus, we get

$$
\begin{aligned}
\int_{\gamma} f(z) d z & =\int_{\gamma} F^{\prime}(z) d z=\int_{a}^{b} F^{\prime}(\gamma(t)) \gamma^{\prime}(t) d t \\
& =\int_{a}^{b} \frac{d}{d t}(F \circ \gamma)(t) d t=F(\gamma(b))-F(\gamma(a))
\end{aligned}
$$

- In particular, if γ is a loop then $\int_{\gamma} f(z) d z=0$.

Fundamental Theroem of Calculus: Complex Version

- If f admits a primitive F, i.e. $F^{\prime}=f$ and γ is piecewise differentiable curve then, using the fundamental theorem of calculus, we get

$$
\begin{aligned}
\int_{\gamma} f(z) d z & =\int_{\gamma} F^{\prime}(z) d z=\int_{a}^{b} F^{\prime}(\gamma(t)) \gamma^{\prime}(t) d t \\
& =\int_{a}^{b} \frac{d}{d t}(F \circ \gamma)(t) d t=F(\gamma(b))-F(\gamma(a))
\end{aligned}
$$

- In particular, if γ is a loop then $\int_{\gamma} f(z) d z=0$.
- Conversely, if f is continuous in domain Ω such that $\int_{\gamma} f=0$ for all loop $\gamma \subset \Omega$ then f has a primitive.

Fundamental Theroem of Calculus: Complex Version

- If f admits a primitive F, i.e. $F^{\prime}=f$ and γ is piecewise differentiable curve then, using the fundamental theorem of calculus, we get

$$
\begin{aligned}
\int_{\gamma} f(z) d z & =\int_{\gamma} F^{\prime}(z) d z=\int_{a}^{b} F^{\prime}(\gamma(t)) \gamma^{\prime}(t) d t \\
& =\int_{a}^{b} \frac{d}{d t}(F \circ \gamma)(t) d t=F(\gamma(b))-F(\gamma(a))
\end{aligned}
$$

- In particular, if γ is a loop then $\int_{\gamma} f(z) d z=0$.
- Conversely, if f is continuous in domain Ω such that $\int_{\gamma} f=0$ for all loop $\gamma \subset \Omega$ then f has a primitive. Fix $z_{0} \in \Omega$ and define $F(z):=\int_{\gamma\left(z_{0}, z\right)} f(w) d w$ for any path $\gamma\left(z_{0}, z\right)$ joining z_{0} and z. By assumption F is independent of the path chosen.

Fundamental Theroem of Calculus: Complex Version

- If f admits a primitive F, i.e. $F^{\prime}=f$ and γ is piecewise differentiable curve then, using the fundamental theorem of calculus, we get

$$
\begin{aligned}
\int_{\gamma} f(z) d z & =\int_{\gamma} F^{\prime}(z) d z=\int_{a}^{b} F^{\prime}(\gamma(t)) \gamma^{\prime}(t) d t \\
& =\int_{a}^{b} \frac{d}{d t}(F \circ \gamma)(t) d t=F(\gamma(b))-F(\gamma(a))
\end{aligned}
$$

- In particular, if γ is a loop then $\int_{\gamma} f(z) d z=0$.
- Conversely, if f is continuous in domain Ω such that $\int_{\gamma} f=0$ for all loop $\gamma \subset \Omega$ then f has a primitive. Fix $z_{0} \in \Omega$ and define $F(z):=\int_{\gamma\left(z_{0}, z\right)} f(w) d w$ for any path $\gamma\left(z_{0}, z\right)$ joining z_{0} and z. By assumption F is independent of the path chosen.
- Differentiate F to observe that it is the primitive of f. (For holomorphic functions, this is Morera's Theorem!)

Cauchy's Theorem

Theorem (Cauchy's Theorem)

Let γ be a counterclockwise simple loop in a simply connected open set $\Omega \subset \mathbb{C}$. If $f: \Omega \rightarrow \mathbb{C}$ is a holomorphic function then $\int_{\gamma} f(z) d z=0$. Equivalently, every holomorphic function f on a simply connected domain has a primitive.

Cauchy's Theorem

Theorem (Cauchy's Theorem)

Let γ be a counterclockwise simple loop in a simply connected open set $\Omega \subset \mathbb{C}$. If $f: \Omega \rightarrow \mathbb{C}$ is a holomorphic function then $\int_{\gamma} f(z) d z=0$. Equivalently, every holomorphic function f on a simply connected domain has a primitive.

Proof:

$$
\int_{\gamma} f(z) d z=\int_{\gamma}(u d x-v d y)+\imath \int_{\gamma}(u d y+v d x)
$$

Cauchy's Theorem

Theorem (Cauchy's Theorem)

Let γ be a counterclockwise simple loop in a simply connected open set $\Omega \subset \mathbb{C}$. If $f: \Omega \rightarrow \mathbb{C}$ is a holomorphic function then $\int_{\gamma} f(z) d z=0$. Equivalently, every holomorphic function f on a simply connected domain has a primitive.

Proof:

$$
\begin{aligned}
\int_{\gamma} f(z) d z & =\int_{\gamma}(u d x-v d y)+\imath \int_{\gamma}(u d y+v d x) \\
& =-\int_{U}\left(v_{x}+u_{y}\right) d x d y+\imath \int_{U}\left(u_{x}-v_{y}\right) d x d y
\end{aligned}
$$

where U is the bounded region enclosed by the loop γ. The last equality is due to Green's Theorem.

Cauchy's Theorem

Theorem (Cauchy's Theorem)

Let γ be a counterclockwise simple loop in a simply connected open set $\Omega \subset \mathbb{C}$. If $f: \Omega \rightarrow \mathbb{C}$ is a holomorphic function then $\int_{\gamma} f(z) d z=0$. Equivalently, every holomorphic function f on a simply connected domain has a primitive.

Proof:

$$
\begin{aligned}
\int_{\gamma} f(z) d z & =\int_{\gamma}(u d x-v d y)+\imath \int_{\gamma}(u d y+v d x) \\
& =-\int_{U}\left(v_{x}+u_{y}\right) d x d y+\imath \int_{U}\left(u_{x}-v_{y}\right) d x d y
\end{aligned}
$$

where U is the bounded region enclosed by the loop γ. The last equality is due to Green's Theorem. Since f is holomorphic, u and v satisfy the Cauchy-Riemann equations and, hence, the RHS is zero.

Green's Theorem

Theorem

Let γ be a counterclockwise simple loop in \mathbb{C} and U is the bounded region enclosed by γ. If P and Q admit continuous partial derivatives in $U \cup \gamma$ then

$$
\int_{\gamma}(P d x+Q d y)=\int_{U}\left(Q_{x}-P_{y}\right) d x d y
$$

Green's Theorem

Theorem

Let γ be a counterclockwise simple loop in \mathbb{C} and U is the bounded region enclosed by γ. If P and Q admit continuous partial derivatives in $U \cup \gamma$ then

$$
\int_{\gamma}(P d x+Q d y)=\int_{U}\left(Q_{x}-P_{y}\right) d x d y
$$

Proof:

The region U can be interpreted in two ways as above: First one being $U:=\cup_{x \in(a, b)}\left[\{x\} \times\left(\gamma_{1}(x), \gamma_{2}(x)\right)\right]$.

Proof Continued...

$$
\int_{U}-P_{y} d x d y
$$

Proof Continued...

$$
\int_{U}-P_{y} d x d y=\int_{a}^{b} \int_{\gamma_{1}(x)}^{\gamma_{2}(x)}-P_{y} d y d x
$$

Proof Continued...

$$
\begin{aligned}
\int_{U}-P_{y} d x d y & =\int_{a}^{b} \int_{\gamma_{1}(x)}^{\gamma_{2}(x)}-P_{y} d y d x \\
& =\int_{a}^{b}\left[P\left(x, \gamma_{1}(x)\right)-P\left(x, \gamma_{2}(x)\right)\right] d x
\end{aligned}
$$

Proof Continued...

$$
\begin{aligned}
\int_{U}-P_{y} d x d y & =\int_{a}^{b} \int_{\gamma_{1}(x)}^{\gamma_{2}(x)}-P_{y} d y d x \\
& =\int_{a}^{b}\left[P\left(x, \gamma_{1}(x)\right)-P\left(x, \gamma_{2}(x)\right)\right] d x \\
& =\int_{\gamma_{1}} P(x, y) d x+\int_{-\gamma_{2}} P(x, y) d x
\end{aligned}
$$

Proof Continued...

$$
\begin{aligned}
\int_{U}-P_{y} d x d y & =\int_{a}^{b} \int_{\gamma_{1}(x)}^{\gamma_{2}(x)}-P_{y} d y d x \\
& =\int_{a}^{b}\left[P\left(x, \gamma_{1}(x)\right)-P\left(x, \gamma_{2}(x)\right)\right] d x \\
& =\int_{\gamma_{1}} P(x, y) d x+\int_{-\gamma_{2}} P(x, y) d x=\int_{\gamma} P(x, y) d x .
\end{aligned}
$$

Proof Continued...

$$
\begin{aligned}
\int_{U}-P_{y} d x d y & =\int_{a}^{b} \int_{\gamma_{1}(x)}^{\gamma_{2}(x)}-P_{y} d y d x \\
& =\int_{a}^{b}\left[P\left(x, \gamma_{1}(x)\right)-P\left(x, \gamma_{2}(x)\right)\right] d x \\
& =\int_{\gamma_{1}} P(x, y) d x+\int_{-\gamma_{2}} P(x, y) d x=\int_{\gamma} P(x, y) d x \\
\int_{U} Q_{x} d x d y & =\int_{a}^{b} \int_{\gamma_{2}(y)}^{\gamma_{1}(y)} Q_{x} d x d y \\
& =\int_{a}^{b}\left[Q\left(\gamma_{1}(y), y\right)-Q\left(\gamma_{2}(y), y\right)\right] d y \\
& =\int_{\gamma_{1}} Q(x, y) d y+\int_{-\gamma_{2}} Q(x, y) d y=\int_{\gamma} Q(x, y) d y
\end{aligned}
$$

Generalised Cauchy's Theorem

Theorem (Invariance for Homotopic Curves)
Let γ_{1} and γ_{2} be two homotopic curves oriented counterclockwise in a domain $\Omega \subset \mathbb{C}$. If $f: \Omega \rightarrow \mathbb{C}$ is a holomorphic function then $\int_{\gamma_{1}} f(z) d z=\int_{\gamma_{2}} f(z) d z$.

Generalised Cauchy's Theorem

Theorem (Invariance for Homotopic Curves)

Let γ_{1} and γ_{2} be two homotopic curves oriented counterclockwise in a domain $\Omega \subset \mathbb{C}$. If $f: \Omega \rightarrow \mathbb{C}$ is a holomorphic function then $\int_{\gamma_{1}} f(z) d z=\int_{\gamma_{2}} f(z) d z$.

For closed curves homotopy need not necessarily have same the start and end points!

Generalised Cauchy's Theorem

```
Theorem (Invariance for Homotopic Curves)
Let }\mp@subsup{\gamma}{1}{}\mathrm{ and }\mp@subsup{\gamma}{2}{}\mathrm{ be two homotopic curves oriented counterclockwise in a
domain \Omega\subset\mathbb{C}. If }:\Omega->\mathbb{C}\mathrm{ is a holomorphic function then
\int
```

For closed curves homotopy need not necessarily have same the start and end points!
Sketch of Proof: Choose $\varepsilon>0$ such that $3 \varepsilon<\operatorname{dist}(\operatorname{lmage}(T), \partial \Omega)$

Generalised Cauchy's Theorem

Theorem (Invariance for Homotopic Curves)

Let γ_{1} and γ_{2} be two homotopic curves oriented counterclockwise in a domain $\Omega \subset \mathbb{C}$. If $f: \Omega \rightarrow \mathbb{C}$ is a holomorphic function then $\int_{\gamma_{1}} f(z) d z=\int_{\gamma_{2}} f(z) d z$.

For closed curves homotopy need not necessarily have same the start and end points!
Sketch of Proof: Choose $\varepsilon>0$ such that $3 \varepsilon<\operatorname{dist}(\operatorname{Image}(T), \partial \Omega)$ and choose disks of radius 2ε for each $z \in \operatorname{Image}(T)$

Generalised Cauchy's Theorem

Theorem (Invariance for Homotopic Curves)

Let γ_{1} and γ_{2} be two homotopic curves oriented counterclockwise in a domain $\Omega \subset \mathbb{C}$. If $f: \Omega \rightarrow \mathbb{C}$ is a holomorphic function then $\int_{\gamma_{1}} f(z) d z=\int_{\gamma_{2}} f(z) d z$.

For closed curves homotopy need not necessarily have same the start and end points!
Sketch of Proof: Choose $\varepsilon>0$ such that $3 \varepsilon<\operatorname{dist}(\operatorname{Image}(T), \partial \Omega)$ and choose disks of radius 2ε for each $z \in \operatorname{Image}(T)$ and, by compactness, there is a finite cover.

Generalised Cauchy's Theorem

Theorem (Invariance for Homotopic Curves)

Let γ_{1} and γ_{2} be two homotopic curves oriented counterclockwise in a domain $\Omega \subset \mathbb{C}$. If $f: \Omega \rightarrow \mathbb{C}$ is a holomorphic function then
$\int_{\gamma_{1}} f(z) d z=\int_{\gamma_{2}} f(z) d z$.
For closed curves homotopy need not necessarily have same the start and end points!
Sketch of Proof: Choose $\varepsilon>0$ such that $3 \varepsilon<\operatorname{dist}(\operatorname{Image}(T), \partial \Omega)$ and choose disks of radius 2ε for each $z \in \operatorname{Image}(T)$ and, by compactness, there is a finite cover. The homotopy map T is continuous on the compact set $[0,1] \times[0,1]$ and, hence, its image is compact and T is uniformly continuous.

Generalised Cauchy's Theorem

Theorem (Invariance for Homotopic Curves)

Let γ_{1} and γ_{2} be two homotopic curves oriented counterclockwise in a domain $\Omega \subset \mathbb{C}$. If $f: \Omega \rightarrow \mathbb{C}$ is a holomorphic function then
$\int_{\gamma_{1}} f(z) d z=\int_{\gamma_{2}} f(z) d z$.
For closed curves homotopy need not necessarily have same the start and end points!
Sketch of Proof: Choose $\varepsilon>0$ such that $3 \varepsilon<\operatorname{dist}(\operatorname{Image}(T), \partial \Omega)$ and choose disks of radius 2ε for each $z \in \operatorname{Image}(T)$ and, by compactness, there is a finite cover. The homotopy map T is continuous on the compact set $[0,1] \times[0,1]$ and, hence, its image is compact and T is uniformly continuous. For the chosen $\varepsilon>0$, there is a $\delta>0$ such that, for all $\left|s_{1}-s_{2}\right|<\delta, \sup _{[0,1]}\left|T\left(s_{1}, t\right)-T\left(s_{2}, t\right)\right|<\varepsilon$.

Generalised Cauchy's Theorem

Theorem (Invariance for Homotopic Curves)

Let γ_{1} and γ_{2} be two homotopic curves oriented counterclockwise in a domain $\Omega \subset \mathbb{C}$. If $f: \Omega \rightarrow \mathbb{C}$ is a holomorphic function then
$\int_{\gamma_{1}} f(z) d z=\int_{\gamma_{2}} f(z) d z$.
For closed curves homotopy need not necessarily have same the start and end points!
Sketch of Proof: Choose $\varepsilon>0$ such that $3 \varepsilon<\operatorname{dist}(\operatorname{Image}(T), \partial \Omega)$ and choose disks of radius 2ε for each $z \in \operatorname{Image}(T)$ and, by compactness, there is a finite cover. The homotopy map T is continuous on the compact set $[0,1] \times[0,1]$ and, hence, its image is compact and T is uniformly continuous. For the chosen $\varepsilon>0$, there is a $\delta>0$ such that, for all $\left|s_{1}-s_{2}\right|<\delta, \sup _{[0,1]}\left|T\left(s_{1}, t\right)-T\left(s_{2}, t\right)\right|<\varepsilon$. Choose one point each on the curve $\gamma_{s_{1}}$ and $\gamma_{s_{2}}$ which lie in the intersection of adjacent disks.

Proof Continued...

Proof Continued...

Then for each s_{1}, s_{2} such that $\left|s_{1}-s_{2}\right|<\delta$,

$$
\int_{\gamma_{s_{1}}} f(z) d z=\int_{\gamma_{s_{2}}} f(z) d z
$$

Proof Continued...

Then for each s_{1}, s_{2} such that $\left|s_{1}-s_{2}\right|<\delta$,

$$
\int_{\gamma_{s_{1}}} f(z) d z=\int_{\gamma_{s_{2}}} f(z) d z
$$

Extend the argument for $s=0$ to $s=1$ in finitely many steps.

Weaker Hypothesis

Theorem

Let γ be a counterclockwise simple loop in a simply connected open set $\Omega \subset \mathbb{C}$. If $f: \Omega \rightarrow \mathbb{C}$ is a holomorphic function except at z_{0} but continuous everywhere then $\int_{\gamma} f(z) d z=0$.

Weaker Hypothesis

Theorem

Let γ be a counterclockwise simple loop in a simply connected open set $\Omega \subset \mathbb{C}$. If $f: \Omega \rightarrow \mathbb{C}$ is a holomorphic function except at z_{0} but continuous everywhere then $\int_{\gamma} f(z) d z=0$.

Proof: The continuity of f at z_{0} ensures f has no blow-up at z_{0}.

Weaker Hypothesis

Theorem

Let γ be a counterclockwise simple loop in a simply connected open set $\Omega \subset \mathbb{C}$. If $f: \Omega \rightarrow \mathbb{C}$ is a holomorphic function except at z_{0} but continuous everywhere then $\int_{\gamma} f(z) d z=0$.

Proof: The continuity of f at z_{0} ensures f has no blow-up at z_{0}. Now, choose γ_{2} as the circle of radius $\varepsilon>0$ centred at z_{0}.

Weaker Hypothesis

Theorem

Let γ be a counterclockwise simple loop in a simply connected open set $\Omega \subset \mathbb{C}$. If $f: \Omega \rightarrow \mathbb{C}$ is a holomorphic function except at z_{0} but continuous everywhere then $\int_{\gamma} f(z) d z=0$.

Proof: The continuity of f at z_{0} ensures f has no blow-up at z_{0}. Now, choose γ_{2} as the circle of radius $\varepsilon>0$ centred at z_{0}. Since f is continuous, it is bounded in the region enclosed by the ball of radius ε.

Weaker Hypothesis

Theorem

Let γ be a counterclockwise simple loop in a simply connected open set $\Omega \subset \mathbb{C}$. If $f: \Omega \rightarrow \mathbb{C}$ is a holomorphic function except at z_{0} but continuous everywhere then $\int_{\gamma} f(z) d z=0$.

Proof: The continuity of f at z_{0} ensures f has no blow-up at z_{0}. Now, choose γ_{2} as the circle of radius $\varepsilon>0$ centred at z_{0}. Since f is continuous, it is bounded in the region enclosed by the ball of radius ε. Since γ_{2} is homotopic to γ, it is enough to compute the integral over γ_{2}.

Weaker Hypothesis

Theorem

Let γ be a counterclockwise simple loop in a simply connected open set $\Omega \subset \mathbb{C}$. If $f: \Omega \rightarrow \mathbb{C}$ is a holomorphic function except at z_{0} but continuous everywhere then $\int_{\gamma} f(z) d z=0$.

Proof: The continuity of f at z_{0} ensures f has no blow-up at z_{0}. Now, choose γ_{2} as the circle of radius $\varepsilon>0$ centred at z_{0}. Since f is continuous, it is bounded in the region enclosed by the ball of radius ε. Since γ_{2} is homotopic to γ, it is enough to compute the integral over γ_{2}.

$$
\left|\int_{\gamma_{2}} f(z) d z\right| \leq\|f\|_{\infty} 2 \pi \varepsilon
$$

Weaker Hypothesis

Theorem

Let γ be a counterclockwise simple loop in a simply connected open set $\Omega \subset \mathbb{C}$. If $f: \Omega \rightarrow \mathbb{C}$ is a holomorphic function except at z_{0} but continuous everywhere then $\int_{\gamma} f(z) d z=0$.

Proof: The continuity of f at z_{0} ensures f has no blow-up at z_{0}. Now, choose γ_{2} as the circle of radius $\varepsilon>0$ centred at z_{0}. Since f is continuous, it is bounded in the region enclosed by the ball of radius ε. Since γ_{2} is homotopic to γ, it is enough to compute the integral over γ_{2}.

$$
\left|\int_{\gamma_{2}} f(z) d z\right| \leq\|f\|_{\infty} 2 \pi \varepsilon
$$

Since ε can be chosen as small as required, we have the result. Recall that $\int_{\gamma} d z=0$ and $\int_{\gamma}|d z|=$ Length of γ.

Cauchy Integral Formula (CIF)

Theorem (Cauchy Integral Formula)
Let $f: \Omega \rightarrow \mathbb{C}$ be holomorphic on a simply connected open set $\Omega \subset \mathbb{C}$ and γ be a counter-clockwise simple loop in Ω. Then

$$
\frac{1}{2 \pi \imath} \int_{\gamma} \frac{f(w)}{w-z} d w= \begin{cases}f(z) & z \in U:=\ln t(\gamma) \\ 0 & z \in \Omega \backslash \bar{U} \\ \text { undefined } & z \in \gamma .\end{cases}
$$

Cauchy Integral Formula (CIF)

Theorem (Cauchy Integral Formula)

Let $f: \Omega \rightarrow \mathbb{C}$ be holomorphic on a simply connected open set $\Omega \subset \mathbb{C}$ and γ be a counter-clockwise simple loop in Ω. Then

$$
\frac{1}{2 \pi \imath} \int_{\gamma} \frac{f(w)}{w-z} d w= \begin{cases}f(z) & z \in U:=\ln t(\gamma) \\ 0 & z \in \Omega \backslash \bar{U} \\ \text { undefined } & z \in \gamma .\end{cases}
$$

Proof:

$$
\int_{\gamma} \frac{f(w)}{w-z} d w=\int_{\gamma} g(w) d w+f(z) \int_{\gamma} \frac{1}{w-z} d w \text { where }
$$

$g(w):=\frac{f(w)-f(z)}{w-z}$ for $w \neq z$ and $g(z):=f^{\prime}(z)$.

Cauchy Integral Formula (CIF)

Theorem (Cauchy Integral Formula)

Let $f: \Omega \rightarrow \mathbb{C}$ be holomorphic on a simply connected open set $\Omega \subset \mathbb{C}$ and γ be a counter-clockwise simple loop in Ω. Then

$$
\frac{1}{2 \pi \imath} \int_{\gamma} \frac{f(w)}{w-z} d w= \begin{cases}f(z) & z \in U:=\ln t(\gamma) \\ 0 & z \in \Omega \backslash \bar{U} \\ \text { undefined } & z \in \gamma .\end{cases}
$$

Proof:

$$
\int_{\gamma} \frac{f(w)}{w-z} d w=\int_{\gamma} g(w) d w+f(z) \int_{\gamma} \frac{1}{w-z} d w \text { where }
$$

$g(w):=\frac{f(w)-f(z)}{w-z}$ for $w \neq z$ and $g(z):=f^{\prime}(z)$.Then $\int_{\gamma} g=0$ because g is holomorphic, except possibly at z, but continuous everywhere.

Cauchy Integral Formula (CIF)

Theorem (Cauchy Integral Formula)

Let $f: \Omega \rightarrow \mathbb{C}$ be holomorphic on a simply connected open set $\Omega \subset \mathbb{C}$ and γ be a counter-clockwise simple loop in Ω. Then

$$
\frac{1}{2 \pi \imath} \int_{\gamma} \frac{f(w)}{w-z} d w= \begin{cases}f(z) & z \in U:=\operatorname{lnt}(\gamma) \\ 0 & z \in \Omega \backslash \bar{U} \\ \text { undefined } & z \in \gamma\end{cases}
$$

Proof:

$$
\int_{\gamma} \frac{f(w)}{w-z} d w=\int_{\gamma} g(w) d w+f(z) \int_{\gamma} \frac{1}{w-z} d w \text { where }
$$

$g(w):=\frac{f(w)-f(z)}{w-z}$ for $w \neq z$ and $g(z):=f^{\prime}(z)$.Then $\int_{\gamma} g=0$ because g is holomorphic, except possibly at z, but continuous everywhere. Also, γ is homotopic to the unit circle centred at z.

Cauchy Integral Formula (CIF)

Theorem (Cauchy Integral Formula)

Let $f: \Omega \rightarrow \mathbb{C}$ be holomorphic on a simply connected open set $\Omega \subset \mathbb{C}$ and γ be a counter-clockwise simple loop in Ω. Then

$$
\frac{1}{2 \pi \imath} \int_{\gamma} \frac{f(w)}{w-z} d w= \begin{cases}f(z) & z \in U:=\ln t(\gamma) \\ 0 & z \in \Omega \backslash \bar{U} \\ \text { undefined } & z \in \gamma\end{cases}
$$

Proof:

$$
\int_{\gamma} \frac{f(w)}{w-z} d w=\int_{\gamma} g(w) d w+f(z) \int_{\gamma} \frac{1}{w-z} d w \text { where }
$$

$g(w):=\frac{f(w)-f(z)}{w-z}$ for $w \neq z$ and $g(z):=f^{\prime}(z)$.Then $\int_{\gamma} g=0$ because g is holomorphic, except possibly at z, but continuous everywhere. Also, γ is homotopic to the unit circle centred at z. Thus, the RHS is $f(z) 2 \pi i$.

Infinite Differentiability

Theorem (Converse to CIF)
Let γ be a counter-clockwise simple loop. If $f: \gamma \rightarrow \mathbb{C}$ be any continuous function such that, for all z in the interior of γ,

$$
f(z)=\frac{1}{2 \pi \imath} \int_{\gamma} \frac{f(w)}{w-z} d w
$$

then f is infinitely complex differentiable (and hence holomorphic) and given by the formula

$$
f^{(k)}(z)=\frac{k!}{2 \pi \imath} \int_{\gamma} \frac{f(w)}{(w-z)^{k+1}} d w .
$$

Infinite Differentiability

Theorem (Converse to CIF)
Let γ be a counter-clockwise simple loop. If $f: \gamma \rightarrow \mathbb{C}$ be any continuous function such that, for all z in the interior of γ,

$$
f(z)=\frac{1}{2 \pi \imath} \int_{\gamma} \frac{f(w)}{w-z} d w
$$

then f is infinitely complex differentiable (and hence holomorphic) and given by the formula

$$
f^{(k)}(z)=\frac{k!}{2 \pi \imath} \int_{\gamma} \frac{f(w)}{(w-z)^{k+1}} d w .
$$

Proof: Note that

$$
f^{(k)}(z)=\frac{1}{2 \pi \imath} \int_{\gamma} f(w) \frac{d^{k}}{d z^{k}}\left(\frac{1}{w-z}\right) d w .
$$

Taylor Series: Holomorphic is Analytic

Theorem
Let $\Omega \subset \mathbb{C}$ is open. A function $f: \Omega \rightarrow \mathbb{C}$ is holomorphic at z_{0} iff $f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ in a neighbourhood of z_{0}. (The convergence is uniform).

Taylor Series: Holomorphic is Analytic

Theorem
Let $\Omega \subset \mathbb{C}$ is open. A function $f: \Omega \rightarrow \mathbb{C}$ is holomorphic at z_{0} iff $f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ in a neighbourhood of z_{0}. (The convergence is uniform).

Proof: If f admits power series then $f^{(k)}\left(z_{0}\right)=k!a_{k}$ and, hence holomorphic at z_{0}.

Taylor Series: Holomorphic is Analytic

Theorem
Let $\Omega \subset \mathbb{C}$ is open. A function $f: \Omega \rightarrow \mathbb{C}$ is holomorphic at z_{0} iff $f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ in a neighbourhood of z_{0}. (The convergence is uniform).

Proof: If f admits power series then $f^{(k)}\left(z_{0}\right)=k!a_{k}$ and, hence holomorphic at z_{0}. Conversely, if f is holomorphic then choose the neighbourhood $N\left(z_{0}\right)$ centred at z_{0} with radius $\operatorname{dist}\left(z_{0}, \gamma\right)$ where γ is any counter clockwise simple loop in Ω enclosing z_{0}.

Taylor Series: Holomorphic is Analytic

Theorem

Let $\Omega \subset \mathbb{C}$ is open. A function $f: \Omega \rightarrow \mathbb{C}$ is holomorphic at z_{0} iff $f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ in a neighbourhood of z_{0}. (The convergence is uniform).

Proof: If f admits power series then $f^{(k)}\left(z_{0}\right)=k!a_{k}$ and, hence holomorphic at z_{0}. Conversely, if f is holomorphic then choose the neighbourhood $N\left(z_{0}\right)$ centred at z_{0} with radius $\operatorname{dist}\left(z_{0}, \gamma\right)$ where γ is any counter clockwise simple loop in Ω enclosing z_{0}. Then, for all $z \in N\left(z_{0}\right)$ and $w \in \gamma$, we have $\left|z-z_{0}\right|<\left|w-z_{0}\right|$.

Taylor Series: Holomorphic is Analytic

Theorem

Let $\Omega \subset \mathbb{C}$ is open. A function $f: \Omega \rightarrow \mathbb{C}$ is holomorphic at z_{0} iff $f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ in a neighbourhood of z_{0}. (The convergence is uniform).

Proof: If f admits power series then $f^{(k)}\left(z_{0}\right)=k!a_{k}$ and, hence holomorphic at z_{0}. Conversely, if f is holomorphic then choose the neighbourhood $N\left(z_{0}\right)$ centred at z_{0} with radius $\operatorname{dist}\left(z_{0}, \gamma\right)$ where γ is any counter clockwise simple loop in Ω enclosing z_{0}. Then, for all $z \in N\left(z_{0}\right)$ and $w \in \gamma$, we have $\left|z-z_{0}\right|<\left|w-z_{0}\right|$. Then
$f(z)=\frac{1}{2 \pi \imath} \int_{\gamma} \frac{f(w)}{w-z_{0}} \frac{1}{1-\frac{z-z_{0}}{w-z_{0}}} d w$

Taylor Series: Holomorphic is Analytic

Theorem

Let $\Omega \subset \mathbb{C}$ is open. A function $f: \Omega \rightarrow \mathbb{C}$ is holomorphic at z_{0} iff $f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ in a neighbourhood of z_{0}. (The convergence is uniform).

Proof: If f admits power series then $f^{(k)}\left(z_{0}\right)=k!a_{k}$ and, hence holomorphic at z_{0}. Conversely, if f is holomorphic then choose the neighbourhood $N\left(z_{0}\right)$ centred at z_{0} with radius $\operatorname{dist}\left(z_{0}, \gamma\right)$ where γ is any counter clockwise simple loop in Ω enclosing z_{0}. Then, for all $z \in N\left(z_{0}\right)$ and $w \in \gamma$, we have $\left|z-z_{0}\right|<\left|w-z_{0}\right|$. Then
$f(z)=\frac{1}{2 \pi \imath} \int_{\gamma} \frac{f(w)}{w-z_{0}} \frac{1}{1-\frac{z-z_{0}}{w-z_{0}}} d w=\frac{1}{2 \pi \imath} \int_{\gamma} \frac{f(w)}{w-z_{0}} \sum_{k=0}^{\infty}\left(\frac{z-z_{0}}{w-z_{0}}\right)^{k} d w$

Taylor Series: Holomorphic is Analytic

Theorem

Let $\Omega \subset \mathbb{C}$ is open. A function $f: \Omega \rightarrow \mathbb{C}$ is holomorphic at z_{0} iff $f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ in a neighbourhood of z_{0}. (The convergence is uniform).

Proof: If f admits power series then $f^{(k)}\left(z_{0}\right)=k!a_{k}$ and, hence holomorphic at z_{0}. Conversely, if f is holomorphic then choose the neighbourhood $N\left(z_{0}\right)$ centred at z_{0} with radius $\operatorname{dist}\left(z_{0}, \gamma\right)$ where γ is any counter clockwise simple loop in Ω enclosing z_{0}. Then, for all $z \in N\left(z_{0}\right)$ and $w \in \gamma$, we have $\left|z-z_{0}\right|<\left|w-z_{0}\right|$. Then

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi \imath} \int_{\gamma} \frac{f(w)}{w-z_{0}} \frac{1}{1-\frac{z-z_{0}}{w-z_{0}}} d w=\frac{1}{2 \pi \imath} \int_{\gamma} \frac{f(w)}{w-z_{0}} \sum_{k=0}^{\infty}\left(\frac{z-z_{0}}{w-z_{0}}\right)^{k} d w \\
& =\frac{1}{2 \pi \imath} \sum_{k=0}^{\infty}\left(z-z_{0}\right)^{k} \int_{\gamma} \frac{f(w)}{\left(w-z_{0}\right)^{k+1}} d w
\end{aligned}
$$

Taylor Series: Holomorphic is Analytic

Theorem

Let $\Omega \subset \mathbb{C}$ is open. A function $f: \Omega \rightarrow \mathbb{C}$ is holomorphic at z_{0} iff $f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ in a neighbourhood of z_{0}. (The convergence is uniform).

Proof: If f admits power series then $f^{(k)}\left(z_{0}\right)=k!a_{k}$ and, hence holomorphic at z_{0}. Conversely, if f is holomorphic then choose the neighbourhood $N\left(z_{0}\right)$ centred at z_{0} with radius $\operatorname{dist}\left(z_{0}, \gamma\right)$ where γ is any counter clockwise simple loop in Ω enclosing z_{0}. Then, for all $z \in N\left(z_{0}\right)$ and $w \in \gamma$, we have $\left|z-z_{0}\right|<\left|w-z_{0}\right|$. Then

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi \imath} \int_{\gamma} \frac{f(w)}{w-z_{0}} \frac{1}{1-\frac{z-z_{0}}{w-z_{0}}} d w=\frac{1}{2 \pi \imath} \int_{\gamma} \frac{f(w)}{w-z_{0}} \sum_{k=0}^{\infty}\left(\frac{z-z_{0}}{w-z_{0}}\right)^{k} d w \\
& =\frac{1}{2 \pi \imath} \sum_{k=0}^{\infty}\left(z-z_{0}\right)^{k} \int_{\gamma} \frac{f(w)}{\left(w-z_{0}\right)^{k+1}} d w=\sum_{k=0}^{\infty} \frac{f(k)\left(z_{0}\right)}{k!}\left(z-z_{0}\right)^{k}
\end{aligned}
$$

Non-Analytic Infinitely Differentiable Real Function

- Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
f(x)= \begin{cases}\exp (-1 / x) & \text { if } x>0 \\ 0 & \text { if } x \leq 0\end{cases}
$$

Non-Analytic Infinitely Differentiable Real Function

- Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
f(x)= \begin{cases}\exp (-1 / x) & \text { if } x>0 \\ 0 & \text { if } x \leq 0\end{cases}
$$

- It is clear that $0 \leq f(x)<1$ and f is infinitely differentiable for all $x \neq 0$.

Non-Analytic Infinitely Differentiable Real Function

- Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
f(x)= \begin{cases}\exp (-1 / x) & \text { if } x>0 \\ 0 & \text { if } x \leq 0\end{cases}
$$

- It is clear that $0 \leq f(x)<1$ and f is infinitely differentiable for all $x \neq 0$.
- The left side limit of f and its derivative is zero at $x=0$. Further, the right side limit

$$
f^{(k+1)}(0)=\lim _{h \rightarrow 0^{+}} \frac{f^{(k)}(h)-f^{(k)}(0)}{h}=0 .(\text { Exercise! })
$$

Therefore, $f \in C^{\infty}(\mathbb{R})$.

Non-Analytic Infinitely Differentiable Real Function

- The Taylor series of f at $x=0$,

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}=0
$$

converges to the zero function for all $x \in \mathbb{R}$.

Non-Analytic Infinitely Differentiable Real Function

- The Taylor series of f at $x=0$,

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}=0
$$

converges to the zero function for all $x \in \mathbb{R}$.

- But for $x>0$, we know that $f(x)>0$ and hence do not converge to the Taylor series at $x=0$.

Non-Analytic Infinitely Differentiable Real Function

- The Taylor series of f at $x=0$,

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}=0
$$

converges to the zero function for all $x \in \mathbb{R}$.

- But for $x>0$, we know that $f(x)>0$ and hence do not converge to the Taylor series at $x=0$.
- Thus, f is not analytic at 0 .

Zeroes of Holomorphic Functions

Definition

$A z_{0} \in \mathbb{C}$ is said to be a zero of order m if $f^{(j)}\left(z_{0}\right)=0$ for all
$0 \leq j \leq m-1$. A zero is simple if $m=1$.

Zeroes of Holomorphic Functions

Definition

$A z_{0} \in \mathbb{C}$ is said to be a zero of order m if $f^{(j)}\left(z_{0}\right)=0$ for all
$0 \leq j \leq m-1$. A zero is simple if $m=1$.

- For a non-zero holomorphic function, at least one coefficient of Taylor series is non-zero, say the $f^{(m)}\left(z_{0}\right)$ is first non-zero coefficient, then z_{0} is a zero of order m of f.

Zeroes of Holomorphic Functions

Definition

$A z_{0} \in \mathbb{C}$ is said to be a zero of order m if $f^{(j)}\left(z_{0}\right)=0$ for all
$0 \leq j \leq m-1$. A zero is simple if $m=1$.

- For a non-zero holomorphic function, at least one coefficient of Taylor series is non-zero, say the $f^{(m)}\left(z_{0}\right)$ is first non-zero coefficient, then z_{0} is a zero of order m of f.
- If f is holomorphic in Ω with a zero of order m then, from the Taylor series of f in a neighbourhood of z_{0}, we get $f(z)=\left(z-z_{0}\right)^{m} g(z)$ where $g\left(z_{0}\right) \neq 0$ and

$$
g(z)=\sum_{k=0}^{\infty} \frac{f^{(k+m)}\left(z_{0}\right)}{(k+m)!}\left(z-z_{0}\right)^{k}
$$

where g has the same domain of convergence about z_{0} as f.

Number of Zeroes of Analytic functions

- All complex polynomials are analytic functions and, by FTC, have exactly as many zeroes as its degree (including order).

Number of Zeroes of Analytic functions

- All complex polynomials are analytic functions and, by FTC, have exactly as many zeroes as its degree (including order).
- Roughly, one can imagine analytic functions as 'polynomial of finite/infinite degree'.

Number of Zeroes of Analytic functions

- All complex polynomials are analytic functions and, by FTC, have exactly as many zeroes as its degree (including order).
- Roughly, one can imagine analytic functions as 'polynomial of finite/infinite degree'.
- However, in contrast to polynomials, there are non-zero, non-constant analytic functions with no complex zero.

Number of Zeroes of Analytic functions

- All complex polynomials are analytic functions and, by FTC, have exactly as many zeroes as its degree (including order).
- Roughly, one can imagine analytic functions as 'polynomial of finite/infinite degree'.
- However, in contrast to polynomials, there are non-zero, non-constant analytic functions with no complex zero. For instance, $1 / z, e^{z}, e^{1 / z}$ etc.
- The zeroes of $\sin z$ are zeroes of $e^{22 z}-1=0$. Thus, the zeroes are $k \pi$ for all $k \in \mathbb{Z}$ (Countably infinite zeroes).

Number of Zeroes of Analytic functions

- All complex polynomials are analytic functions and, by FTC, have exactly as many zeroes as its degree (including order).
- Roughly, one can imagine analytic functions as 'polynomial of finite/infinite degree'.
- However, in contrast to polynomials, there are non-zero, non-constant analytic functions with no complex zero. For instance, $1 / z, e^{z}, e^{1 / z}$ etc.
- The zeroes of $\sin z$ are zeroes of $e^{22 z}-1=0$. Thus, the zeroes are $k \pi$ for all $k \in \mathbb{Z}$ (Countably infinite zeroes).
- The zeroes of $\sin (1 / z)$ are $1 / k \pi$ for all $k \in \mathbb{Z}$. The zeroes $1 / k \pi$ converge to the point of singularity 0 .

Number of Zeroes of Analytic functions

- All complex polynomials are analytic functions and, by FTC, have exactly as many zeroes as its degree (including order).
- Roughly, one can imagine analytic functions as 'polynomial of finite/infinite degree'.
- However, in contrast to polynomials, there are non-zero, non-constant analytic functions with no complex zero. For instance, $1 / z, e^{z}, e^{1 / z}$ etc.
- The zeroes of $\sin z$ are zeroes of $e^{22 z}-1=0$. Thus, the zeroes are $k \pi$ for all $k \in \mathbb{Z}$ (Countably infinite zeroes).
- The zeroes of $\sin (1 / z)$ are $1 / k \pi$ for all $k \in \mathbb{Z}$. The zeroes $1 / k \pi$ converge to the point of singularity 0 .
- The zeroes of $\sinh z$ are roots of $e^{2 z}-1=0$. Thus, the zeroes are $\imath k \pi$ for all $k \in \mathbb{Z}$ (Only imaginary zeroes).

Non-zero Holomorphic has Isolated Zeroes

Theorem

Let f be a non-zero holomorphic function in a domain $\Omega \subset \mathbb{C}$. If z_{0} is a zero of f then there is a neighbourhood $N\left(z_{0}\right)$ of z_{0} such that $f(z) \neq 0$ for all $z \in N\left(z_{0}\right)$.

Non-zero Holomorphic has Isolated Zeroes

Theorem

Let f be a non-zero holomorphic function in a domain $\Omega \subset \mathbb{C}$. If z_{0} is a zero of f then there is a neighbourhood $N\left(z_{0}\right)$ of z_{0} such that $f(z) \neq 0$ for all $z \in N\left(z_{0}\right)$.

Proof.

Since $f \not \equiv 0$, without loss of generality, say z_{0} is a zero of order $m<\infty$.

Non-zero Holomorphic has Isolated Zeroes

Theorem

Let f be a non-zero holomorphic function in a domain $\Omega \subset \mathbb{C}$. If z_{0} is a zero of f then there is a neighbourhood $N\left(z_{0}\right)$ of z_{0} such that $f(z) \neq 0$ for all $z \in N\left(z_{0}\right)$.

Proof.

Since $f \not \equiv 0$, without loss of generality, say z_{0} is a zero of order $m<\infty$. Then there is a holomorphic g such that $f(z)=\left(z-z_{0}\right)^{m} g(z)$ and $g\left(z_{0}\right) \neq 0$.

Non-zero Holomorphic has Isolated Zeroes

Theorem

Let f be a non-zero holomorphic function in a domain $\Omega \subset \mathbb{C}$. If z_{0} is a zero of f then there is a neighbourhood $N\left(z_{0}\right)$ of z_{0} such that $f(z) \neq 0$ for all $z \in N\left(z_{0}\right)$.

Proof.

Since $f \not \equiv 0$, without loss of generality, say z_{0} is a zero of order $m<\infty$.
Then there is a holomorphic g such that $f(z)=\left(z-z_{0}\right)^{m} g(z)$ and $g\left(z_{0}\right) \neq 0$. By continuity of g, there is a $\varepsilon>0$ such that for all $\left|z-z_{0}\right|<\varepsilon, g(z) \neq 0$. Thus, $f(z) \neq 0$ in $\left\{\left|z-z_{0}\right|<\varepsilon\right\}$.

Zero set of Non-zero Holomorphic has no Accumulation

Theorem (Identity Theorem)
Let f be holomorphic in a domain $\Omega \subset \mathbb{C}$. If $\left\{z_{n}\right\}$ is a sequence of zeroes of f such that its limit $z_{0} \in \Omega$ then $f \equiv 0$ in Ω.

Zero set of Non-zero Holomorphic has no Accumulation

Theorem (Identity Theorem)
Let f be holomorphic in a domain $\Omega \subset \mathbb{C}$. If $\left\{z_{n}\right\}$ is a sequence of zeroes of f such that its limit $z_{0} \in \Omega$ then $f \equiv 0$ in Ω.

Proof.

Let $E:=\left\{z \in \Omega \mid \exists\right.$ non-trivial $\left.\left\{z_{n}\right\} \subset \Omega \ni f\left(z_{n}\right)=0 \forall n, \lim _{n \rightarrow \infty} z_{n}=z\right\}$.

Zero set of Non-zero Holomorphic has no Accumulation

Theorem (Identity Theorem)

Let f be holomorphic in a domain $\Omega \subset \mathbb{C}$. If $\left\{z_{n}\right\}$ is a sequence of zeroes of f such that its limit $z_{0} \in \Omega$ then $f \equiv 0$ in Ω.

Proof.

Let $E:=\left\{z \in \Omega \mid \exists\right.$ non-trivial $\left.\left\{z_{n}\right\} \subset \Omega \ni f\left(z_{n}\right)=0 \forall n, \lim _{n \rightarrow \infty} z_{n}=z\right\}$. E is non-empty because $z_{0} \in E$ and, by continuity of $f, f(z)=0 \forall z \in E$.

Zero set of Non-zero Holomorphic has no Accumulation

Theorem (Identity Theorem)

Let f be holomorphic in a domain $\Omega \subset \mathbb{C}$. If $\left\{z_{n}\right\}$ is a sequence of zeroes of f such that its limit $z_{0} \in \Omega$ then $f \equiv 0$ in Ω.

Proof.

Let $E:=\left\{z \in \Omega \mid \exists\right.$ non-trivial $\left.\left\{z_{n}\right\} \subset \Omega \ni f\left(z_{n}\right)=0 \forall n, \lim _{n \rightarrow \infty} z_{n}=z\right\}$. E is non-empty because $z_{0} \in E$ and, by continuity of $f, f(z)=0 \forall z \in E$. E is closed in Ω. (Exercise!).

Zero set of Non-zero Holomorphic has no Accumulation

Theorem (Identity Theorem)

Let f be holomorphic in a domain $\Omega \subset \mathbb{C}$. If $\left\{z_{n}\right\}$ is a sequence of zeroes of f such that its limit $z_{0} \in \Omega$ then $f \equiv 0$ in Ω.

Proof.

Let $E:=\left\{z \in \Omega \mid \exists\right.$ non-trivial $\left.\left\{z_{n}\right\} \subset \Omega \ni f\left(z_{n}\right)=0 \forall n, \lim _{n \rightarrow \infty} z_{n}=z\right\}$. E is non-empty because $z_{0} \in E$ and, by continuity of $f, f(z)=0 \forall z \in E$. E is closed in Ω. (Exercise!). We claim E is also open.

Zero set of Non-zero Holomorphic has no Accumulation

Theorem (Identity Theorem)

Let f be holomorphic in a domain $\Omega \subset \mathbb{C}$. If $\left\{z_{n}\right\}$ is a sequence of zeroes of f such that its limit $z_{0} \in \Omega$ then $f \equiv 0$ in Ω.

Proof.

Let $E:=\left\{z \in \Omega \mid \exists\right.$ non-trivial $\left.\left\{z_{n}\right\} \subset \Omega \ni f\left(z_{n}\right)=0 \forall n, \lim _{n \rightarrow \infty} z_{n}=z\right\}$. E is non-empty because $z_{0} \in E$ and, by continuity of $f, f(z)=0 \forall z \in E$. E is closed in Ω. (Exercise!). We claim E is also open. For any $w \in E \subset \Omega$ there is an open ball $B \subset \Omega$ containing w.

Zero set of Non-zero Holomorphic has no Accumulation

Theorem (Identity Theorem)

Let f be holomorphic in a domain $\Omega \subset \mathbb{C}$. If $\left\{z_{n}\right\}$ is a sequence of zeroes of f such that its limit $z_{0} \in \Omega$ then $f \equiv 0$ in Ω.

Proof.

Let $E:=\left\{z \in \Omega \mid \exists\right.$ non-trivial $\left.\left\{z_{n}\right\} \subset \Omega \ni f\left(z_{n}\right)=0 \forall n, \lim _{n \rightarrow \infty} z_{n}=z\right\}$. E is non-empty because $z_{0} \in E$ and, by continuity of $f, f(z)=0 \forall z \in E$. E is closed in Ω. (Exercise!). We claim E is also open. For any $w \in E \subset \Omega$ there is an open ball $B \subset \Omega$ containing w. Since $f(w)=0$, suppose f is non-zero in B then w is an isolated zero of f contradicting the fact that $w \in E$.

Zero set of Non-zero Holomorphic has no Accumulation

Theorem (Identity Theorem)

Let f be holomorphic in a domain $\Omega \subset \mathbb{C}$. If $\left\{z_{n}\right\}$ is a sequence of zeroes of f such that its limit $z_{0} \in \Omega$ then $f \equiv 0$ in Ω.

Proof.

Let $E:=\left\{z \in \Omega \mid \exists\right.$ non-trivial $\left.\left\{z_{n}\right\} \subset \Omega \ni f\left(z_{n}\right)=0 \forall n, \lim _{n \rightarrow \infty} z_{n}=z\right\}$. E is non-empty because $z_{0} \in E$ and, by continuity of $f, f(z)=0 \forall z \in E$. E is closed in Ω. (Exercise!). We claim E is also open. For any $w \in E \subset \Omega$ there is an open ball $B \subset \Omega$ containing w. Since $f(w)=0$, suppose f is non-zero in B then w is an isolated zero of f contradicting the fact that $w \in E$. Thus, $f \equiv 0$ in B.

Zero set of Non-zero Holomorphic has no Accumulation

Theorem (Identity Theorem)

Let f be holomorphic in a domain $\Omega \subset \mathbb{C}$. If $\left\{z_{n}\right\}$ is a sequence of zeroes of f such that its limit $z_{0} \in \Omega$ then $f \equiv 0$ in Ω.

Proof.

Let $E:=\left\{z \in \Omega \mid \exists\right.$ non-trivial $\left.\left\{z_{n}\right\} \subset \Omega \ni f\left(z_{n}\right)=0 \forall n, \lim _{n \rightarrow \infty} z_{n}=z\right\}$. E is non-empty because $z_{0} \in E$ and, by continuity of $f, f(z)=0 \forall z \in E$. E is closed in Ω. (Exercise!). We claim E is also open. For any $w \in E \subset \Omega$ there is an open ball $B \subset \Omega$ containing w. Since $f(w)=0$, suppose f is non-zero in B then w is an isolated zero of f contradicting the fact that $w \in E$. Thus, $f \equiv 0$ in B. Hence E is open.

Zero set of Non-zero Holomorphic has no Accumulation

Theorem (Identity Theorem)

Let f be holomorphic in a domain $\Omega \subset \mathbb{C}$. If $\left\{z_{n}\right\}$ is a sequence of zeroes of f such that its limit $z_{0} \in \Omega$ then $f \equiv 0$ in Ω.

Proof.

Let $E:=\left\{z \in \Omega \mid \exists\right.$ non-trivial $\left.\left\{z_{n}\right\} \subset \Omega \ni f\left(z_{n}\right)=0 \forall n, \lim _{n \rightarrow \infty} z_{n}=z\right\}$. E is non-empty because $z_{0} \in E$ and, by continuity of $f, f(z)=0 \forall z \in E$. E is closed in Ω. (Exercise!). We claim E is also open. For any $w \in E \subset \Omega$ there is an open ball $B \subset \Omega$ containing w. Since $f(w)=0$, suppose f is non-zero in B then w is an isolated zero of f contradicting the fact that $w \in E$. Thus, $f \equiv 0$ in B. Hence E is open. Since E is non-empty, open and closed subset of connected $\Omega, E=\Omega$.

Laurent Series on Annular Domains

Theorem

If f is holomorphic in open set $\Omega \subset \mathbb{C}$ except at $z_{0} \in \Omega$ then $f(z)=\sum_{k=-\infty}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ in $\Omega \backslash\left\{\left|z-z_{0}\right|<r\right\}$ for any $r>0$ where $a_{k}=\frac{1}{2 \pi \imath} \int_{\gamma} \frac{f(w)}{\left(w-z_{0}\right)^{k+1}} d w$ for any simple loop $\gamma \subset \Omega \backslash\left\{\left|z-z_{0}\right|<r\right\}$.

Laurent Series on Annular Domains

Theorem

If f is holomorphic in open set $\Omega \subset \mathbb{C}$ except at $z_{0} \in \Omega$ then $f(z)=\sum_{k=-\infty}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ in $\Omega \backslash\left\{\left|z-z_{0}\right|<r\right\}$ for any $r>0$ where $a_{k}=\frac{1}{2 \pi \imath} \int_{\gamma} \frac{f(w)}{\left(w-z_{0}\right)^{k+1}} d w$ for any simple loop $\gamma \subset \Omega \backslash\left\{\left|z-z_{0}\right|<r\right\}$.

Proof Continued...

Note that

$$
f(z)=\frac{1}{2 \pi \imath} \int_{\gamma-C} \frac{f(w)}{w-z} d w
$$

Proof Continued...

Note that

$$
f(z)=\frac{1}{2 \pi \imath} \int_{\gamma-C} \frac{f(w)}{w-z} d w
$$

For $w \in \gamma$, the proof is similar to the power series because $\left|z-z_{0}\right|<\left|w-z_{0}\right|$.

Proof Continued...

Note that

$$
f(z)=\frac{1}{2 \pi \imath} \int_{\gamma-c} \frac{f(w)}{w-z} d w .
$$

For $w \in \gamma$, the proof is similar to the power series because $\left|z-z_{0}\right|<\left|w-z_{0}\right|$. For $w \in C,\left|z-z_{0}\right|>\left|w-z_{0}\right|$.

Proof Continued...

Note that

$$
f(z)=\frac{1}{2 \pi \imath} \int_{\gamma-C} \frac{f(w)}{w-z} d w .
$$

For $w \in \gamma$, the proof is similar to the power series because $\left|z-z_{0}\right|<\left|w-z_{0}\right|$. For $w \in C,\left|z-z_{0}\right|>\left|w-z_{0}\right|$.
Then

$$
-\frac{1}{2 \pi \imath} \int_{C} \frac{f(w)}{w-z} d w=\frac{1}{2 \pi \imath} \int_{C} \frac{f(w)}{z-z_{0}} \frac{1}{1-\frac{w-z_{0}}{z-z_{0}}} d w
$$

Proof Continued...

Note that

$$
f(z)=\frac{1}{2 \pi \imath} \int_{\gamma-C} \frac{f(w)}{w-z} d w .
$$

For $w \in \gamma$, the proof is similar to the power series because $\left|z-z_{0}\right|<\left|w-z_{0}\right|$. For $w \in C,\left|z-z_{0}\right|>\left|w-z_{0}\right|$.
Then

$$
\begin{aligned}
-\frac{1}{2 \pi \imath} \int_{C} \frac{f(w)}{w-z} d w & =\frac{1}{2 \pi \imath} \int_{C} \frac{f(w)}{z-z_{0}} \frac{1}{1-\frac{w-z_{0}}{z-z_{0}}} d w \\
& =\frac{1}{2 \pi \imath} \int_{C} \frac{f(w)}{z-z_{0}} \sum_{m=0}^{\infty}\left(\frac{w-z_{0}}{z-z_{0}}\right)^{m} d w
\end{aligned}
$$

Proof Continued...

Note that

$$
f(z)=\frac{1}{2 \pi \imath} \int_{\gamma-C} \frac{f(w)}{w-z} d w
$$

For $w \in \gamma$, the proof is similar to the power series because $\left|z-z_{0}\right|<\left|w-z_{0}\right|$. For $w \in C,\left|z-z_{0}\right|>\left|w-z_{0}\right|$.
Then

$$
\begin{aligned}
-\frac{1}{2 \pi \imath} \int_{C} \frac{f(w)}{w-z} d w & =\frac{1}{2 \pi \imath} \int_{C} \frac{f(w)}{z-z_{0}} \frac{1}{1-\frac{w-z_{0}}{z-z_{0}}} d w \\
& =\frac{1}{2 \pi \imath} \int_{C} \frac{f(w)}{z-z_{0}} \sum_{m=0}^{\infty}\left(\frac{w-z_{0}}{z-z_{0}}\right)^{m} d w \\
& =\frac{1}{2 \pi \imath} \sum_{k=1}^{\infty}\left(z-z_{0}\right)^{-k} \int_{\gamma} \frac{f(w)}{\left(w-z_{0}\right)^{-k+1}} d w
\end{aligned}
$$

Proof Continued...

Note that

$$
f(z)=\frac{1}{2 \pi \imath} \int_{\gamma-c} \frac{f(w)}{w-z} d w
$$

For $w \in \gamma$, the proof is similar to the power series because $\left|z-z_{0}\right|<\left|w-z_{0}\right|$. For $w \in C,\left|z-z_{0}\right|>\left|w-z_{0}\right|$.
Then

$$
\begin{aligned}
-\frac{1}{2 \pi \imath} \int_{C} \frac{f(w)}{w-z} d w & =\frac{1}{2 \pi \imath} \int_{C} \frac{f(w)}{z-z_{0}} \frac{1}{1-\frac{w-z_{0}}{z-z_{0}}} d w \\
& =\frac{1}{2 \pi \imath} \int_{C} \frac{f(w)}{z-z_{0}} \sum_{m=0}^{\infty}\left(\frac{w-z_{0}}{z-z_{0}}\right)^{m} d w \\
& =\frac{1}{2 \pi \imath} \sum_{k=1}^{\infty}\left(z-z_{0}\right)^{-k} \int_{\gamma} \frac{f(w)}{\left(w-z_{0}\right)^{-k+1}} d w \\
& =\sum_{k=-1}^{-\infty} a_{k}\left(z-z_{0}\right)^{k}
\end{aligned}
$$

Calculus of Residues

Definition

let f be holomorphic in Ω except at $z_{0} \in \Omega$. The residue of f at z_{0} is

$$
\operatorname{Res}_{z=z_{0}} f(z):=\frac{1}{2 \pi \imath} \int_{\gamma} f(z) d z
$$

for any simple loop γ with z_{0} in its interior. The residue of f at z_{0} is the coefficient a_{-1}.

Calculus of Residues

Definition

let f be holomorphic in Ω except at $z_{0} \in \Omega$. The residue of f at z_{0} is

$$
\operatorname{Res}_{z=z_{0}} f(z):=\frac{1}{2 \pi \imath} \int_{\gamma} f(z) d z
$$

for any simple loop γ with z_{0} in its interior. The residue of f at z_{0} is the coefficient a_{-1}.

Theorem

Let γ be a simple loop oriented counter-clockwise and f is holomorphic in its interior except at finite number of poles z_{1}, \ldots, z_{k}. Then

$$
\frac{1}{2 \pi \imath} \int_{\gamma} f(z) d z=\sum_{j=1}^{k} \operatorname{Res}_{z=z_{k}} f(z)
$$

Proof Sketch of Residue Theorem

Simply Periodic Functions

Definition

A holomorphic function $f: \Omega \subset \mathbb{C} \rightarrow \mathbb{C}$ is said to be periodic if there is a non-zero $\omega \in \mathbb{C}$ such that $f(z+\omega)=f(z)$ for all $z \in \mathbb{C}$ and ω is called the period of f.

Simply Periodic Functions

Definition
 A holomorphic function $f: \Omega \subset \mathbb{C} \rightarrow \mathbb{C}$ is said to be periodic if there is a non-zero $\omega \in \mathbb{C}$ such that $f(z+\omega)=f(z)$ for all $z \in \mathbb{C}$ and ω is called the period of f.

- The domain Ω should be such that, for all $z \in \Omega, z+k \omega \in \Omega$.

Simply Periodic Functions

Definition

A holomorphic function $f: \Omega \subset \mathbb{C} \rightarrow \mathbb{C}$ is said to be periodic if there is a non-zero $\omega \in \mathbb{C}$ such that $f(z+\omega)=f(z)$ for all $z \in \mathbb{C}$ and ω is called the period of f.

- The domain Ω should be such that, for all $z \in \Omega, z+k \omega \in \Omega$.
- The function $e^{i z}$ is 2π periodic with the domain being the strip $\{|\Im(z)|<\pi\}$ and the image is the annular region $\left\{e^{-\pi}<|w|<e^{\pi}\right\}$. The inverse is given by $\log (w)$.

Simply Periodic Functions

Definition

A holomorphic function $f: \Omega \subset \mathbb{C} \rightarrow \mathbb{C}$ is said to be periodic if there is a non-zero $\omega \in \mathbb{C}$ such that $f(z+\omega)=f(z)$ for all $z \in \mathbb{C}$ and ω is called the period of f.

- The domain Ω should be such that, for all $z \in \Omega, z+k \omega \in \Omega$.
- The function $e^{\imath z}$ is 2π periodic with the domain being the strip $\{|\Im(z)|<\pi\}$ and the image is the annular region $\left\{e^{-\pi}<|w|<e^{\pi}\right\}$. The inverse is given by $\log (w)$.
- More generally, $e^{\imath k z}, \sin k z$ and $\cos k z$ are all 2π periodic functions.

Simply Periodic Functions

Definition

A holomorphic function $f: \Omega \subset \mathbb{C} \rightarrow \mathbb{C}$ is said to be periodic if there is a non-zero $\omega \in \mathbb{C}$ such that $f(z+\omega)=f(z)$ for all $z \in \mathbb{C}$ and ω is called the period of f.

- The domain Ω should be such that, for all $z \in \Omega, z+k \omega \in \Omega$.
- The function $e^{i z}$ is 2π periodic with the domain being the strip $\{|\Im(z)|<\pi\}$ and the image is the annular region $\left\{e^{-\pi}<|w|<e^{\pi}\right\}$. The inverse is given by $\log (w)$.
- More generally, $e^{\imath k z}, \sin k z$ and $\cos k z$ are all 2π periodic functions.
- The 2π periodic holomorphic functions f is in one-to-one correspondence with holomorphic functions g on the annulus $\left\{e^{\pi}<|w|<e^{\pi}\right\}$. Given f, set $g(w)=f(\log w)$ and given g, set $f(z)=g\left(e^{i z}\right)$.

Fourier Series Via Laurent Series

Theorem
If f is a 2π periodic function in the strip $\{|\Im(z)|<\pi\}$ then f admits the Fourier series representation $f(z)=\sum_{k=-\infty}^{\infty} a_{k} e^{\imath k z}$ where $a_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) e^{-\imath k \theta} d \theta$.

Fourier Series Via Laurent Series

Theorem
If f is a 2π periodic function in the strip $\{|\Im(z)|<\pi\}$ then f admits the Fourier series representation $f(z)=\sum_{k=-\infty}^{\infty} a_{k} e^{e k z}$ where $a_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) e^{-i k \theta} d \theta$.

Proof.

The function $g(w)=f(\log w)$ is holomorphic in the annular region

Fourier Series Via Laurent Series

Theorem

If f is a 2π periodic function in the strip $\{|\Im(z)|<\pi\}$ then f admits the Fourier series representation $f(z)=\sum_{k=-\infty}^{\infty} a_{k} e^{\imath k z}$ where $a_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) e^{-\imath k \theta} d \theta$.

Proof.

The function $g(w)=f(\log w)$ is holomorphic in the annular region and admits Laurent series expansion $g(w)=\sum_{k=-\infty}^{\infty} a_{k} w^{k}$ with $a_{k}=\frac{1}{2 \pi \imath} \int_{|w|=1} \frac{g(w)}{w^{n+1}} d w$.

Fourier Series Via Laurent Series

Theorem

If f is a 2π periodic function in the strip $\{|\Im(z)|<\pi\}$ then f admits the Fourier series representation $f(z)=\sum_{k=-\infty}^{\infty} a_{k} e^{\imath k z}$ where $a_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) e^{-\imath k \theta} d \theta$.

Proof.

The function $g(w)=f(\log w)$ is holomorphic in the annular region and admits Laurent series expansion $g(w)=\sum_{k=-\infty}^{\infty} a_{k} w^{k}$ with
$a_{k}=\frac{1}{2 \pi \imath} \int_{|w|=1} \frac{g(w)}{w^{n+1}} d w$. Then, $f(z)=g\left(e^{\imath z}\right)=\sum_{k=-\infty}^{\infty} a_{k} e^{\imath k z}$.

Fourier Series Via Laurent Series

Theorem

If f is a 2π periodic function in the strip $\{|\Im(z)|<\pi\}$ then f admits the Fourier series representation $f(z)=\sum_{k=-\infty}^{\infty} a_{k} e^{\imath k z}$ where $a_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) e^{-i k \theta} d \theta$.

Proof.

The function $g(w)=f(\log w)$ is holomorphic in the annular region and admits Laurent series expansion $g(w)=\sum_{k=-\infty}^{\infty} a_{k} w^{k}$ with
$a_{k}=\frac{1}{2 \pi \imath} \int_{|w|=1} \frac{g(w)}{w^{n+1}} d w$. Then, $f(z)=g\left(e^{\imath z}\right)=\sum_{k=-\infty}^{\infty} a_{k} e^{\imath k z}$. Further,

$$
a_{k}=\frac{1}{2 \pi \imath} \int_{0}^{2 \pi} \frac{g\left(e^{\imath \theta}\right)}{e^{\imath(k+1) \theta}} \imath e^{\imath \theta} d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) e^{-\imath k \theta} d \theta
$$

Removable Singularity

Definition

We say z_{0} is singularity of f if f is not holomorphic at z_{0} but every neigbourhood of z_{0} has at least one point where f is holomorphic.

Removable Singularity

Definition

We say z_{0} is singularity of f if f is not holomorphic at z_{0} but every neigbourhood of z_{0} has at least one point where f is holomorphic. We say the singularity is isolated if the function is holomorphic in a neighbourhood of z_{0}.

Removable Singularity

Definition

We say z_{0} is singularity of f if f is not holomorphic at z_{0} but every neigbourhood of z_{0} has at least one point where f is holomorphic. We say the singularity is isolated if the function is holomorphic in a neighbourhood of z_{0}. A removable singularity is a singular point z_{0} if the function is bounded in a neighbourhood of z_{0}.

Removable Singularity

Definition

We say z_{0} is singularity of f if f is not holomorphic at z_{0} but every neigbourhood of z_{0} has at least one point where f is holomorphic. We say the singularity is isolated if the function is holomorphic in a neighbourhood of z_{0}. A removable singularity is a singular point z_{0} if the function is bounded in a neighbourhood of z_{0}.

- $\bar{z}, \Re(z)$ are not holomorphic in \mathbb{C} hence has no singularities.

Removable Singularity

Definition

We say z_{0} is singularity of f if f is not holomorphic at z_{0} but every neigbourhood of z_{0} has at least one point where f is holomorphic. We say the singularity is isolated if the function is holomorphic in a neighbourhood of z_{0}. A removable singularity is a singular point z_{0} if the function is bounded in a neighbourhood of z_{0}.

- $\bar{z}, \Re(z)$ are not holomorphic in \mathbb{C} hence has no singularities.
- $\frac{1}{\sin (1 / z)}$ has non-isolated singularity at 0 which is an limit point of the isolated singularities $\left\{\frac{1}{k \pi}\right\}$ for $\pm k=\mathbb{N}$.

Removable Singularity

Definition

We say z_{0} is singularity of f if f is not holomorphic at z_{0} but every neigbourhood of z_{0} has at least one point where f is holomorphic. We say the singularity is isolated if the function is holomorphic in a neighbourhood of z_{0}. A removable singularity is a singular point z_{0} if the function is bounded in a neighbourhood of z_{0}.

- $\bar{z}, \Re(z)$ are not holomorphic in \mathbb{C} hence has no singularities.
- $\frac{1}{\sin (1 / z)}$ has non-isolated singularity at 0 which is an limit point of the isolated singularities $\left\{\frac{1}{k \pi}\right\}$ for $\pm k=\mathbb{N}$.
- The singularity 0 of $\log z$ is non-isolated because it is a branch point.

Removable Singularity

Definition

We say z_{0} is singularity of f if f is not holomorphic at z_{0} but every neigbourhood of z_{0} has at least one point where f is holomorphic. We say the singularity is isolated if the function is holomorphic in a neighbourhood of z_{0}. A removable singularity is a singular point z_{0} if the function is bounded in a neighbourhood of z_{0}.

- $\bar{z}, \Re(z)$ are not holomorphic in \mathbb{C} hence has no singularities.
- $\frac{1}{\sin (1 / z)}$ has non-isolated singularity at 0 which is an limit point of the isolated singularities $\left\{\frac{1}{k \pi}\right\}$ for $\pm k=\mathbb{N}$.
- The singularity 0 of $\log z$ is non-isolated because it is a branch point.
- The sinc function $\frac{\sin z}{z}$ has removable singularity at 0 since $\lim _{z \rightarrow 0} \frac{\sin z}{z}=1$.

Removable Singularity

Theorem (Riemann Removable Singularity Theorem)
If f is holomorphic and bounded in $\Omega \backslash\left\{z_{0}\right\}$ then the extension

$$
\tilde{f}(z)= \begin{cases}f(z) & z \neq z_{0} \\ \lim _{w \rightarrow z_{0}} f(w) & z=z_{0}\end{cases}
$$

is holomorphic in Ω. Also, f has removable singularity iff $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=0$.

Pole and Essential Singularity

Definition

A pole z_{0} is a point at which the function blows-up i.e. it is unbounded in a neighbourhood of z_{0}. A pole z_{0} is of order k if $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{k} f(z)$ is finite and non-zero. If no such k exists then z_{0} is an essential singularity of f, i.e. pole of infinite order.

Pole and Essential Singularity

Definition

A pole z_{0} is a point at which the function blows-up i.e. it is unbounded in a neighbourhood of z_{0}. A pole z_{0} is of order k if $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{k} f(z)$ is finite and non-zero. If no such k exists then z_{0} is an essential singularity of f, i.e. pole of infinite order.

Theorem
f has a pole of order k iff $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{k+1} f(z)=0$.

Pole and Essential Singularity

Definition

A pole z_{0} is a point at which the function blows-up i.e. it is unbounded in a neighbourhood of z_{0}. A pole z_{0} is of order k if $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{k} f(z)$ is finite and non-zero. If no such k exists then z_{0} is an essential singularity of f, i.e. pole of infinite order.

Theorem
f has a pole of order k iff $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{k+1} f(z)=0$.

- The function $e^{1 / z}$ has an essential singularity at 0 .

Pole and Essential Singularity

Definition

A pole z_{0} is a point at which the function blows-up i.e. it is unbounded in a neighbourhood of z_{0}. A pole z_{0} is of order k if $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{k} f(z)$ is finite and non-zero. If no such k exists then z_{0} is an essential singularity of f, i.e. pole of infinite order.

Theorem

f has a pole of order k iff $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{k+1} f(z)=0$.

- The function $e^{1 / z}$ has an essential singularity at 0 .
- The complex function

$$
\frac{e^{\frac{-1}{(z-1)^{2}}}}{\left(z^{2}+1\right)(z+2)^{2 / 3}}
$$

has a simple pole at $\pm \imath$,

Pole and Essential Singularity

Definition

A pole z_{0} is a point at which the function blows-up i.e. it is unbounded in a neighbourhood of z_{0}. A pole z_{0} is of order k if $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{k} f(z)$ is finite and non-zero. If no such k exists then z_{0} is an essential singularity of f, i.e. pole of infinite order.

Theorem

f has a pole of order k iff $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{k+1} f(z)=0$.

- The function $e^{1 / z}$ has an essential singularity at 0 .
- The complex function

$$
\frac{e^{\frac{-1}{(z-1)^{2}}}}{\left(z^{2}+1\right)(z+2)^{2 / 3}}
$$

has a simple pole at $\pm \imath$, a branch point at -2

Pole and Essential Singularity

Definition

A pole z_{0} is a point at which the function blows-up i.e. it is unbounded in a neighbourhood of z_{0}. A pole z_{0} is of order k if $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{k} f(z)$ is finite and non-zero. If no such k exists then z_{0} is an essential singularity of f, i.e. pole of infinite order.

Theorem

f has a pole of order k iff $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{k+1} f(z)=0$.

- The function $e^{1 / z}$ has an essential singularity at 0 .
- The complex function

$$
\frac{e^{\frac{-1}{(z-1)^{2}}}}{\left(z^{2}+1\right)(z+2)^{2 / 3}}
$$

has a simple pole at $\pm \imath$, a branch point at -2 and an essential singularity at $z=1$.

Property of Essential Singularity

Theorem (Casorati-Weierstrass)

If f has an essential singularity at z_{0} and is holomorphic in a punctured neighbourhood $U:=B_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$ of z_{0} then the image $f(U)$ is dense in \mathbb{C}.

Property of Essential Singularity

Theorem (Casorati-Weierstrass)

If f has an essential singularity at z_{0} and is holomorphic in a punctured neighbourhood $U:=B_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$ of z_{0} then the image $f(U)$ is dense in \mathbb{C}.

Proof.

Suppose $\overline{f(U)} \neq \mathbb{C}$

Property of Essential Singularity

Theorem (Casorati-Weierstrass)

If f has an essential singularity at z_{0} and is holomorphic in a punctured neighbourhood $U:=B_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$ of z_{0} then the image $f(U)$ is dense in \mathbb{C}.

Proof.

Suppose $\overline{f(U)} \neq \mathbb{C}$ then choose a $w \in \mathbb{C} \backslash \overline{f(U)}$,

Property of Essential Singularity

Theorem (Casorati-Weierstrass)

If f has an essential singularity at z_{0} and is holomorphic in a punctured neighbourhood $U:=B_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$ of z_{0} then the image $f(U)$ is dense in \mathbb{C}.

Proof.

Suppose $\overline{f(U)} \neq \mathbb{C}$ then choose a $w \in \mathbb{C} \backslash \overline{f(U)}$, i.e. there is an $\varepsilon>0$ such that $|f(z)-w| \geq \varepsilon$ for all $z \in U$.

Property of Essential Singularity

Theorem (Casorati-Weierstrass)

If f has an essential singularity at z_{0} and is holomorphic in a punctured neighbourhood $U:=B_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$ of z_{0} then the image $f(U)$ is dense in \mathbb{C}.

Proof.

Suppose $\overline{f(U)} \neq \mathbb{C}$ then choose a $w \in \mathbb{C} \backslash \overline{f(U)}$, i.e. there is an $\varepsilon>0$ such that $|f(z)-w| \geq \varepsilon$ for all $z \in U$. Set $g(z):=\frac{1}{f(z)-w}$.

Property of Essential Singularity

Theorem (Casorati-Weierstrass)

If f has an essential singularity at z_{0} and is holomorphic in a punctured neighbourhood $U:=B_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$ of z_{0} then the image $f(U)$ is dense in \mathbb{C}.

Proof.

Suppose $\overline{f(U)} \neq \mathbb{C}$ then choose a $w \in \mathbb{C} \backslash \overline{f(U)}$, i.e. there is an $\varepsilon>0$ such that $|f(z)-w| \geq \varepsilon$ for all $z \in U$. Set $g(z):=\frac{1}{f(z)-w}$. Then g is holomorphic and bounded by $1 / \varepsilon$ in U.

Property of Essential Singularity

Theorem (Casorati-Weierstrass)

If f has an essential singularity at z_{0} and is holomorphic in a punctured neighbourhood $U:=B_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$ of z_{0} then the image $f(U)$ is dense in \mathbb{C}.

Proof.

Suppose $\overline{f(U)} \neq \mathbb{C}$ then choose a $w \in \mathbb{C} \backslash \overline{f(U)}$, i.e. there is an $\varepsilon>0$ such that $|f(z)-w| \geq \varepsilon$ for all $z \in U$. Set $g(z):=\frac{1}{f(z)-w}$. Then g is holomorphic and bounded by $1 / \varepsilon$ in U. By Riemann removable singularity result, z_{0} is a removable singularity of g and can be extended holomorphic to $U \cup\left\{z_{0}\right\}$.

Property of Essential Singularity

Theorem (Casorati-Weierstrass)

If f has an essential singularity at z_{0} and is holomorphic in a punctured neighbourhood $U:=B_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$ of z_{0} then the image $f(U)$ is dense in \mathbb{C}.

Proof.

Suppose $\overline{f(U)} \neq \mathbb{C}$ then choose a $w \in \mathbb{C} \backslash \overline{f(U)}$, i.e. there is an $\varepsilon>0$ such that $|f(z)-w| \geq \varepsilon$ for all $z \in U$. Set $g(z):=\frac{1}{f(z)-w}$. Then g is holomorphic and bounded by $1 / \varepsilon$ in U. By Riemann removable singularity result, z_{0} is a removable singularity of g and can be extended holomorphic to $U \cup\left\{z_{0}\right\}$. Then $f(z)=w+\frac{1}{g(z)}$ has either a pole $\left(g\left(z_{0}\right)=0\right)$

Property of Essential Singularity

Theorem (Casorati-Weierstrass)

If f has an essential singularity at z_{0} and is holomorphic in a punctured neighbourhood $U:=B_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$ of z_{0} then the image $f(U)$ is dense in \mathbb{C}.

Proof.

Suppose $\overline{f(U)} \neq \mathbb{C}$ then choose a $w \in \mathbb{C} \backslash \overline{f(U)}$, i.e. there is an $\varepsilon>0$ such that $|f(z)-w| \geq \varepsilon$ for all $z \in U$. Set $g(z):=\frac{1}{f(z)-w}$. Then g is holomorphic and bounded by $1 / \varepsilon$ in U. By Riemann removable singularity result, z_{0} is a removable singularity of g and can be extended holomorphic to $U \cup\left\{z_{0}\right\}$. Then $f(z)=w+\frac{1}{g(z)}$ has either a pole $\left(g\left(z_{0}\right)=0\right)$ or removable singularity $\left(g\left(z_{0}\right) \neq 0\right)$ at z_{0}, a contradiction.

Complex singularities of Real Functions

- The real function $\left(1+x^{2}\right)^{-1}$ is defined and differentiable in all \mathbb{R} but its power series converges only in $(-1,1)$. Why?

Complex singularities of Real Functions

- The real function $\left(1+x^{2}\right)^{-1}$ is defined and differentiable in all \mathbb{R} but its power series converges only in $(-1,1)$. Why?
- The analytic extension of the above real function is $\left(1+z^{2}\right)^{-1}$ which has singularities at $\pm \imath$.

Complex singularities of Real Functions

- The real function $\left(1+x^{2}\right)^{-1}$ is defined and differentiable in all \mathbb{R} but its power series converges only in $(-1,1)$. Why?
- The analytic extension of the above real function is $\left(1+z^{2}\right)^{-1}$ which has singularities at $\pm \imath$.
- The above singularities forced the radius of convergence to be one.

Complex singularities of Real Functions

- The real function $\left(1+x^{2}\right)^{-1}$ is defined and differentiable in all \mathbb{R} but its power series converges only in $(-1,1)$. Why?
- The analytic extension of the above real function is $\left(1+z^{2}\right)^{-1}$ which has singularities at $\pm \imath$.
- The above singularities forced the radius of convergence to be one.
- The radius of convergence of a complex analytic function is the distance from the nearest singularity!

Dense and No-where Dense Subsets

Definition

A subset E of a topological space X is said to be dense in X, if $\bar{E}=X$, where \bar{E} is the closure of E.

Dense and No-where Dense Subsets

Definition

A subset E of a topological space X is said to be dense in X, if $\bar{E}=X$, where \bar{E} is the closure of E.

Definition

A subset E of a topological space X is said to be nowhere dense in X, if $\operatorname{lnt}(\bar{E})=\emptyset$.

Dense and No-where Dense Subsets

Definition

A subset E of a topological space X is said to be dense in X, if $\bar{E}=X$, where \bar{E} is the closure of E.

Definition

A subset E of a topological space X is said to be nowhere dense in X, if $\operatorname{lnt}(\bar{E})=\emptyset$.

Definition

A topological space is said to be separable if it contains a countable dense subset.

Distance from a Set

Definition

Let (X, d) be a metric space and let E be a subset of X. For any given $x \in X$, we define the distance of E from x, denoted as $d(x, E)$, as:

$$
d(x, E):=\inf _{y \in X} d(x, y) .
$$

Distance from a Set

Definition

Let (X, d) be a metric space and let E be a subset of X. For any given $x \in X$, we define the distance of E from x, denoted as $d(x, E)$, as:

$$
d(x, E):=\inf _{y \in X} d(x, y) .
$$

Of course, $d(x, E)=0$ for all $x \in \bar{E}$.

Distance from a Set

Definition

Let (X, d) be a metric space and let E be a subset of X. For any given $x \in X$, we define the distance of E from x, denoted as $d(x, E)$, as:

$$
d(x, E):=\inf _{y \in X} d(x, y) .
$$

Of course, $d(x, E)=0$ for all $x \in \bar{E}$.

Theorem

Let (X, d) be a metric space and $E \subset X$. Then

$$
|d(x, E)-d(y, E)| \leq d(x, y) \quad \forall x, y \in X
$$

In particular, the function $x \mapsto d(x, E)$ is uniformly continuous on X.

Proof

Set $f(x)=d(x, E)$.

Proof

Set $f(x)=d(x, E)$. Note that E is either dense or not dense in X.

Proof

Set $f(x)=d(x, E)$. Note that E is either dense or not dense in X. If E is dense in X, then $\bar{E}=X$.

Proof

Set $f(x)=d(x, E)$. Note that E is either dense or not dense in X. If E is dense in X, then $\bar{E}=X$. Then $f(X)=\{0\}$ is the constant function zero and is continuous.

Proof

Set $f(x)=d(x, E)$. Note that E is either dense or not dense in X. If E is dense in X, then $\bar{E}=X$. Then $f(X)=\{0\}$ is the constant function zero and is continuous. Now, let $\bar{E} \neq X$.

Proof

Set $f(x)=d(x, E)$. Note that E is either dense or not dense in X. If E is dense in X, then $\bar{E}=X$. Then $f(X)=\{0\}$ is the constant function zero and is continuous. Now, let $\bar{E} \neq X$. By definition of f, for any given $\varepsilon>0$, there is a $e \in E$ such that $d(x, e) \leq f(x)+\varepsilon$.

Proof

Set $f(x)=d(x, E)$. Note that E is either dense or not dense in X. If E is dense in X, then $\bar{E}=X$. Then $f(X)=\{0\}$ is the constant function zero and is continuous. Now, let $\bar{E} \neq X$. By definition of f, for any given $\varepsilon>0$, there is a $e \in E$ such that $d(x, e) \leq f(x)+\varepsilon$. Therefore,

$$
f(y)-f(x) \leq d(y, e)-d(x, e)+\varepsilon \leq d(y, x)+\varepsilon
$$

where the last inequality is by triangle inequality.

Proof

Set $f(x)=d(x, E)$. Note that E is either dense or not dense in X. If E is dense in X, then $\bar{E}=X$. Then $f(X)=\{0\}$ is the constant function zero and is continuous. Now, let $\bar{E} \neq X$. By definition of f, for any given $\varepsilon>0$, there is a $e \in E$ such that $d(x, e) \leq f(x)+\varepsilon$. Therefore,

$$
f(y)-f(x) \leq d(y, e)-d(x, e)+\varepsilon \leq d(y, x)+\varepsilon
$$

where the last inequality is by triangle inequality. Repeat the above argument, by interchanging the role of x and y, but with same ε. Then, we get

$$
|f(y)-f(x)| \leq d(x, y)+\varepsilon
$$

Proof

Set $f(x)=d(x, E)$. Note that E is either dense or not dense in X. If E is dense in X, then $\bar{E}=X$. Then $f(X)=\{0\}$ is the constant function zero and is continuous. Now, let $\bar{E} \neq X$. By definition of f, for any given $\varepsilon>0$, there is a $e \in E$ such that $d(x, e) \leq f(x)+\varepsilon$. Therefore,

$$
f(y)-f(x) \leq d(y, e)-d(x, e)+\varepsilon \leq d(y, x)+\varepsilon
$$

where the last inequality is by triangle inequality. Repeat the above argument, by interchanging the role of x and y, but with same ε. Then, we get

$$
|f(y)-f(x)| \leq d(x, y)+\varepsilon
$$

Since choice of ε was arbitrary, we get

$$
|f(y)-f(x)| \leq d(x, y)
$$

Thus, f is Lipschitz and, hence, continuous.

First and Second Category Sets

Definition

A subset $E \subset X$ of a topological space is said to be of the first category in X if it is the countable union of no-where dense sets.

First and Second Category Sets

Definition

A subset $E \subset X$ of a topological space is said to be of the first category in X if it is the countable union of no-where dense sets. A subset which is not of the first category is said to be of the second category.

First and Second Category Sets

Definition

A subset $E \subset X$ of a topological space is said to be of the first category in X if it is the countable union of no-where dense sets. A subset which is not of the first category is said to be of the second category.

Theorem

Let $\left\{U_{i}\right\}_{1}^{n}$ be a finite collection of dense open subsets of a metric space X. Then $U=\cap_{i=1}^{n} U_{i}$ is dense in X.

First and Second Category Sets

Definition

A subset $E \subset X$ of a topological space is said to be of the first category in X if it is the countable union of no-where dense sets. A subset which is not of the first category is said to be of the second category.

Theorem

Let $\left\{U_{i}\right\}_{1}^{n}$ be a finite collection of dense open subsets of a metric space X. Then $U=\cap_{i=1}^{n} U_{i}$ is dense in X.

Proof:

- It is enough to show that, for any $x_{0} \in X$ and $\varepsilon_{0}>0$, $B_{\varepsilon_{0}}\left(x_{0}\right) \cap U \neq \emptyset$.

First and Second Category Sets

Definition

A subset $E \subset X$ of a topological space is said to be of the first category in X if it is the countable union of no-where dense sets. A subset which is not of the first category is said to be of the second category.

Theorem

Let $\left\{U_{i}\right\}_{1}^{n}$ be a finite collection of dense open subsets of a metric space X. Then $U=\cap_{i=1}^{n} U_{i}$ is dense in X.

Proof:

- It is enough to show that, for any $x_{0} \in X$ and $\varepsilon_{0}>0$, $B_{\varepsilon_{0}}\left(x_{0}\right) \cap U \neq \emptyset$.
- By the density of $U_{1}, B_{\varepsilon_{0}}\left(x_{0}\right) \cap U_{1} \neq \emptyset$ and hence there is a $x_{1} \in B_{\varepsilon_{0}}\left(x_{0}\right) \cap U_{1}$.

First and Second Category Sets

Definition

A subset $E \subset X$ of a topological space is said to be of the first category in X if it is the countable union of no-where dense sets. A subset which is not of the first category is said to be of the second category.

Theorem

Let $\left\{U_{i}\right\}_{1}^{n}$ be a finite collection of dense open subsets of a metric space X. Then $U=\cap_{i=1}^{n} U_{i}$ is dense in X.

Proof:

- It is enough to show that, for any $x_{0} \in X$ and $\varepsilon_{0}>0$, $B_{\varepsilon_{0}}\left(x_{0}\right) \cap U \neq \emptyset$.
- By the density of $U_{1}, B_{\varepsilon_{0}}\left(x_{0}\right) \cap U_{1} \neq \emptyset$ and hence there is a $x_{1} \in B_{\varepsilon_{0}}\left(x_{0}\right) \cap U_{1}$.
- Further, since $B_{\varepsilon_{0}}\left(x_{0}\right) \cap U_{1}$ is open, there is a $\varepsilon_{1}>0$ such that $B_{\varepsilon_{1}}\left(x_{1}\right) \subset B_{\varepsilon_{0}}\left(x_{0}\right) \cap U_{1}$.

Proof Continued...

- Repeat the above argument for x_{1}, ε_{1} and U_{2} to obtain a $x_{2}, \varepsilon_{2}>0$ and $B_{\varepsilon_{2}}\left(x_{2}\right) \subset B_{\varepsilon_{1}}\left(x_{1}\right) \cap U_{2}$.

Proof Continued...

- Repeat the above argument for x_{1}, ε_{1} and U_{2} to obtain a $x_{2}, \varepsilon_{2}>0$ and $B_{\varepsilon_{2}}\left(x_{2}\right) \subset B_{\varepsilon_{1}}\left(x_{1}\right) \cap U_{2}$.
- Proceeding this way, we construct $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subset X$ and positive numbers $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}$ such that $B_{\varepsilon_{i}}\left(x_{i}\right) \subset B_{\varepsilon_{i-1}}\left(x_{i-1}\right) \cap U_{i}$, for all $i=1,2, \ldots, n$.

Proof Continued...

- Repeat the above argument for x_{1}, ε_{1} and U_{2} to obtain a $x_{2}, \varepsilon_{2}>0$ and $B_{\varepsilon_{2}}\left(x_{2}\right) \subset B_{\varepsilon_{1}}\left(x_{1}\right) \cap U_{2}$.
- Proceeding this way, we construct $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subset X$ and positive numbers $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}$ such that $B_{\varepsilon_{i}}\left(x_{i}\right) \subset B_{\varepsilon_{i-1}}\left(x_{i-1}\right) \cap U_{i}$, for all $i=1,2, \ldots, n$.
- Thus, by our construction, $x_{n} \in B_{\varepsilon_{0}}\left(x_{0}\right) \cap U$. Since x_{0} and ε_{0} were arbitrary, we have shown the density of U in X.

Baire Category Theorem

Theorem
Let X be a complete metric space and $\left\{U_{i}\right\}_{1}^{\infty}$ be a sequence of dense open subsets of X, then $U=\cap_{i=1}^{\infty} U_{i}$ is dense in X.

Baire Category Theorem

Theorem

Let X be a complete metric space and $\left\{U_{i}\right\}_{1}^{\infty}$ be a sequence of dense open subsets of X, then $U=\cap_{i=1}^{\infty} U_{i}$ is dense in X. Equivalently, if $\left\{F_{i}\right\}_{1}^{\infty}$ is a sequence of nowhere dense closed subsets of X then $\cup_{i=1}^{\infty} F_{i}$ is nowhere dense in X.

Proof:

- Let $x_{0} \in X$ and $\varepsilon>0$. We have to show that $B_{\varepsilon}\left(x_{0}\right) \cap U \neq \emptyset$.

Baire Category Theorem

Theorem

Let X be a complete metric space and $\left\{U_{i}\right\}_{1}^{\infty}$ be a sequence of dense open subsets of X, then $U=\cap_{i=1}^{\infty} U_{i}$ is dense in X. Equivalently, if $\left\{F_{i}\right\}_{1}^{\infty}$ is a sequence of nowhere dense closed subsets of X then $\cup_{i=1}^{\infty} F_{i}$ is nowhere dense in X.

Proof:

- Let $x_{0} \in X$ and $\varepsilon>0$. We have to show that $B_{\varepsilon}\left(x_{0}\right) \cap U \neq \emptyset$.
- Since U_{1} is dense, we choose a $x_{1} \in X$ and $0<\varepsilon_{1}<1$ such that $\bar{B}_{\varepsilon_{1}}\left(x_{1}\right) \subset U_{1} \cap B_{\varepsilon}\left(x_{0}\right)$.

Baire Category Theorem

Theorem

Let X be a complete metric space and $\left\{U_{i}\right\}_{1}^{\infty}$ be a sequence of dense open subsets of X, then $U=\cap_{i=1}^{\infty} U_{i}$ is dense in X. Equivalently, if $\left\{F_{i}\right\}_{1}^{\infty}$ is a sequence of nowhere dense closed subsets of X then $\cup_{i=1}^{\infty} F_{i}$ is nowhere dense in X.

Proof:

- Let $x_{0} \in X$ and $\varepsilon>0$. We have to show that $B_{\varepsilon}\left(x_{0}\right) \cap U \neq \emptyset$.
- Since U_{1} is dense, we choose a $x_{1} \in X$ and $0<\varepsilon_{1}<1$ such that $\bar{B}_{\varepsilon_{1}}\left(x_{1}\right) \subset U_{1} \cap B_{\varepsilon}\left(x_{0}\right)$.
- Similarly, choose $x_{2} \in X$ and $0<\varepsilon_{2}<1 / 2$ such that $\bar{B}_{\varepsilon_{2}}\left(x_{2}\right) \subset U_{2} \cap B_{\varepsilon_{1}}\left(x_{1}\right)$.

Baire Category Theorem

Theorem

Let X be a complete metric space and $\left\{U_{i}\right\}_{1}^{\infty}$ be a sequence of dense open subsets of X, then $U=\cap_{i=1}^{\infty} U_{i}$ is dense in X. Equivalently, if $\left\{F_{i}\right\}_{1}^{\infty}$ is a sequence of nowhere dense closed subsets of X then $\cup_{i=1}^{\infty} F_{i}$ is nowhere dense in X.

Proof:

- Let $x_{0} \in X$ and $\varepsilon>0$. We have to show that $B_{\varepsilon}\left(x_{0}\right) \cap U \neq \emptyset$.
- Since U_{1} is dense, we choose a $x_{1} \in X$ and $0<\varepsilon_{1}<1$ such that $\bar{B}_{\varepsilon_{1}}\left(x_{1}\right) \subset U_{1} \cap B_{\varepsilon}\left(x_{0}\right)$.
- Similarly, choose $x_{2} \in X$ and $0<\varepsilon_{2}<1 / 2$ such that $\bar{B}_{\varepsilon_{2}}\left(x_{2}\right) \subset U_{2} \cap B_{\varepsilon_{1}}\left(x_{1}\right)$.
- By construction, we have a sequence $\left\{\varepsilon_{n}\right\}$ converging to 0 and $\bar{B}_{\varepsilon_{1}}\left(x_{1}\right) \supset \bar{B}_{\varepsilon_{2}}\left(x_{2}\right) \supset \bar{B}_{\varepsilon_{3}}\left(x_{3}\right) \supset \ldots$.

Baire Category Theorem

Theorem

Let X be a complete metric space and $\left\{U_{i}\right\}_{1}^{\infty}$ be a sequence of dense open subsets of X, then $U=\cap_{i=1}^{\infty} U_{i}$ is dense in X. Equivalently, if $\left\{F_{i}\right\}_{1}^{\infty}$ is a sequence of nowhere dense closed subsets of X then $\cup_{i=1}^{\infty} F_{i}$ is nowhere dense in X.

Proof:

- Let $x_{0} \in X$ and $\varepsilon>0$. We have to show that $B_{\varepsilon}\left(x_{0}\right) \cap U \neq \emptyset$.
- Since U_{1} is dense, we choose a $x_{1} \in X$ and $0<\varepsilon_{1}<1$ such that $\bar{B}_{\varepsilon_{1}}\left(x_{1}\right) \subset U_{1} \cap B_{\varepsilon}\left(x_{0}\right)$.
- Similarly, choose $x_{2} \in X$ and $0<\varepsilon_{2}<1 / 2$ such that $\bar{B}_{\varepsilon_{2}}\left(x_{2}\right) \subset U_{2} \cap B_{\varepsilon_{1}}\left(x_{1}\right)$.
- By construction, we have a sequence $\left\{\varepsilon_{n}\right\}$ converging to 0 and $\bar{B}_{\varepsilon_{1}}\left(x_{1}\right) \supset \bar{B}_{\varepsilon_{2}}\left(x_{2}\right) \supset \bar{B}_{\varepsilon_{3}}\left(x_{3}\right) \supset \ldots$.

Proof Continued...

- For a $n_{0} \in \mathbb{N}$ such that $m, n \geq n_{0}$, we have $0<\varepsilon_{m}<1 / m \leq 1 / n_{0}$ and $0<\varepsilon_{n}<1 / n \leq 1 / n_{0}$. Therefore,

$$
d\left(x_{m}, x_{n}\right) \leq d\left(x_{m}, x_{n_{0}}\right)+d\left(x_{n_{0}}, x_{n}\right)<2 \varepsilon_{n_{0}} \leq \frac{2}{n_{0}}
$$

- Hence, $\left\{x_{n}\right\}$ is Cauchy.

Proof Continued...

- For a $n_{0} \in \mathbb{N}$ such that $m, n \geq n_{0}$, we have $0<\varepsilon_{m}<1 / m \leq 1 / n_{0}$ and $0<\varepsilon_{n}<1 / n \leq 1 / n_{0}$. Therefore,

$$
d\left(x_{m}, x_{n}\right) \leq d\left(x_{m}, x_{n_{0}}\right)+d\left(x_{n_{0}}, x_{n}\right)<2 \varepsilon_{n_{0}} \leq \frac{2}{n_{0}}
$$

- Hence, $\left\{x_{n}\right\}$ is Cauchy.
- Since X is a complete metric space, $x_{n} \rightarrow x$ in X, for some $x \in X$.

Proof Continued...

- For a $n_{0} \in \mathbb{N}$ such that $m, n \geq n_{0}$, we have $0<\varepsilon_{m}<1 / m \leq 1 / n_{0}$ and $0<\varepsilon_{n}<1 / n \leq 1 / n_{0}$. Therefore,

$$
d\left(x_{m}, x_{n}\right) \leq d\left(x_{m}, x_{n_{0}}\right)+d\left(x_{n_{0}}, x_{n}\right)<2 \varepsilon_{n_{0}} \leq \frac{2}{n_{0}}
$$

- Hence, $\left\{x_{n}\right\}$ is Cauchy.
- Since X is a complete metric space, $x_{n} \rightarrow x$ in X, for some $x \in X$.
- Observe that, for all $n \geq n_{0}, x_{n} \in B_{\varepsilon_{n_{0}}}\left(x_{n_{0}}\right)$.

Proof Continued...

- For a $n_{0} \in \mathbb{N}$ such that $m, n \geq n_{0}$, we have $0<\varepsilon_{m}<1 / m \leq 1 / n_{0}$ and $0<\varepsilon_{n}<1 / n \leq 1 / n_{0}$. Therefore,

$$
d\left(x_{m}, x_{n}\right) \leq d\left(x_{m}, x_{n_{0}}\right)+d\left(x_{n_{0}}, x_{n}\right)<2 \varepsilon_{n_{0}} \leq \frac{2}{n_{0}}
$$

- Hence, $\left\{x_{n}\right\}$ is Cauchy.
- Since X is a complete metric space, $x_{n} \rightarrow x$ in X, for some $x \in X$.
- Observe that, for all $n \geq n_{0}, x_{n} \in B_{\varepsilon_{n_{0}}}\left(x_{n_{0}}\right)$.
- Hence, the limit $x \in \bar{B}_{\varepsilon_{n_{0}}}\left(x_{n_{0}}\right)$.

Proof Continued...

- For a $n_{0} \in \mathbb{N}$ such that $m, n \geq n_{0}$, we have $0<\varepsilon_{m}<1 / m \leq 1 / n_{0}$ and $0<\varepsilon_{n}<1 / n \leq 1 / n_{0}$. Therefore,

$$
d\left(x_{m}, x_{n}\right) \leq d\left(x_{m}, x_{n_{0}}\right)+d\left(x_{n_{0}}, x_{n}\right)<2 \varepsilon_{n_{0}} \leq \frac{2}{n_{0}}
$$

- Hence, $\left\{x_{n}\right\}$ is Cauchy.
- Since X is a complete metric space, $x_{n} \rightarrow x$ in X, for some $x \in X$.
- Observe that, for all $n \geq n_{0}, x_{n} \in B_{\varepsilon_{n_{0}}}\left(x_{n_{0}}\right)$.
- Hence, the limit $x \in \bar{B}_{\varepsilon_{n_{0}}}\left(x_{n_{0}}\right)$.
- But $\bar{B}_{\varepsilon_{i}}\left(x_{i}\right) \subset U_{i} \cap B_{\varepsilon}\left(x_{0}\right)$ for all $i=1,2, \ldots$.

Proof Continued...

- For a $n_{0} \in \mathbb{N}$ such that $m, n \geq n_{0}$, we have $0<\varepsilon_{m}<1 / m \leq 1 / n_{0}$ and $0<\varepsilon_{n}<1 / n \leq 1 / n_{0}$. Therefore,

$$
d\left(x_{m}, x_{n}\right) \leq d\left(x_{m}, x_{n_{0}}\right)+d\left(x_{n_{0}}, x_{n}\right)<2 \varepsilon_{n_{0}} \leq \frac{2}{n_{0}}
$$

- Hence, $\left\{x_{n}\right\}$ is Cauchy.
- Since X is a complete metric space, $x_{n} \rightarrow x$ in X, for some $x \in X$.
- Observe that, for all $n \geq n_{0}, x_{n} \in B_{\varepsilon_{n_{0}}}\left(x_{n_{0}}\right)$.
- Hence, the limit $x \in \bar{B}_{\varepsilon_{n_{0}}}\left(x_{n_{0}}\right)$.
- But $\bar{B}_{\varepsilon_{i}}\left(x_{i}\right) \subset U_{i} \cap B_{\varepsilon}\left(x_{0}\right)$ for all $i=1,2, \ldots$..
- Thus, $x \in U \cap B_{\varepsilon}\left(x_{0}\right)$.

The Baire category theorem is, in fact, stating that: any complete metric space is second category.

Consequences of Baire's Theorem

Corollary

Let X be a metric space which is countable union of closed sets $\left\{G_{i}\right\}$.
(a) If $\operatorname{Int}\left(G_{i}\right)=\emptyset$, for all n, then X is not complete.
(D) If X is complete then, at least, one of the closed sets of $\left\{G_{i}\right\}$ has non-empty interior.

Consequences of Baire's Theorem

Corollary

Let X be a metric space which is countable union of closed sets $\left\{G_{i}\right\}$.
(a) If $\operatorname{Int}\left(G_{i}\right)=\emptyset$, for all n, then X is not complete.
(D) If X is complete then, at least, one of the closed sets of $\left\{G_{i}\right\}$ has non-empty interior.

Proof.

Let $X=\cup_{i=1}^{\infty} G_{i}$, where X is a complete metric space and each G_{i} is closed.

Consequences of Baire's Theorem

Corollary

Let X be a metric space which is countable union of closed sets $\left\{G_{i}\right\}$.
(2) If $\operatorname{Int}\left(G_{i}\right)=\emptyset$, for all n, then X is not complete.
(D) If X is complete then, at least, one of the closed sets of $\left\{G_{i}\right\}$ has non-empty interior.

Proof.

Let $X=\cup_{i=1}^{\infty} G_{i}$, where X is a complete metric space and each G_{i} is closed. Set $U_{i}=X \backslash G_{i}$, hence $\cap_{i=1}^{\infty} U_{i}=\emptyset$.

Consequences of Baire's Theorem

Corollary

Let X be a metric space which is countable union of closed sets $\left\{G_{i}\right\}$.
(c) If $\operatorname{lnt}\left(G_{i}\right)=\emptyset$, for all n, then X is not complete.
(-) If X is complete then, at least, one of the closed sets of $\left\{G_{i}\right\}$ has non-empty interior.

Proof.

Let $X=\cup_{i=1}^{\infty} G_{i}$, where X is a complete metric space and each G_{i} is closed. Set $U_{i}=X \backslash G_{i}$, hence $\cap_{i=1}^{\infty} U_{i}=\emptyset$. Hence, Baire's theorem, at least one of the U_{i} is not dense in X.

Consequences of Baire's Theorem

Corollary

Let X be a metric space which is countable union of closed sets $\left\{G_{i}\right\}$.
(2) If $\operatorname{Int}\left(G_{i}\right)=\emptyset$, for all n, then X is not complete.
(D) If X is complete then, at least, one of the closed sets of $\left\{G_{i}\right\}$ has non-empty interior.

Proof.

Let $X=\cup_{i=1}^{\infty} G_{i}$, where X is a complete metric space and each G_{i} is closed. Set $U_{i}=X \backslash G_{i}$, hence $\cap_{i=1}^{\infty} U_{i}=\emptyset$. Hence, Baire's theorem, at least one of the U_{i} is not dense in X. Then $\operatorname{Int}\left(G_{i}\right)=X \backslash \overline{U_{i}}$ is non-empty for those U_{i} which are not dense.

Examples

Example

Note that $\mathbb{Q}=\cup_{i \in \mathbb{N}}\left\{r_{i}\right\}$ with usual metric $d(r, s)=|r-s|$. Thus \mathbb{Q} is a countable union of nowhere dense closed subsets. Thus, \mathbb{Q} cannot be complete.

Examples

Example

Note that $\mathbb{Q}=\cup_{i \in \mathbb{N}}\left\{r_{i}\right\}$ with usual metric $d(r, s)=|r-s|$. Thus \mathbb{Q} is a countable union of nowhere dense closed subsets. Thus, \mathbb{Q} cannot be complete.

Example

The plane \mathbb{R}^{2} cannot be written as countable union of lines. More generally, the space \mathbb{R}^{n} cannot be written as countable union of hyperplanes.

Consequences of Baire's Theorem

Corollary
In a complete metric space, the intersection of any countable collection of dense G_{δ} sets is also a dense G_{δ} set.

Consequences of Baire's Theorem

Corollary
In a complete metric space, the intersection of any countable collection of dense G_{δ} sets is also a dense G_{δ} set.

Proof.

The proof is trivial from the fact that G_{δ} set is a countable intersection of open sets.

Consequences of Baire's Theorem

Corollary

Let X be a complete metric space with no isolated points. Any countable dense subset of X cannot be a G_{δ} set.

Proof.

Let $E=\left\{x_{1}, x_{2}, \ldots,\right\}$ be a countable dense subset of X. Suppose E is G_{δ} set, then $E=\cap_{i=1}^{\infty} U_{i}$ for a sequence of open sets $\left\{U_{i}\right\}$. Since E is dense in X, U_{i} is dense in X, for all i. Then the set

$$
V_{i}:=U_{i} \backslash\left\{x_{1}, x_{2}, \ldots, x_{i}\right\}
$$

is also dense (because X has no isolated points) and open in X. But $\cap_{i} V_{i}=\emptyset$ is not dense in X which contradicts Baire's theorem. Therefore, E is not a G_{δ} set.

Uniform Boundedness Principle

Theorem

Let X be a complete metric space and $\mathcal{F} \subset C(X)$ be a sub-family of the space of continuous functions $f: X \rightarrow \mathbb{R}$. Then
(1) either

$$
\begin{equation*}
\sup _{f \in \mathcal{F}}|f(x)|=\infty \tag{5.1}
\end{equation*}
$$

for all x in some dense G_{δ} subset of X
(1) or there exists a $M>0, r>0$ and $x_{0} \in X$ such that

$$
\begin{equation*}
\sup _{x \in B_{r}\left(x_{0}\right)} \sup _{f \in \mathcal{F}}|f(x)| \leq M \tag{5.2}
\end{equation*}
$$

Uniform Boundedness Principle

Theorem

Let X be a complete metric space and $\mathcal{F} \subset C(X)$ be a sub-family of the space of continuous functions $f: X \rightarrow \mathbb{R}$. Then
(1) either

$$
\begin{equation*}
\sup _{f \in \mathcal{F}}|f(x)|=\infty \tag{5.1}
\end{equation*}
$$

for all x in some dense G_{δ} subset of X
(1) or there exists a $M>0, r>0$ and $x_{0} \in X$ such that

$$
\begin{equation*}
\sup _{x \in B_{r}\left(x_{0}\right)} \sup _{f \in \mathcal{F}}|f(x)| \leq M \tag{5.2}
\end{equation*}
$$

Proof: For each $n \geq 1$, set

$$
F_{n}=\left\{x \in X\left|\sup _{f \in \mathcal{F}}\right| f(x) \mid \leq n\right\} .
$$

Proof Continued

Note that $F_{n}=\cap_{f \in \mathcal{F}} f^{-1}([-n, n])$ and hence is closed because it is an arbitrary intersection of closed sets (since f is continuous).

Proof Continued

Note that $F_{n}=\cap_{f \in \mathcal{F}} f^{-1}([-n, n])$ and hence is closed because it is an arbitrary intersection of closed sets (since f is continuous). Further, $\left\{F_{n}\right\}$ is an increasing sequence of closed subsets in X, i.e., $F_{1} \subset F_{2} \subset \ldots$.. Then the union $F:=\cup_{n=1}^{\infty} F_{n}$ is a F_{σ} subset of X.

Proof Continued

Note that $F_{n}=\cap_{f \in \mathcal{F}} f^{-1}([-n, n])$ and hence is closed because it is an arbitrary intersection of closed sets (since f is continuous). Further, $\left\{F_{n}\right\}$ is an increasing sequence of closed subsets in X, i.e., $F_{1} \subset F_{2} \subset \ldots$.. Then the union $F:=\cup_{n=1}^{\infty} F_{n}$ is a F_{σ} subset of X. Then there are two possibilities:
(1) F is a first category subset of X. Since X is complete, by Baire category theorem, $F^{c}:=X \backslash F$ is a dense G_{δ} subset of X. Further, for any $x \in F^{c},(5.1)$ is satisfied.

Proof Continued

Note that $F_{n}=\cap_{f \in \mathcal{F}} f^{-1}([-n, n])$ and hence is closed because it is an arbitrary intersection of closed sets (since f is continuous). Further, $\left\{F_{n}\right\}$ is an increasing sequence of closed subsets in X, i.e., $F_{1} \subset F_{2} \subset \ldots$. Then the union $F:=\cup_{n=1}^{\infty} F_{n}$ is a F_{σ} subset of X. Then there are two possibilities:
(1) F is a first category subset of X. Since X is complete, by Baire category theorem, $F^{c}:=X \backslash F$ is a dense G_{δ} subset of X. Further, for any $x \in F^{c}$, (5.1) is satisfied.
(1) F is second category subset of X. Since X is complete, by Baire category theorem, there is a $M>0$ such that F_{M} has non-empty interior. Thus, there is a $x_{0} \in F_{M} \subset X$ and $r>0$ such that $B_{r}\left(x_{0}\right) \subset F_{M}$ and (5.2) is satisfied.

Limit

Definition

Let $f: X \rightarrow Y$ be any function and X, Y are topological spaces. A $L \in Y$ is called a limit of f at an accumulation point $x_{0} \in X$, if for every neighbourhood V of L in Y there exists a neighbourhood U of x_{0} in X such that $f(U) \subset V$.

Limit

Definition

Let $f: X \rightarrow Y$ be any function and X, Y are topological spaces. A $L \in Y$ is called a limit of f at an accumulation point $x_{0} \in X$, if for every neighbourhood V of L in Y there exists a neighbourhood U of x_{0} in X such that $f(U) \subset V$.

- In particular, if X and Y are metric spaces with metric d_{1} and d_{2}, respectively, then for any given real number $\varepsilon>0$ (however small) there exists a $\delta>0$ such that $d_{2}(f(x), L)<\varepsilon$, for all x, with $d_{1}\left(x, x_{0}\right)<\delta$.

Limit

Definition

Let $f: X \rightarrow Y$ be any function and X, Y are topological spaces. A $L \in Y$ is called a limit of f at an accumulation point $x_{0} \in X$, if for every neighbourhood V of L in Y there exists a neighbourhood U of x_{0} in X such that $f(U) \subset V$.

- In particular, if X and Y are metric spaces with metric d_{1} and d_{2}, respectively, then for any given real number $\varepsilon>0$ (however small) there exists a $\delta>0$ such that $d_{2}(f(x), L)<\varepsilon$, for all x, with $d_{1}\left(x, x_{0}\right)<\delta$.
- If Y is Hausdorff then the limit L is unique.

Continuous Functions

Definition

Let X and Y be topological spaces. A function $f: X \rightarrow Y$ is continuous at $x_{0} \in X$ if for any open set $U \subset Y$ containing $f\left(x_{0}\right)$, its inverse image $f^{-1}(U) \subset X$ containing x_{0} is also open.

Continuous Functions

Definition

Let X and Y be topological spaces. A function $f: X \rightarrow Y$ is continuous at $x_{0} \in X$ if for any open set $U \subset Y$ containing $f\left(x_{0}\right)$, its inverse image $f^{-1}(U) \subset X$ containing x_{0} is also open.

- In particular, for metric spaces $\left(X, d_{1}\right)$ and $\left(Y, d_{2}\right)$, we say $f: X \rightarrow Y$ is continuous at x_{0}, if for any given real number $\varepsilon>0$ (however small) there exists a $\delta>0$ (depends on ε and x_{0}) such that $d_{2}\left(f(x), f\left(x_{0}\right)\right)<\varepsilon$ for all x with $d_{1}\left(x, x_{0}\right)<\delta$.

Continuous Functions

Definition

Let X and Y be topological spaces. A function $f: X \rightarrow Y$ is continuous at $x_{0} \in X$ if for any open set $U \subset Y$ containing $f\left(x_{0}\right)$, its inverse image $f^{-1}(U) \subset X$ containing x_{0} is also open.

- In particular, for metric spaces $\left(X, d_{1}\right)$ and $\left(Y, d_{2}\right)$, we say $f: X \rightarrow Y$ is continuous at x_{0}, if for any given real number $\varepsilon>0$ (however small) there exists a $\delta>0$ (depends on ε and x_{0}) such that $d_{2}\left(f(x), f\left(x_{0}\right)\right)<\varepsilon$ for all x with $d_{1}\left(x, x_{0}\right)<\delta$.
- If δ can be chosen independent of x_{0} then the function is uniformly continuous.

Topology on Space of Continuous Functions

- Let $C(X)$ denote the class of all real valued continuous functions on the topological space X.

Topology on Space of Continuous Functions

- Let $C(X)$ denote the class of all real valued continuous functions on the topological space X.
- For any compact topological space K, the norm of a $f \in C(K)$ is given as $\|f\|_{\infty}:=\sup _{x \in K}|f(x)|$ called the uniform or supremum norm. Thus, the associated uniform metric is $d(f, g):=\|f-g\|_{\infty}$ and induces the uniform convergence topology.

Pointwise and Uniform Convergence

Definition

A sequence of functions $\left\{f_{n}\right\}: X \rightarrow \mathbb{R}$ is said to converge pointwise to a function $f: X \rightarrow \mathbb{R}$ if $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for each $x \in X$, i.e. for any given $\varepsilon>0$ and $x \in X$ there is a positive integer $N \in \mathbb{N}$ (depending on x and ε) such that for all $n \geq N,\left|f_{n}(x)-f(x)\right|<\varepsilon$.

Pointwise and Uniform Convergence

Definition

A sequence of functions $\left\{f_{n}\right\}: X \rightarrow \mathbb{R}$ is said to converge pointwise to a function $f: X \rightarrow \mathbb{R}$ if $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for each $x \in X$, i.e. for any given $\varepsilon>0$ and $x \in X$ there is a positive integer $N \in \mathbb{N}$ (depending on x and ε) such that for all $n \geq N,\left|f_{n}(x)-f(x)\right|<\varepsilon$. If N can be chosen independent of x then the convergence is uniform.

Pointwise and Uniform Convergence

Definition

A sequence of functions $\left\{f_{n}\right\}: X \rightarrow \mathbb{R}$ is said to converge pointwise to a function $f: X \rightarrow \mathbb{R}$ if $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for each $x \in X$, i.e. for any given $\varepsilon>0$ and $x \in X$ there is a positive integer $N \in \mathbb{N}$ (depending on x and ε) such that for all $n \geq N,\left|f_{n}(x)-f(x)\right|<\varepsilon$. If N can be chosen independent of x then the convergence is uniform.

Exercise

Show that for any $\alpha \in[0,1), \alpha^{n} \rightarrow 0$ as $n \rightarrow \infty$.

Pointwise and Uniform Convergence

Definition

A sequence of functions $\left\{f_{n}\right\}: X \rightarrow \mathbb{R}$ is said to converge pointwise to a function $f: X \rightarrow \mathbb{R}$ if $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for each $x \in X$, i.e. for any given $\varepsilon>0$ and $x \in X$ there is a positive integer $N \in \mathbb{N}$ (depending on x and ε) such that for all $n \geq N,\left|f_{n}(x)-f(x)\right|<\varepsilon$. If N can be chosen independent of x then the convergence is uniform.

Exercise

Show that for any $\alpha \in[0,1), \alpha^{n} \rightarrow 0$ as $n \rightarrow \infty$. Consequently, show that the sequence $\left\{x^{n}\right\}$ indexed by the degree n and defined on $[0,1]$ pointwise converges to

$$
f(x)= \begin{cases}0 & 0 \leq x<1 \\ 1 & x=1\end{cases}
$$

Uniform Convergence Preserves Continuity

The exercise in the previous slide shows that the pointwise limit of a sequence of continuous functions can be discontinuous.

Uniform Convergence Preserves Continuity

The exercise in the previous slide shows that the pointwise limit of a sequence of continuous functions can be discontinuous.

Theorem

Let $\left\{f_{n}\right\}: X \rightarrow \mathbb{R}$ be a sequence of continuous functions. If f_{n} converges uniformly to f then f is continuous.

Uniform Convergence Preserves Continuity

The exercise in the previous slide shows that the pointwise limit of a sequence of continuous functions can be discontinuous.

Theorem

Let $\left\{f_{n}\right\}: X \rightarrow \mathbb{R}$ be a sequence of continuous functions. If f_{n} converges uniformly to f then f is continuous.

Proof.

By uniform convergence, for any given $\varepsilon>0$, there exists $m \in \mathbb{N}$ such that $\left|f(x)-f_{m}(x)\right|<\frac{\varepsilon}{3}$ for all $x \in X$.

Uniform Convergence Preserves Continuity

The exercise in the previous slide shows that the pointwise limit of a sequence of continuous functions can be discontinuous.

Theorem

Let $\left\{f_{n}\right\}: X \rightarrow \mathbb{R}$ be a sequence of continuous functions. If f_{n} converges uniformly to f then f is continuous.

Proof.

By uniform convergence, for any given $\varepsilon>0$, there exists $m \in \mathbb{N}$ such that $\left|f(x)-f_{m}(x)\right|<\frac{\varepsilon}{3}$ for all $x \in X$. For any $x_{0} \in X$, note that

$$
\left|f(x)-f\left(x_{0}\right)\right| \leq\left|f(x)-f_{m}(x)\right|+\left|f_{m}(x)-f_{m}\left(x_{0}\right)\right|+\left|f_{m}\left(x_{0}\right)-f\left(x_{0}\right)\right|
$$

Uniform Convergence Preserves Continuity

The exercise in the previous slide shows that the pointwise limit of a sequence of continuous functions can be discontinuous.

Theorem

Let $\left\{f_{n}\right\}: X \rightarrow \mathbb{R}$ be a sequence of continuous functions. If f_{n} converges uniformly to f then f is continuous.

Proof.

By uniform convergence, for any given $\varepsilon>0$, there exists $m \in \mathbb{N}$ such that $\left|f(x)-f_{m}(x)\right|<\frac{\varepsilon}{3}$ for all $x \in X$. For any $x_{0} \in X$, note that

$$
\left|f(x)-f\left(x_{0}\right)\right| \leq\left|f(x)-f_{m}(x)\right|+\left|f_{m}(x)-f_{m}\left(x_{0}\right)\right|+\left|f_{m}\left(x_{0}\right)-f\left(x_{0}\right)\right|<3 \frac{\varepsilon}{3} .
$$

The choice of $\delta>0$ comes from the continuity of f_{m} at x_{0}.

$C(K)$ is a Banach space

Theorem
For a compact topological space $K, C(X)$ is a Banach space.

$C(K)$ is a Banach space

Theorem

For a compact topological space $K, C(X)$ is a Banach space.

Exercise

Let $I \subset \mathbb{R}$ be a closed bounded interval of \mathbb{R}. If $\left\{f_{n}\right\}$ is a monotone sequence of continuous real valued functions on $/$ which converge point-wise to a continuous function f, then the convergence is uniform on 1.

$C(K)$ is a Banach space

Theorem

For a compact topological space $K, C(X)$ is a Banach space.

Exercise

Let $I \subset \mathbb{R}$ be a closed bounded interval of \mathbb{R}. If $\left\{f_{n}\right\}$ is a monotone sequence of continuous real valued functions on $/$ which converge point-wise to a continuous function f, then the convergence is uniform on 1.

What is the topology for continuous functions on non-compact Topological Spaces?

Continuous Functions on Open Euclidean Subsets

- For any open subset Ω of \mathbb{R}^{n}, there is a sequence K_{j} of non-empty compact subsets of Ω such that $\Omega=\cup_{j=0}^{\infty} K_{j}$ and $K_{j} \subset \operatorname{lnt}\left(K_{j+1}\right)$, for all j. This property is called the σ-compactness of Ω.

Continuous Functions on Open Euclidean Subsets

- For any open subset Ω of \mathbb{R}^{n}, there is a sequence K_{j} of non-empty compact subsets of Ω such that $\Omega=\cup_{j=0}^{\infty} K_{j}$ and $K_{j} \subset \operatorname{lnt}\left(K_{j+1}\right)$, for all j. This property is called the σ-compactness of Ω.
- We define a countable family of semi-norms (exercise!) on $C(\Omega)$ as $p_{j}(\phi)=\sup _{x \in K_{j}}|\phi(x)|$.

Continuous Functions on Open Euclidean Subsets

- For any open subset Ω of \mathbb{R}^{n}, there is a sequence K_{j} of non-empty compact subsets of Ω such that $\Omega=\cup_{j=0}^{\infty} K_{j}$ and $K_{j} \subset \operatorname{lnt}\left(K_{j+1}\right)$, for all j. This property is called the σ-compactness of Ω.
- We define a countable family of semi-norms (exercise!) on $C(\Omega)$ as $p_{j}(\phi)=\sup _{x \in K_{j}}|\phi(x)|$. Note that $p_{0} \leq p_{1} \leq p_{2} \leq \ldots$.

Continuous Functions on Open Euclidean Subsets

- For any open subset Ω of \mathbb{R}^{n}, there is a sequence K_{j} of non-empty compact subsets of Ω such that $\Omega=\cup_{j=0}^{\infty} K_{j}$ and $K_{j} \subset \operatorname{lnt}\left(K_{j+1}\right)$, for all j. This property is called the σ-compactness of Ω.
- We define a countable family of semi-norms (exercise!) on $C(\Omega)$ as $p_{j}(\phi)=\sup _{x \in K_{j}}|\phi(x)|$. Note that $p_{0} \leq p_{1} \leq p_{2} \leq \ldots$. The sets $\left\{\phi \in C(\Omega) \mid p_{j}(\phi)<1 / j\right\}$ form a local base for $C(\Omega)$.

Continuous Functions on Open Euclidean Subsets

- For any open subset Ω of \mathbb{R}^{n}, there is a sequence K_{j} of non-empty compact subsets of Ω such that $\Omega=\cup_{j=0}^{\infty} K_{j}$ and $K_{j} \subset \operatorname{lnt}\left(K_{j+1}\right)$, for all j. This property is called the σ-compactness of Ω.
- We define a countable family of semi-norms (exercise!) on $C(\Omega)$ as $p_{j}(\phi)=\sup _{x \in K_{j}}|\phi(x)|$. Note that $p_{0} \leq p_{1} \leq p_{2} \leq \ldots$. The sets $\left\{\phi \in C(\Omega) \mid p_{j}(\phi)<1 / j\right\}$ form a local base for $C(\Omega)$.
- The metric induced by the family of semi-norms on $C(\Omega)$ is

$$
d(\phi, \psi)=\max _{j \in \mathbb{N} \cup\{0\}} \frac{1}{2^{j}} \frac{p_{j}(\phi-\psi)}{1+p_{j}(\phi-\psi)} \text { or } \sum_{j=0}^{\infty} \frac{1}{2^{j}} \frac{p_{j}(\phi-\psi)}{1+p_{j}(\phi-\psi)}
$$

Continuous Functions on Open Euclidean Subsets

- For any open subset Ω of \mathbb{R}^{n}, there is a sequence K_{j} of non-empty compact subsets of Ω such that $\Omega=\cup_{j=0}^{\infty} K_{j}$ and $K_{j} \subset \operatorname{lnt}\left(K_{j+1}\right)$, for all j. This property is called the σ-compactness of Ω.
- We define a countable family of semi-norms (exercise!) on $C(\Omega)$ as $p_{j}(\phi)=\sup _{x \in K_{j}}|\phi(x)|$. Note that $p_{0} \leq p_{1} \leq p_{2} \leq \ldots$. The sets $\left\{\phi \in C(\Omega) \mid p_{j}(\phi)<1 / j\right\}$ form a local base for $C(\Omega)$.
- The metric induced by the family of semi-norms on $C(\Omega)$ is

$$
d(\phi, \psi)=\max _{j \in \mathbb{N} \cup\{0\}} \frac{1}{2^{j}} \frac{p_{j}(\phi-\psi)}{1+p_{j}(\phi-\psi)} \text { or } \sum_{j=0}^{\infty} \frac{1}{2^{j}} \frac{p_{j}(\phi-\psi)}{1+p_{j}(\phi-\psi)}
$$

- The metric is complete and $C(\Omega)$ is a Fréchet space. This is precisely the topology of compact convergence (uniform convergence on compact sets) or the compact-open topology.

Continuous Functions on Open Euclidean Subsets

- For any open subset Ω of \mathbb{R}^{n}, there is a sequence K_{j} of non-empty compact subsets of Ω such that $\Omega=\cup_{j=0}^{\infty} K_{j}$ and $K_{j} \subset \operatorname{lnt}\left(K_{j+1}\right)$, for all j. This property is called the σ-compactness of Ω.
- We define a countable family of semi-norms (exercise!) on $C(\Omega)$ as $p_{j}(\phi)=\sup _{x \in K_{j}}|\phi(x)|$. Note that $p_{0} \leq p_{1} \leq p_{2} \leq \ldots$. The sets $\left\{\phi \in C(\Omega) \mid p_{j}(\phi)<1 / j\right\}$ form a local base for $C(\Omega)$.
- The metric induced by the family of semi-norms on $C(\Omega)$ is

$$
d(\phi, \psi)=\max _{j \in \mathbb{N} \cup\{0\}} \frac{1}{2^{j}} \frac{p_{j}(\phi-\psi)}{1+p_{j}(\phi-\psi)} \operatorname{or} \sum_{j=0}^{\infty} \frac{1}{2^{j}} \frac{p_{j}(\phi-\psi)}{1+p_{j}(\phi-\psi)}
$$

- The metric is complete and $C(\Omega)$ is a Fréchet space. This is precisely the topology of compact convergence (uniform convergence on compact sets) or the compact-open topology.
- Show that the topology given in $C(\Omega)$ is independent of the choice the exhaustion compact sets $\left\{K_{j}\right\}$ of Ω.

Polynomial Approximation of $|x|$

Lemma

There is a sequence of polynomials $\left\{p_{n}\right\}$ which converge uniformly to $|x|$ on $[-1,1]$.

Polynomial Approximation of $|x|$

Lemma

There is a sequence of polynomials $\left\{p_{n}\right\}$ which converge uniformly to $|x|$ on $[-1,1]$.

Proof: Set $p_{0}=1$

Polynomial Approximation of $|x|$

Lemma

There is a sequence of polynomials $\left\{p_{n}\right\}$ which converge uniformly to $|x|$ on $[-1,1]$.

Proof: Set $p_{0}=1$ and

$$
p_{n+1}(x)=\frac{1}{2}\left(x^{2}+2 p_{n}(x)-p_{n}^{2}(x)\right) \quad \forall n=0,1,2, \ldots
$$

Polynomial Approximation of $|x|$

Lemma

There is a sequence of polynomials $\left\{p_{n}\right\}$ which converge uniformly to $|x|$ on $[-1,1]$.

Proof: Set $p_{0}=1$ and

$$
p_{n+1}(x)=\frac{1}{2}\left(x^{2}+2 p_{n}(x)-p_{n}^{2}(x)\right) \quad \forall n=0,1,2, \ldots
$$

Note that each p_{n} is a polynomial.

Polynomial Approximation of $|x|$

Lemma

There is a sequence of polynomials $\left\{p_{n}\right\}$ which converge uniformly to $|x|$ on $[-1,1]$.

Proof: Set $p_{0}=1$ and

$$
p_{n+1}(x)=\frac{1}{2}\left(x^{2}+2 p_{n}(x)-p_{n}^{2}(x)\right) \quad \forall n=0,1,2, \ldots
$$

Note that each p_{n} is a polynomial. Further, the following recursive relations hold

$$
p_{n}(x)-p_{n+1}(x)=\frac{1}{2}\left(p_{n}^{2}(x)-x^{2}\right)
$$

Polynomial Approximation of $|x|$

Lemma

There is a sequence of polynomials $\left\{p_{n}\right\}$ which converge uniformly to $|x|$ on $[-1,1]$.

Proof: Set $p_{0}=1$ and

$$
p_{n+1}(x)=\frac{1}{2}\left(x^{2}+2 p_{n}(x)-p_{n}^{2}(x)\right) \quad \forall n=0,1,2, \ldots
$$

Note that each p_{n} is a polynomial. Further, the following recursive relations hold

$$
p_{n}(x)-p_{n+1}(x)=\frac{1}{2}\left(p_{n}^{2}(x)-x^{2}\right)
$$

and

$$
p_{n+1}-|x|=\frac{1}{2}\left(x^{2}-2|x|+2 p_{n}-p_{n}^{2}\right)=\frac{1}{2}\left[(1-|x|)^{2}-\left(1-p_{n}\right)^{2}\right]
$$

Proof Continued...

- Since $|x| \leq p_{0}=1$, we have $|x| \leq p_{1} \leq p_{0}=1$.

Proof Continued...

- Since $|x| \leq p_{0}=1$, we have $|x| \leq p_{1} \leq p_{0}=1$.
- By induction, we have $|x| \leq p_{n+1} \leq p_{n}$ for all n.

Proof Continued...

- Since $|x| \leq p_{0}=1$, we have $|x| \leq p_{1} \leq p_{0}=1$.
- By induction, we have $|x| \leq p_{n+1} \leq p_{n}$ for all n.
- Hence $p_{n}(x)$ converges for every $x \in[-1,1]$ (decreasing and bounded below).

Proof Continued...

- Since $|x| \leq p_{0}=1$, we have $|x| \leq p_{1} \leq p_{0}=1$.
- By induction, we have $|x| \leq p_{n+1} \leq p_{n}$ for all n.
- Hence $p_{n}(x)$ converges for every $x \in[-1,1]$ (decreasing and bounded below).
- Set $p(x):=\lim _{n} p_{n}(x)$,

Proof Continued...

- Since $|x| \leq p_{0}=1$, we have $|x| \leq p_{1} \leq p_{0}=1$.
- By induction, we have $|x| \leq p_{n+1} \leq p_{n}$ for all n.
- Hence $p_{n}(x)$ converges for every $x \in[-1,1]$ (decreasing and bounded below).
- Set $p(x):=\lim _{n} p_{n}(x)$, then using the recursive formula $p(x)=\frac{1}{2}\left(x^{2}+2 p(x)-p^{2}(x)\right)$ we get $p^{2}(x)=x^{2}$.

Proof Continued...

- Since $|x| \leq p_{0}=1$, we have $|x| \leq p_{1} \leq p_{0}=1$.
- By induction, we have $|x| \leq p_{n+1} \leq p_{n}$ for all n.
- Hence $p_{n}(x)$ converges for every $x \in[-1,1]$ (decreasing and bounded below).
- Set $p(x):=\lim _{n} p_{n}(x)$, then using the recursive formula $p(x)=\frac{1}{2}\left(x^{2}+2 p(x)-p^{2}(x)\right)$ we get $p^{2}(x)=x^{2}$.
- Since p is limit of a positive sequence, $p \geq 0$ and hence $p(x)=|x|$.

Proof Continued...

- Since $|x| \leq p_{0}=1$, we have $|x| \leq p_{1} \leq p_{0}=1$.
- By induction, we have $|x| \leq p_{n+1} \leq p_{n}$ for all n.
- Hence $p_{n}(x)$ converges for every $x \in[-1,1]$ (decreasing and bounded below).
- Set $p(x):=\lim _{n} p_{n}(x)$, then using the recursive formula $p(x)=\frac{1}{2}\left(x^{2}+2 p(x)-p^{2}(x)\right)$ we get $p^{2}(x)=x^{2}$.
- Since p is limit of a positive sequence, $p \geq 0$ and hence $p(x)=|x|$.
- The convergence is uniform because the sequence is monotone.

Polynomial Approximation in \mathbb{R}

Lemma

For any $c \in \mathbb{R}$, there exists a sequence $\left\{p_{n}\right\}$ of polynomials which converge to $|x-c|$ uniformly on every compact subset of \mathbb{R}.

Polynomial Approximation in \mathbb{R}

Lemma

For any $c \in \mathbb{R}$, there exists a sequence $\left\{p_{n}\right\}$ of polynomials which converge to $|x-c|$ uniformly on every compact subset of \mathbb{R}.

Proof.

Given any sequence $\left\{q_{n}\right\}$ as obtained the previous lemma, we have $\left|q_{n}(x)-|x|\right|<\frac{1}{k^{2}}$ for $n \geq n_{k}$ and for each $k \in \mathbb{N}$.

Polynomial Approximation in \mathbb{R}

Lemma

For any $c \in \mathbb{R}$, there exists a sequence $\left\{p_{n}\right\}$ of polynomials which converge to $|x-c|$ uniformly on every compact subset of \mathbb{R}.

Proof.

Given any sequence $\left\{q_{n}\right\}$ as obtained the previous lemma, we have $\left|q_{n}(x)-|x|\right|<\frac{1}{k^{2}}$ for $n \geq n_{k}$ and for each $k \in \mathbb{N}$. We now construct a subsequence $P_{k}(x):=q_{n_{k}}$ of $\left\{q_{n}\right\}$ for each $k \in \mathbb{N}$. Then the new sequence $\left\{P_{n}\right\}$, in $[-1,1]$, is such that $\left|P_{n}(x)-|x|\right|<1 / n^{2}$ for all $x \in[-1,1]$.

Polynomial Approximation in \mathbb{R}

Lemma

For any $c \in \mathbb{R}$, there exists a sequence $\left\{p_{n}\right\}$ of polynomials which converge to $|x-c|$ uniformly on every compact subset of \mathbb{R}.

Proof.

Given any sequence $\left\{q_{n}\right\}$ as obtained the previous lemma, we have $\left|q_{n}(x)-|x|\right|<\frac{1}{k^{2}}$ for $n \geq n_{k}$ and for each $k \in \mathbb{N}$. We now construct a subsequence $P_{k}(x):=q_{n_{k}}$ of $\left\{q_{n}\right\}$ for each $k \in \mathbb{N}$. Then the new sequence $\left\{P_{n}\right\}$, in $[-1,1]$, is such that $\left|P_{n}(x)-|x|\right|<1 / n^{2}$ for all $x \in[-1,1]$. Define $p_{n}(x)=n P_{n}[(x-c) / n]$, then

$$
\left|p_{n}(x)-|x-c|\right|=n\left|P_{n}[(x-c) / n]-|x-c| / n\right|<1 / n
$$

for all $|x-c| / n \leq 1$ or, equivalently, $x \in[c-n, c+n]$.

Separating Points

Definition

A subset $A \subset C(X)$ is said to separate points of X if, for any $x, y \in X$, such that $x \neq y$ there exists $f \in A$ such that $f(x) \neq f(y)$.

Separating Points

Definition
 A subset $A \subset C(X)$ is said to separate points of X if, for any $x, y \in X$, such that $x \neq y$ there exists $f \in A$ such that $f(x) \neq f(y)$.

Lemma

Let $A \subset C(X)$ satisfy the following properties:
(1) A is a vector (linear) subspace of $C(X)$;
(1) every constant function is in A; and

- A separates points.

Then, for any $x, y \in X$ with $x \neq y$ and $a, b \in \mathbb{R}$, there exists a $f \in A$ such that $f(x)=a$ and $f(y)=b$.

Proof

Proof.

- Since A separates points, there is a $g \in C(X)$ such that $g(x)=\alpha$ and $g(y)=\beta$ and $\alpha \neq \beta$.

Proof

Proof.

- Since A separates points, there is a $g \in C(X)$ such that $g(x)=\alpha$ and $g(y)=\beta$ and $\alpha \neq \beta$.
- We seek $s, t \in \mathbb{R}$ and set $f:=s g+t$.

Proof

Proof.

- Since A separates points, there is a $g \in C(X)$ such that $g(x)=\alpha$ and $g(y)=\beta$ and $\alpha \neq \beta$.
- We seek $s, t \in \mathbb{R}$ and set $f:=s g+t$.
- Then, $f(x)=s \alpha+t=a$ and $f(y)=s \beta+t=b$.

Proof

Proof.

- Since A separates points, there is a $g \in C(X)$ such that $g(x)=\alpha$ and $g(y)=\beta$ and $\alpha \neq \beta$.
- We seek $s, t \in \mathbb{R}$ and set $f:=s g+t$.
- Then, $f(x)=s \alpha+t=a$ and $f(y)=s \beta+t=b$.
- We solve for s and t to obtain $s:=\frac{b-a}{\beta-\alpha}, t:=\frac{\beta a-\alpha b}{\beta-\alpha} \in \mathbb{R}$.

Proof

Proof.

- Since A separates points, there is a $g \in C(X)$ such that $g(x)=\alpha$ and $g(y)=\beta$ and $\alpha \neq \beta$.
- We seek $s, t \in \mathbb{R}$ and set $f:=s g+t$.
- Then, $f(x)=s \alpha+t=a$ and $f(y)=s \beta+t=b$.
- We solve for s and t to obtain $s:=\frac{b-a}{\beta-\alpha}, t:=\frac{\beta a-\alpha b}{\beta-\alpha} \in \mathbb{R}$.
- Note that $s g+t \in A$ because A is a linear space and the function $1 \in A$.

Proof

Proof.

- Since A separates points, there is a $g \in C(X)$ such that $g(x)=\alpha$ and $g(y)=\beta$ and $\alpha \neq \beta$.
- We seek $s, t \in \mathbb{R}$ and set $f:=s g+t$.
- Then, $f(x)=s \alpha+t=a$ and $f(y)=s \beta+t=b$.
- We solve for s and t to obtain $s:=\frac{b-a}{\beta-\alpha}, t:=\frac{\beta a-\alpha b}{\beta-\alpha} \in \mathbb{R}$.
- Note that $s g+t \in A$ because A is a linear space and the function $1 \in A$.
- Note that if $a=b$ then $s=0$ and $t=a$, and, hence $f \equiv a$.

Dense Subsets of $C(X)$

Theorem

Let X be a compact topological space and $A \subset C(X)$ satisfies the properties as in Lemma 11 and also is a lattice, i.e., $f \vee g \in A$ and $f \wedge g \in A$ whenever $f, g \in A$. Then A is dense in $C(X)$ under the uniform topology.

Dense Subsets of $C(X)$

Theorem

Let X be a compact topological space and $A \subset C(X)$ satisfies the properties as in Lemma 11 and also is a lattice, i.e., $f \vee g \in A$ and $f \wedge g \in A$ whenever $f, g \in A$. Then A is dense in $C(X)$ under the uniform topology.

Proof:

- Let $f \in C(X)$. Given $\varepsilon>0$, we must get a $g \in A$ such that $\|f-g\|<\varepsilon$.

Dense Subsets of $C(X)$

Theorem

Let X be a compact topological space and $A \subset C(X)$ satisfies the properties as in Lemma 11 and also is a lattice, i.e., $f \vee g \in A$ and $f \wedge g \in A$ whenever $f, g \in A$. Then A is dense in $C(X)$ under the uniform topology.

Proof:

- Let $f \in C(X)$. Given $\varepsilon>0$, we must get a $g \in A$ such that $\|f-g\|<\varepsilon$.
- Let $x, y \in X$ be such that $x \neq y$ and set $a:=f(x)$ and $b:=f(y)$.

Dense Subsets of $C(X)$

Theorem

Let X be a compact topological space and $A \subset C(X)$ satisfies the properties as in Lemma 11 and also is a lattice, i.e., $f \vee g \in A$ and $f \wedge g \in A$ whenever $f, g \in A$. Then A is dense in $C(X)$ under the uniform topology.

Proof:

- Let $f \in C(X)$. Given $\varepsilon>0$, we must get a $g \in A$ such that $\|f-g\|<\varepsilon$.
- Let $x, y \in X$ be such that $x \neq y$ and set $a:=f(x)$ and $b:=f(y)$.
- Thus, by Lemma 11, there is a $g_{x y} \in A$ such that $g_{x y}(x)=f(x)$ and $g_{x y}(y)=f(y)$.

Dense Subsets of $C(X)$

Theorem

Let X be a compact topological space and $A \subset C(X)$ satisfies the properties as in Lemma 11 and also is a lattice, i.e., $f \vee g \in A$ and $f \wedge g \in A$ whenever $f, g \in A$. Then A is dense in $C(X)$ under the uniform topology.

Proof:

- Let $f \in C(X)$. Given $\varepsilon>0$, we must get a $g \in A$ such that $\|f-g\|<\varepsilon$.
- Let $x, y \in X$ be such that $x \neq y$ and set $a:=f(x)$ and $b:=f(y)$.
- Thus, by Lemma 11, there is a $g_{x y} \in A$ such that $g_{x y}(x)=f(x)$ and $g_{x y}(y)=f(y)$.
- Fix $x \in X$ and for each $y \in X$ with $y \neq x$, by the continuity of $g_{x y}-f$ at y, for the given $\varepsilon>0$, there is an open set $U_{x y} \in X$ such that $\left|g_{x y}(z)-f(z)\right|<\varepsilon$ for all $z \in U_{x y}$.

Dense Subsets of $C(X)$

Theorem

Let X be a compact topological space and $A \subset C(X)$ satisfies the properties as in Lemma 11 and also is a lattice, i.e., $f \vee g \in A$ and $f \wedge g \in A$ whenever $f, g \in A$. Then A is dense in $C(X)$ under the uniform topology.

Proof:

- Let $f \in C(X)$. Given $\varepsilon>0$, we must get a $g \in A$ such that $\|f-g\|<\varepsilon$.
- Let $x, y \in X$ be such that $x \neq y$ and set $a:=f(x)$ and $b:=f(y)$.
- Thus, by Lemma 11, there is a $g_{x y} \in A$ such that $g_{x y}(x)=f(x)$ and $g_{x y}(y)=f(y)$.
- Fix $x \in X$ and for each $y \in X$ with $y \neq x$, by the continuity of $g_{x y}-f$ at y, for the given $\varepsilon>0$, there is an open set $U_{x y} \in X$ such that $\left|g_{x y}(z)-f(z)\right|<\varepsilon$ for all $z \in U_{x y}$. In particular, $g_{x y}(z)<f(z)+\varepsilon$ for all $z \in U_{x y}$.

Proof Continued...

- For the fixed $x \in X$, the open sets $U_{x y}$ form an open cover of X and, since X is compact, we have finite collection of $\left\{y_{i}\right\}_{i=1}^{n} \subset X$ such that $X=\cup_{i=1}^{n} U_{x y_{i}}$.

Proof Continued...

- For the fixed $x \in X$, the open sets $U_{x y}$ form an open cover of X and, since X is compact, we have finite collection of $\left\{y_{i}\right\}_{i=1}^{n} \subset X$ such that $X=\cup_{i=1}^{n} U_{x y_{i}}$.
- Set $g_{x}:=g_{x y_{1}} \wedge \cdots \wedge g_{x y_{n}}$, then $g_{x} \in A$.

Proof Continued...

- For the fixed $x \in X$, the open sets $U_{x y}$ form an open cover of X and, since X is compact, we have finite collection of $\left\{y_{i}\right\}_{i=1}^{n} \subset X$ such that $X=\cup_{i=1}^{n} U_{x y_{i}}$.
- Set $g_{x}:=g_{x y_{1}} \wedge \cdots \wedge g_{x y_{n}}$, then $g_{x} \in A$.
- Since $g_{x y_{i}}(z)<f(z)+\varepsilon$, we have $g_{x}(z)<f(z)+\varepsilon$ for all $z \in X$. Moreover, $g_{x}(x)=f(x)$.

Proof Continued...

- For the fixed $x \in X$, the open sets $U_{x y}$ form an open cover of X and, since X is compact, we have finite collection of $\left\{y_{i}\right\}_{i=1}^{n} \subset X$ such that $X=\cup_{i=1}^{n} U_{x y_{i}}$.
- Set $g_{x}:=g_{x y_{1}} \wedge \cdots \wedge g_{x y_{n}}$, then $g_{x} \in A$.
- Since $g_{x y_{i}}(z)<f(z)+\varepsilon$, we have $g_{x}(z)<f(z)+\varepsilon$ for all $z \in X$. Moreover, $g_{x}(x)=f(x)$.
- Now, for each fixed $x \in X$, by the continuity of $g_{x}-f$ at x, for the given $\varepsilon>0$, there is an open set $V_{x} \in X$ such that $\left|g_{x}(z)-f(z)\right|<\varepsilon$ for all $z \in V_{x}$. In particular, $g_{x}(z)>f(z)-\varepsilon$ for all $z \in V_{x}$.

Proof Continued...

- For the fixed $x \in X$, the open sets $U_{x y}$ form an open cover of X and, since X is compact, we have finite collection of $\left\{y_{i}\right\}_{i=1}^{n} \subset X$ such that $X=\cup_{i=1}^{n} U_{x y_{i}}$.
- Set $g_{x}:=g_{x y_{1}} \wedge \cdots \wedge g_{x y_{n}}$, then $g_{x} \in A$.
- Since $g_{x y_{i}}(z)<f(z)+\varepsilon$, we have $g_{x}(z)<f(z)+\varepsilon$ for all $z \in X$. Moreover, $g_{x}(x)=f(x)$.
- Now, for each fixed $x \in X$, by the continuity of $g_{x}-f$ at x, for the given $\varepsilon>0$, there is an open set $V_{x} \in X$ such that $\left|g_{x}(z)-f(z)\right|<\varepsilon$ for all $z \in V_{x}$. In particular, $g_{x}(z)>f(z)-\varepsilon$ for all $z \in V_{x}$.
- The open sets V_{x} form an open cover of X and, since X is compact, we have finite collection of $\left\{x_{i}\right\}_{i=1}^{m} \subset X$ such that $X=\cup_{i=1}^{m} V_{x_{i}}$.

Proof Continued...

- For the fixed $x \in X$, the open sets $U_{x y}$ form an open cover of X and, since X is compact, we have finite collection of $\left\{y_{i}\right\}_{i=1}^{n} \subset X$ such that $X=\cup_{i=1}^{n} U_{x y_{i}}$.
- Set $g_{x}:=g_{x y_{1}} \wedge \cdots \wedge g_{x y_{n}}$, then $g_{x} \in A$.
- Since $g_{x y_{i}}(z)<f(z)+\varepsilon$, we have $g_{x}(z)<f(z)+\varepsilon$ for all $z \in X$. Moreover, $g_{x}(x)=f(x)$.
- Now, for each fixed $x \in X$, by the continuity of $g_{x}-f$ at x, for the given $\varepsilon>0$, there is an open set $V_{x} \in X$ such that $\left|g_{x}(z)-f(z)\right|<\varepsilon$ for all $z \in V_{x}$. In particular, $g_{x}(z)>f(z)-\varepsilon$ for all $z \in V_{x}$.
- The open sets V_{x} form an open cover of X and, since X is compact, we have finite collection of $\left\{x_{i}\right\}_{i=1}^{m} \subset X$ such that $X=\cup_{i=1}^{m} V_{x_{i}}$.
- Set $g:=g_{x_{1}} \vee \cdots \vee g_{x_{n}}$, then $g \in A$.

Proof Continued...

- For the fixed $x \in X$, the open sets $U_{x y}$ form an open cover of X and, since X is compact, we have finite collection of $\left\{y_{i}\right\}_{i=1}^{n} \subset X$ such that $X=\cup_{i=1}^{n} U_{x y_{i}}$.
- Set $g_{x}:=g_{x y_{1}} \wedge \cdots \wedge g_{x y_{n}}$, then $g_{x} \in A$.
- Since $g_{x y_{i}}(z)<f(z)+\varepsilon$, we have $g_{x}(z)<f(z)+\varepsilon$ for all $z \in X$. Moreover, $g_{x}(x)=f(x)$.
- Now, for each fixed $x \in X$, by the continuity of $g_{x}-f$ at x, for the given $\varepsilon>0$, there is an open set $V_{x} \in X$ such that $\left|g_{x}(z)-f(z)\right|<\varepsilon$ for all $z \in V_{x}$. In particular, $g_{x}(z)>f(z)-\varepsilon$ for all $z \in V_{x}$.
- The open sets V_{x} form an open cover of X and, since X is compact, we have finite collection of $\left\{x_{i}\right\}_{i=1}^{m} \subset X$ such that $X=\cup_{i=1}^{m} V_{x_{i}}$.
- Set $g:=g_{x_{1}} \vee \cdots \vee g_{x_{n}}$, then $g \in A$.
- Since $g_{x_{i}}(z)>f(z)-\varepsilon$, we have $g(z)>f(z)-\varepsilon$ for all $z \in X$. Therefore $|f(z)-g(z)|<\varepsilon$ for all $z \in X$ and hence $\|f-g\|<\varepsilon$.

Lattice in $C(X)$

Theorem
A linear subspace $A \subset C(X)$ is a lattice iff $f \in A$ implies $|f| \in A$.

Lattice in $C(X)$

Theorem
A linear subspace $A \subset C(X)$ is a lattice iff $f \in A$ implies $|f| \in A$.

Proof.

If A is a lattice and $f \in A$,

Lattice in $C(X)$

Theorem
A linear subspace $A \subset C(X)$ is a lattice iff $f \in A$ implies $|f| \in A$.

Proof.

If A is a lattice and $f \in A$, then $|f|=f \vee(-f)$.

Lattice in $C(X)$

Theorem
A linear subspace $A \subset C(X)$ is a lattice iff $f \in A$ implies $|f| \in A$.

Proof.

If A is a lattice and $f \in A$, then $|f|=f \vee(-f)$. Conversely, if $|f| \in A$ whenever $f \in A$,

Lattice in $C(X)$

Theorem

A linear subspace $A \subset C(X)$ is a lattice iff $f \in A$ implies $|f| \in A$.

Proof.

If A is a lattice and $f \in A$, then $|f|=f \vee(-f)$. Conversely, if $|f| \in A$ whenever $f \in A$, then

$$
f \vee g=\frac{f+g}{2}+\frac{|f-g|}{2} \text { and } f \wedge g=\frac{f+g}{2}-\frac{|f-g|}{2} .
$$

Real Stone-Weierstrass

Theorem (Real Stone-Weierstrass)
Let X be a compact topological space and $A \subset C(X)$ satisfies the properties as in Lemma 11 and, in addition, satisfies the property that $f g \in A$ whenever $f, g \in A$. Then A is dense in $C(X)$ under the uniform topology.

Real Stone-Weierstrass

Theorem (Real Stone-Weierstrass)

Let X be a compact topological space and $A \subset C(X)$ satisfies the properties as in Lemma 11 and, in addition, satisfies the property that $f g \in A$ whenever $f, g \in A$. Then A is dense in $C(X)$ under the uniform topology.

Proof:

- We first consider the closure of A and denote it as \bar{A}. Note that \bar{A} satisfies all the hypotheses of A.

Real Stone-Weierstrass

Theorem (Real Stone-Weierstrass)

Let X be a compact topological space and $A \subset C(X)$ satisfies the properties as in Lemma 11 and, in addition, satisfies the property that $f g \in A$ whenever $f, g \in A$. Then A is dense in $C(X)$ under the uniform topology.

Proof:

- We first consider the closure of A and denote it as \bar{A}. Note that \bar{A} satisfies all the hypotheses of A.
- It is enough to show that \bar{A} is a lattice or, equivalently, $|f| \in \bar{A}$ whenever $f \in \bar{A}$.

Real Stone-Weierstrass

Theorem (Real Stone-Weierstrass)

Let X be a compact topological space and $A \subset C(X)$ satisfies the properties as in Lemma 11 and, in addition, satisfies the property that $f g \in A$ whenever $f, g \in A$. Then A is dense in $C(X)$ under the uniform topology.

Proof:

- We first consider the closure of A and denote it as \bar{A}. Note that \bar{A} satisfies all the hypotheses of A.
- It is enough to show that \bar{A} is a lattice or, equivalently, $|f| \in \bar{A}$ whenever $f \in \bar{A}$.
- We introduce the notation

$$
p(f):=a_{n} f^{n}+a_{n-1} f^{n-1}+\cdots+a_{1} f+a_{0}
$$

for any real polynomial $p(x)=\sum_{i=0}^{n} a_{i} x^{i}$.

Real Stone-Weierstrass

Theorem (Real Stone-Weierstrass)

Let X be a compact topological space and $A \subset C(X)$ satisfies the properties as in Lemma 11 and, in addition, satisfies the property that $f g \in A$ whenever $f, g \in A$. Then A is dense in $C(X)$ under the uniform topology.

Proof:

- We first consider the closure of A and denote it as \bar{A}. Note that \bar{A} satisfies all the hypotheses of A.
- It is enough to show that \bar{A} is a lattice or, equivalently, $|f| \in \bar{A}$ whenever $f \in \bar{A}$.
- We introduce the notation

$$
p(f):=a_{n} f^{n}+a_{n-1} f^{n-1}+\cdots+a_{1} f+a_{0}
$$

for any real polynomial $p(x)=\sum_{i=0}^{n} a_{i} x^{i}$.

- For any $f \in \bar{A}$, we have $p(f) \in \bar{A}$.

Proof Continued...

- By Lemma 10, we have a sequence of polynomials p_{n} converging uniformly on compact subsets of \mathbb{R} to $|x|$.

Proof Continued...

- By Lemma 10, we have a sequence of polynomials p_{n} converging uniformly on compact subsets of \mathbb{R} to $|x|$.
- Thus, we have $p_{n}(f)$ converge uniformly to $|f|$ on X because the range of $|f|$ is compact subset of \mathbb{R}.

Proof Continued...

- By Lemma 10, we have a sequence of polynomials p_{n} converging uniformly on compact subsets of \mathbb{R} to $|x|$.
- Thus, we have $p_{n}(f)$ converge uniformly to $|f|$ on X because the range of $|f|$ is compact subset of \mathbb{R}.
- Hence $|f|$ is in \bar{A}, since \bar{A} is closed.

Proof Continued...

- By Lemma 10, we have a sequence of polynomials p_{n} converging uniformly on compact subsets of \mathbb{R} to $|x|$.
- Thus, we have $p_{n}(f)$ converge uniformly to $|f|$ on X because the range of $|f|$ is compact subset of \mathbb{R}.
- Hence $|f|$ is in \bar{A}, since \bar{A} is closed.
- Since \bar{A} satisfies all the hypotheses of A, by Theorem $24, \bar{A}$ is dense in $C(X)$.

Proof Continued...

- By Lemma 10, we have a sequence of polynomials p_{n} converging uniformly on compact subsets of \mathbb{R} to $|x|$.
- Thus, we have $p_{n}(f)$ converge uniformly to $|f|$ on X because the range of $|f|$ is compact subset of \mathbb{R}.
- Hence $|f|$ is in \bar{A}, since \bar{A} is closed.
- Since \bar{A} satisfies all the hypotheses of A, by Theorem $24, \bar{A}$ is dense in $C(X)$.
- Thus, $\bar{A}=C(X)$ and hence A is dense in $C(X)$.

Weierstrass Approximation

Corollary (Weierstrass Approximation)

Let K be a compact subset of \mathbb{R}^{n} and let $P(K)$ denote the space of all n-variable real polynomials restricted to K. Then $P(K)$ is dense in $C(K)$.

Weierstrass Approximation

Corollary (Weierstrass Approximation)

Let K be a compact subset of \mathbb{R}^{n} and let $P(K)$ denote the space of all n-variable real polynomials restricted to K. Then $P(K)$ is dense in $C(K)$.

Proof.

- Note that $P(K)$ is a subspace and contains constant polynomials. The n variable polynomial has the form $\sum_{|\alpha|=0}^{k} a_{\alpha} x^{\alpha}$.

Weierstrass Approximation

Corollary (Weierstrass Approximation)

Let K be a compact subset of \mathbb{R}^{n} and let $P(K)$ denote the space of all n-variable real polynomials restricted to K. Then $P(K)$ is dense in $C(K)$.

Proof.

- Note that $P(K)$ is a subspace and contains constant polynomials. The n variable polynomial has the form $\sum_{|\alpha|=0}^{k} a_{\alpha} x^{\alpha}$.
- Given $x, y \in K$ with $x \neq y$, there is a component $1 \leq i \leq n$ such that $x_{i} \neq y_{i}$.

Weierstrass Approximation

Corollary (Weierstrass Approximation)

Let K be a compact subset of \mathbb{R}^{n} and let $P(K)$ denote the space of all n-variable real polynomials restricted to K. Then $P(K)$ is dense in $C(K)$.

Proof.

- Note that $P(K)$ is a subspace and contains constant polynomials. The n variable polynomial has the form $\sum_{|\alpha|=0}^{k} a_{\alpha} x^{\alpha}$.
- Given $x, y \in K$ with $x \neq y$, there is a component $1 \leq i \leq n$ such that $x_{i} \neq y_{i}$.
- Consider the polynomial $f(x)=x_{i}$ for the chosen i. Then $f(x) \neq f(y)$ and $P(K)$ separates points.

Weierstrass Approximation

Corollary (Weierstrass Approximation)

Let K be a compact subset of \mathbb{R}^{n} and let $P(K)$ denote the space of all n-variable real polynomials restricted to K. Then $P(K)$ is dense in $C(K)$.

Proof.

- Note that $P(K)$ is a subspace and contains constant polynomials. The n variable polynomial has the form $\sum_{|\alpha|=0}^{k} a_{\alpha} x^{\alpha}$.
- Given $x, y \in K$ with $x \neq y$, there is a component $1 \leq i \leq n$ such that $x_{i} \neq y_{i}$.
- Consider the polynomial $f(x)=x_{i}$ for the chosen i. Then $f(x) \neq f(y)$ and $P(K)$ separates points.
- Thus, $P(K)$ is dense in $C(K)$.

Complex Stone-Weierstrass

Theorem (Complex Stone-Weierstrass)

Let X be a compact topological space and $A \subset C(X, \mathbb{C})$, all complex valued continuous functions, satisfies the properties as in Theorem 26 and, in addition, satisfies the property that if $f \in A$ then $\bar{f} \in A$, the conjugate of f. Then A is dense in $C(X, \mathbb{C})$ under the uniform topology.

Complex Stone-Weierstrass

Theorem (Complex Stone-Weierstrass)

Let X be a compact topological space and $A \subset C(X, \mathbb{C})$, all complex valued continuous functions, satisfies the properties as in Theorem 26 and, in addition, satisfies the property that if $f \in A$ then $\bar{f} \in A$, the conjugate of f. Then A is dense in $C(X, \mathbb{C})$ under the uniform topology.

Proof.

Let A_{0} be the set of all real-valued functions of A. Thus, $A_{0} \subset A$.

Complex Stone-Weierstrass

Theorem (Complex Stone-Weierstrass)

Let X be a compact topological space and $A \subset C(X, \mathbb{C})$, all complex valued continuous functions, satisfies the properties as in Theorem 26 and, in addition, satisfies the property that if $f \in A$ then $\bar{f} \in A$, the conjugate of f. Then A is dense in $C(X, \mathbb{C})$ under the uniform topology.

Proof.

Let A_{0} be the set of all real-valued functions of A. Thus, $A_{0} \subset A$. Since both $f, \bar{f} \in A$, we have $\Re f, \Im f \in A_{0}$.

Complex Stone-Weierstrass

Theorem (Complex Stone-Weierstrass)

Let X be a compact topological space and $A \subset C(X, \mathbb{C})$, all complex valued continuous functions, satisfies the properties as in Theorem 26 and, in addition, satisfies the property that if $f \in A$ then $\bar{f} \in A$, the conjugate of f. Then A is dense in $C(X, \mathbb{C})$ under the uniform topology.

Proof.

Let A_{0} be the set of all real-valued functions of A. Thus, $A_{0} \subset A$. Since both $f, \bar{f} \in A$, we have $\Re f, \Im f \in A_{0}$. We claim that A_{0} satisfies the hypotheses real Stone-Weiertrass theorem.

Complex Stone-Weierstrass

Theorem (Complex Stone-Weierstrass)

Let X be a compact topological space and $A \subset C(X, \mathbb{C})$, all complex valued continuous functions, satisfies the properties as in Theorem 26 and, in addition, satisfies the property that if $f \in A$ then $\bar{f} \in A$, the conjugate of f. Then A is dense in $C(X, \mathbb{C})$ under the uniform topology.

Proof.

Let A_{0} be the set of all real-valued functions of A. Thus, $A_{0} \subset A$. Since both $f, \bar{f} \in A$, we have $\Re f, \Im f \in A_{0}$. We claim that A_{0} satisfies the hypotheses real Stone-Weiertrass theorem. One needs to check that A_{0} separates points in X.

Complex Stone-Weierstrass

Theorem (Complex Stone-Weierstrass)

Let X be a compact topological space and $A \subset C(X, \mathbb{C})$, all complex valued continuous functions, satisfies the properties as in Theorem 26 and, in addition, satisfies the property that if $f \in A$ then $\bar{f} \in A$, the conjugate of f. Then A is dense in $C(X, \mathbb{C})$ under the uniform topology.

Proof.

Let A_{0} be the set of all real-valued functions of A. Thus, $A_{0} \subset A$. Since both $f, \bar{f} \in A$, we have $\Re f, \Im f \in A_{0}$. We claim that A_{0} satisfies the hypotheses real Stone-Weiertrass theorem. One needs to check that A_{0} separates points in X. Since A separates points, there is $f \in A$ such that $f(x)=0$ and $f(y)=1$, by Lemma 11.

Complex Stone-Weierstrass

Theorem (Complex Stone-Weierstrass)

Let X be a compact topological space and $A \subset C(X, \mathbb{C})$, all complex valued continuous functions, satisfies the properties as in Theorem 26 and, in addition, satisfies the property that if $f \in A$ then $\bar{f} \in A$, the conjugate of f. Then A is dense in $C(X, \mathbb{C})$ under the uniform topology.

Proof.

Let A_{0} be the set of all real-valued functions of A. Thus, $A_{0} \subset A$. Since both $f, \bar{f} \in A$, we have $\Re f, \Im f \in A_{0}$. We claim that A_{0} satisfies the hypotheses real Stone-Weiertrass theorem. One needs to check that A_{0} separates points in X. Since A separates points, there is $f \in A$ such that $f(x)=0$ and $f(y)=1$, by Lemma 11. Thus, $\Re f \in A_{0}$ separates points x, y. Hence, A_{0} is dense in $C(X)$.

Complex Stone-Weierstrass

Theorem (Complex Stone-Weierstrass)

Let X be a compact topological space and $A \subset C(X, \mathbb{C})$, all complex valued continuous functions, satisfies the properties as in Theorem 26 and, in addition, satisfies the property that if $f \in A$ then $\bar{f} \in A$, the conjugate of f. Then A is dense in $C(X, \mathbb{C})$ under the uniform topology.

Proof.

Let A_{0} be the set of all real-valued functions of A. Thus, $A_{0} \subset A$. Since both $f, \bar{f} \in A$, we have $\Re f, \Im f \in A_{0}$. We claim that A_{0} satisfies the hypotheses real Stone-Weiertrass theorem. One needs to check that A_{0} separates points in X. Since A separates points, there is $f \in A$ such that $f(x)=0$ and $f(y)=1$, by Lemma 11. Thus, $\Re f \in A_{0}$ separates points x, y. Hence, A_{0} is dense in $C(X)$. If $f \in C(X, \mathbb{C})$ then $\Re f, \Im f \in C(X)$ and both can be approximated by real-valued polynomials from A_{0}.

Complex Stone-Weierstrass

Theorem (Complex Stone-Weierstrass)

Let X be a compact topological space and $A \subset C(X, \mathbb{C})$, all complex valued continuous functions, satisfies the properties as in Theorem 26 and, in addition, satisfies the property that if $f \in A$ then $\bar{f} \in A$, the conjugate of f. Then A is dense in $C(X, \mathbb{C})$ under the uniform topology.

Proof.

Let A_{0} be the set of all real-valued functions of A. Thus, $A_{0} \subset A$. Since both $f, \bar{f} \in A$, we have $\Re f, \Im f \in A_{0}$. We claim that A_{0} satisfies the hypotheses real Stone-Weiertrass theorem. One needs to check that A_{0} separates points in X. Since A separates points, there is $f \in A$ such that $f(x)=0$ and $f(y)=1$, by Lemma 11. Thus, $\Re f \in A_{0}$ separates points x, y. Hence, A_{0} is dense in $C(X)$. If $f \in C(X, \mathbb{C})$ then $\Re f, \Im f \in C(X)$ and both can be approximated by real-valued polynomials from A_{0}. Thus, A is dense $C(X, \mathbb{C})$.

Separability of $C(X)$

Corollary

$C[a, b]$ endowed with supremum metric is separable. More generally, if X is a compact metric space the $C(X)$ is separable.

Separability of $C(X)$

Corollary

$C[a, b]$ endowed with supremum metric is separable. More generally, if X is a compact metric space the $C(X)$ is separable.

Proof.

For any $f \in C[a, b]$ there is a polynomial $p(x):=\sum_{k=0}^{n} c_{k} x^{k}$ such that $\|f-p\|_{\infty} \leq \varepsilon / 2$.

Separability of $C(X)$

Corollary

$C[a, b]$ endowed with supremum metric is separable. More generally, if X is a compact metric space the $C(X)$ is separable.

Proof.

For any $f \in C[a, b]$ there is a polynomial $p(x):=\sum_{k=0}^{n} c_{k} x^{k}$ such that $\|f-p\|_{\infty} \leq \varepsilon / 2$. Since rationals are dense in \mathbb{R}, for each c_{k} there is a rational r_{k} such that $\left|c_{k}-r_{k}\right| \leq \frac{\varepsilon}{2(n+1)}$.

Separability of $C(X)$

Corollary

$C[a, b]$ endowed with supremum metric is separable. More generally, if X is a compact metric space the $C(X)$ is separable.

Proof.

For any $f \in C[a, b]$ there is a polynomial $p(x):=\sum_{k=0}^{n} c_{k} x^{k}$ such that $\|f-p\|_{\infty} \leq \varepsilon / 2$. Since rationals are dense in \mathbb{R}, for each c_{k} there is a rational r_{k} such that $\left|c_{k}-r_{k}\right| \leq \frac{\varepsilon}{2(n+1)}$. Set $q(x):=\sum_{k=0}^{n} r_{k} x^{k}$ then

$$
\|p-q\|_{\infty} \leq \sup _{x \in[a, b]}\left(\sum_{k=0}^{n}\left|c_{k}-r_{k}\right| x^{k}\right) \leq \frac{\varepsilon}{2} .
$$

Separability of $C(X)$

Corollary

$C[a, b]$ endowed with supremum metric is separable. More generally, if X is a compact metric space the $C(X)$ is separable.

Proof.

For any $f \in C[a, b]$ there is a polynomial $p(x):=\sum_{k=0}^{n} c_{k} x^{k}$ such that $\|f-p\|_{\infty} \leq \varepsilon / 2$. Since rationals are dense in \mathbb{R}, for each c_{k} there is a rational r_{k} such that $\left|c_{k}-r_{k}\right| \leq \frac{\varepsilon}{2(n+1)}$. Set $q(x):=\sum_{k=0}^{n} r_{k} x^{k}$ then

$$
\|p-q\|_{\infty} \leq \sup _{x \in[a, b]}\left(\sum_{k=0}^{n}\left|c_{k}-r_{k}\right| x^{k}\right) \leq \frac{\varepsilon}{2} .
$$

Thus, $\|f-q\|_{\infty} \leq \varepsilon$.

Separability of $C(X)$

Corollary

$C[a, b]$ endowed with supremum metric is separable. More generally, if X is a compact metric space the $C(X)$ is separable.

Proof.

For any $f \in C[a, b]$ there is a polynomial $p(x):=\sum_{k=0}^{n} c_{k} x^{k}$ such that $\|f-p\|_{\infty} \leq \varepsilon / 2$. Since rationals are dense in \mathbb{R}, for each c_{k} there is a rational r_{k} such that $\left|c_{k}-r_{k}\right| \leq \frac{\varepsilon}{2(n+1)}$. Set $q(x):=\sum_{k=0}^{n} r_{k} x^{k}$ then

$$
\|p-q\|_{\infty} \leq \sup _{x \in[a, b]}\left(\sum_{k=0}^{n}\left|c_{k}-r_{k}\right| x^{k}\right) \leq \frac{\varepsilon}{2} .
$$

Thus, $\|f-q\|_{\infty} \leq \varepsilon$. If the set of all polynomials with rational coefficients is countable then our proof is done. This is left as an exercise!

Trigonometric Polynomials

- Let $P_{\sharp}^{n}([-\pi, \pi])$ denote the space of all 2π periodic trigonometric polynomials on \mathbb{R} of degree n, i.e.,

$$
\sum_{k=0}^{n} a_{k} \cos (k \theta)+\sum_{k=1}^{n} b_{k} \sin (k \theta) \quad \forall a_{k}, b_{k} \in \mathbb{R}, n \in \mathbb{N}
$$

Trigonometric Polynomials

- Let $P_{\sharp}^{n}([-\pi, \pi])$ denote the space of all 2π periodic trigonometric polynomials on \mathbb{R} of degree n, i.e.,

$$
\sum_{k=0}^{n} a_{k} \cos (k \theta)+\sum_{k=1}^{n} b_{k} \sin (k \theta) \quad \forall a_{k}, b_{k} \in \mathbb{R}, n \in \mathbb{N}
$$

- Note that the set $\{1, \cos (k \theta), \sin (k \theta)\}$, for $1 \leq k \leq n$, generates $P_{\sharp}^{n}([-\pi, \pi])$ and, hence, has a dimension of $2 n+1$.

Trigonometric Polynomials

- Let $P_{\sharp}^{n}([-\pi, \pi])$ denote the space of all 2π periodic trigonometric polynomials on \mathbb{R} of degree n, i.e.,

$$
\sum_{k=0}^{n} a_{k} \cos (k \theta)+\sum_{k=1}^{n} b_{k} \sin (k \theta) \quad \forall a_{k}, b_{k} \in \mathbb{R}, n \in \mathbb{N}
$$

- Note that the set $\{1, \cos (k \theta), \sin (k \theta)\}$, for $1 \leq k \leq n$, generates $P_{\sharp}^{n}([-\pi, \pi])$ and, hence, has a dimension of $2 n+1$.
- Let $P_{\sharp}([-\pi, \pi])$ denote the space of all 2π periodic trigonometric polynomials on \mathbb{R} of any degree, i.e.,

$$
P_{\sharp}([-\pi, \pi])=\cup_{n=0}^{\infty} P_{\sharp}^{n}([-\pi, \pi]) .
$$

Corollary (Trigonometric Approximation)

Let $P_{\sharp}([-\pi, \pi], \mathbb{C})$ denote the space of all complex valued 2π periodic trigonometric polynomials, i.e.,

$$
\sum_{k=-n}^{k=n} c_{k} \exp (\imath k \theta) \quad \forall c_{k} \in \mathbb{C}, n \in \mathbb{N}
$$

Then $P_{\sharp}([-\pi, \pi], \mathbb{C})$ is dense in $C_{\sharp}([-\pi, \pi], \mathbb{C})$.

Corollary (Trigonometric Approximation)

Let $P_{\sharp}([-\pi, \pi], \mathbb{C})$ denote the space of all complex valued 2π periodic trigonometric polynomials, i.e.,

$$
\sum_{k=-n}^{k=n} c_{k} \exp (\imath k \theta) \quad \forall c_{k} \in \mathbb{C}, n \in \mathbb{N}
$$

Then $P_{\sharp}([-\pi, \pi], \mathbb{C})$ is dense in $C_{\sharp}([-\pi, \pi], \mathbb{C})$.
The density is not valid for non-periodic $C[-\pi, \pi]$ in uniform norm. For instance, $f(x)=x$ cannot be approximated and $P_{\sharp}[-\pi, \pi]$ has no function that separates $-\pi$ and π.

Corollary (Trigonometric Approximation)

Let $P_{\sharp}([-\pi, \pi], \mathbb{C})$ denote the space of all complex valued 2π periodic trigonometric polynomials, i.e.,

$$
\sum_{k=-n}^{k=n} c_{k} \exp (\imath k \theta) \quad \forall c_{k} \in \mathbb{C}, n \in \mathbb{N}
$$

Then $P_{\sharp}([-\pi, \pi], \mathbb{C})$ is dense in $C_{\sharp}([-\pi, \pi], \mathbb{C})$.
The density is not valid for non-periodic $C[-\pi, \pi]$ in uniform norm. For instance, $f(x)=x$ cannot be approximated and $P_{\sharp}[-\pi, \pi]$ has no function that separates $-\pi$ and π.

Proof:

- We use the continuous bijection from $C_{\sharp}([-\pi, \pi], \mathbb{C})$ to $C(\mathbb{T}, \mathbb{C})$ where $\mathbb{T}:=\left\{\left.z \in \mathbb{C}| | z\right|^{2}=1\right\}$ is a compact subset of \mathbb{C} endowed with the usual Euclidean metric.

Corollary (Trigonometric Approximation)

Let $P_{\sharp}([-\pi, \pi], \mathbb{C})$ denote the space of all complex valued 2π periodic trigonometric polynomials, i.e.,

$$
\sum_{k=-n}^{k=n} c_{k} \exp (\imath k \theta) \quad \forall c_{k} \in \mathbb{C}, n \in \mathbb{N}
$$

Then $P_{\sharp}([-\pi, \pi], \mathbb{C})$ is dense in $C_{\sharp}([-\pi, \pi], \mathbb{C})$.
The density is not valid for non-periodic $C[-\pi, \pi]$ in uniform norm. For instance, $f(x)=x$ cannot be approximated and $P_{\sharp}[-\pi, \pi]$ has no function that separates $-\pi$ and π.

Proof:

- We use the continuous bijection from $C_{\sharp}([-\pi, \pi], \mathbb{C})$ to $C(\mathbb{T}, \mathbb{C})$ where $\mathbb{T}:=\left\{\left.z \in \mathbb{C}| | z\right|^{2}=1\right\}$ is a compact subset of \mathbb{C} endowed with the usual Euclidean metric.
- For each $f \in C_{\sharp}([-\pi, \pi], \mathbb{C})$, we define $f_{\sharp}: \mathbb{T} \rightarrow \mathbb{C}$ as $f_{\sharp}\left(e^{2 \theta}\right):=f(\theta)$, for all $-\pi \leq \theta<\pi$.

Proof Continued...

- The continuity of f implies the continuity of f_{\sharp}, composition of continuous functions. (Exercise!)
- Thus, the subspace $P_{\sharp}(X, \mathbb{C})$ of $C(\mathbb{T}, \mathbb{C})$ satisfies hypotheses of complex Stone-Weierstrass theorem.

Proof Continued...

- The continuity of f implies the continuity of f_{\sharp}, composition of continuous functions. (Exercise!)
- Thus, the subspace $P_{\sharp}(X, \mathbb{C})$ of $C(\mathbb{T}, \mathbb{C})$ satisfies hypotheses of complex Stone-Weierstrass theorem.
- The separation property is satisfied because for any $z, w \in \mathbb{T}$, the image f_{\sharp} of the $f(\theta)=\exp (\imath \theta)$ satisifes $f_{\sharp}(z) \neq f_{\sharp}(w)$.

Fourier Series

Definition

The Fourier Series of a function $f \in L^{1}(-\pi, \pi)$ is defined as

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{i n t} \tag{7.1}
\end{equation*}
$$

where the Fourier coefficient is given as

$$
\begin{equation*}
\hat{f}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x \tag{7.2}
\end{equation*}
$$

Fourier Series

Definition

The Fourier Series of a function $f \in L^{1}(-\pi, \pi)$ is defined as

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{i n t} \tag{7.1}
\end{equation*}
$$

where the Fourier coefficient is given as

$$
\begin{equation*}
\hat{f}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x \tag{7.2}
\end{equation*}
$$

Following questions arise from the definition of Fourier series of f :
(a) Will the series (7.1) always converge?

Fourier Series

Definition

The Fourier Series of a function $f \in L^{1}(-\pi, \pi)$ is defined as

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{i n t} \tag{7.1}
\end{equation*}
$$

where the Fourier coefficient is given as

$$
\begin{equation*}
\hat{f}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x \tag{7.2}
\end{equation*}
$$

Following questions arise from the definition of Fourier series of f :
(0) Will the series (7.1) always converge?
(D) If it converges, will it converge to f at some/all points $t \in(-\pi, \pi)$?

Fourier Series

Definition

The Fourier Series of a function $f \in L^{1}(-\pi, \pi)$ is defined as

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{i n t} \tag{7.1}
\end{equation*}
$$

where the Fourier coefficient is given as

$$
\begin{equation*}
\hat{f}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x \tag{7.2}
\end{equation*}
$$

Following questions arise from the definition of Fourier series of f :
(0) Will the series (7.1) always converge?
(D) If it converges, will it converge to f at some/all points $t \in(-\pi, \pi)$?

We shall show that there is a large class of integrable functions on $[-\pi, \pi]$ which fail to converge on a very large set of points in $[-\pi, \pi]$,

Dirichlet Kernel

To study the convergence of (7.1), we consider the sequence of partial sums

$$
S_{f}^{m}(t):=\sum_{n=-m}^{m} \hat{f}(n) e^{i n t}
$$

of (7.1).

Dirichlet Kernel

To study the convergence of (7.1), we consider the sequence of partial sums

$$
S_{f}^{m}(t):=\sum_{n=-m}^{m} \hat{f}(n) e^{i n t}
$$

of (7.1). Thus, using (7.2), we get

$$
S_{f}^{m}(t):=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x)\left[\sum_{n=-m}^{m} e^{i n(t-x)}\right] d x
$$

Dirichlet Kernel

To study the convergence of (7.1), we consider the sequence of partial sums

$$
S_{f}^{m}(t):=\sum_{n=-m}^{m} \hat{f}(n) e^{i n t}
$$

of (7.1). Thus, using (7.2), we get

$$
S_{f}^{m}(t):=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x)\left[\sum_{n=-m}^{m} e^{i n(t-x)}\right] d x
$$

This motivates the definition of Dirichlet kernel, $D_{m}: \mathbb{R} \rightarrow \mathbb{R}$, defined as

$$
D_{m}(s):=\sum_{n=-m}^{m} e^{i n s}
$$

and the partial sum is the convolution $S_{f}^{m}(t)=\left(f * D_{m}\right)(t)$.

Proposition

Let $m \in \mathbb{N} \cup\{0\}$. Then

$$
D_{m}(s)= \begin{cases}\frac{\sin \left(m+\frac{1}{2}\right) s}{\sin \frac{5}{2}} & \text { if } s \neq 2 k \pi \text { for } k \in \mathbb{N} \cup\{0\} \\ 2 m+1 & \text { if } s=2 k \pi \text { for } k \in \mathbb{N} \cup\{0\}\end{cases}
$$

Further

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} D_{m}(s) d s=1
$$

Proposition

Let $m \in \mathbb{N} \cup\{0\}$. Then

$$
D_{m}(s)= \begin{cases}\frac{\sin \left(m+\frac{1}{2}\right) s}{\sin \frac{5}{2}} & \text { if } s \neq 2 k \pi \text { for } k \in \mathbb{N} \cup\{0\} \\ 2 m+1 & \text { if } s=2 k \pi \text { for } k \in \mathbb{N} \cup\{0\}\end{cases}
$$

Further

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} D_{m}(s) d s=1
$$

Proof: Since $e^{i 2 k \pi}=1$ for every $k \in \mathbb{N} \cup\{0\}$, we have $D_{m}(2 k \pi)=2 m+1$.

Proposition

Let $m \in \mathbb{N} \cup\{0\}$. Then

$$
D_{m}(s)= \begin{cases}\frac{\sin \left(m+\frac{1}{2}\right) s}{\sin \frac{5}{2}} & \text { if } s \neq 2 k \pi \text { for } k \in \mathbb{N} \cup\{0\} \\ 2 m+1 & \text { if } s=2 k \pi \text { for } k \in \mathbb{N} \cup\{0\}\end{cases}
$$

Further

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} D_{m}(s) d s=1
$$

Proof: Since $e^{i 2 k \pi}=1$ for every $k \in \mathbb{N} \cup\{0\}$, we have $D_{m}(2 k \pi)=2 m+1$. If $s \neq 2 k \pi$ for all $k \in \mathbb{N} \cup\{0\}$, then $e^{i s}-1 \neq 0$ and, hence,

$$
\left(e^{i s}-1\right) D_{m}(s)=\sum_{n=-m}^{m}\left(e^{i(n+1) s}-e^{i n s}\right)=e^{i(m+1) s}-e^{-i m s} .
$$

Proof Continued...

Multiplying both sides by $e^{-i s / 2}$, we get

$$
\left(e^{i s / 2}-e^{-i s / 2}\right) D_{m}(s)=e^{i\left(m+\frac{1}{2}\right) s}-e^{-i\left(m+\frac{1}{2}\right) s}
$$

Thus, we have our desired result.

Proof Continued...

Multiplying both sides by $e^{-i s / 2}$, we get

$$
\left(e^{i s / 2}-e^{-i s / 2}\right) D_{m}(s)=e^{i\left(m+\frac{1}{2}\right) s}-e^{-i\left(m+\frac{1}{2}\right) s}
$$

Thus, we have our desired result.Further,

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} D_{m}(s) d s=\sum_{n=-m}^{m} \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i n s} d s=1
$$

because for non-zero n,

$$
\int_{-\pi}^{\pi} e^{i n s} d s=\left[\frac{e^{i n s}}{i n}\right]_{-\pi}^{\pi}=\frac{2 \sin (n \pi)}{n}=0
$$

Exercise

Show that D_{m} is an even function and is 2π-periodic in \mathbb{R}. Also, show that D_{m} is continuous in \mathbb{R}.

Exercise

Show that D_{m} is an even function and is 2π-periodic in \mathbb{R}. Also, show that D_{m} is continuous in \mathbb{R}.

Proposition

$\lim _{m \rightarrow \infty} \int_{-\pi}^{\pi}\left|D_{m}(s)\right| d s=+\infty$.

Proof: For any $s \in \mathbb{R}$, we have $|\sin s| \leq|s|$.

Proof: For any $s \in \mathbb{R}$, we have $|\sin s| \leq|s|$. Thus,

$$
\int_{-\pi}^{\pi}\left|D_{m}(s)\right| d s=2 \int_{0}^{\pi}\left|D_{m}(s)\right| d s
$$

Proof: For any $s \in \mathbb{R}$, we have $|\sin s| \leq|s|$. Thus,

$$
\int_{-\pi}^{\pi}\left|D_{m}(s)\right| d s=2 \int_{0}^{\pi}\left|D_{m}(s)\right| d s=2 \int_{0}^{\pi}\left|\frac{\sin \left(m+\frac{1}{2}\right) s}{\sin \frac{s}{2}}\right| d s
$$

Proof: For any $s \in \mathbb{R}$, we have $|\sin s| \leq|s|$. Thus,

$$
\begin{aligned}
\int_{-\pi}^{\pi}\left|D_{m}(s)\right| d s & =2 \int_{0}^{\pi}\left|D_{m}(s)\right| d s=2 \int_{0}^{\pi}\left|\frac{\sin \left(m+\frac{1}{2}\right) s}{\sin \frac{s}{2}}\right| d s \\
& \geq 4 \int_{0}^{\pi}\left|\frac{\sin \left(m+\frac{1}{2}\right) s}{s}\right| d s
\end{aligned}
$$

Proof: For any $s \in \mathbb{R}$, we have $|\sin s| \leq|s|$. Thus,

$$
\begin{aligned}
\int_{-\pi}^{\pi}\left|D_{m}(s)\right| d s & =2 \int_{0}^{\pi}\left|D_{m}(s)\right| d s=2 \int_{0}^{\pi}\left|\frac{\sin \left(m+\frac{1}{2}\right) s}{\sin \frac{s}{2}}\right| d s \\
& \geq 4 \int_{0}^{\pi}\left|\frac{\sin \left(m+\frac{1}{2}\right) s}{s}\right| d s=4 \int_{0}^{\left(m+\frac{1}{2}\right) \pi} \frac{|\sin t|}{t} d t
\end{aligned}
$$

Proof: For any $s \in \mathbb{R}$, we have $|\sin s| \leq|s|$. Thus,

$$
\begin{aligned}
\int_{-\pi}^{\pi}\left|D_{m}(s)\right| d s & =2 \int_{0}^{\pi}\left|D_{m}(s)\right| d s=2 \int_{0}^{\pi}\left|\frac{\sin \left(m+\frac{1}{2}\right) s}{\sin \frac{s}{2}}\right| d s \\
& \geq 4 \int_{0}^{\pi}\left|\frac{\sin \left(m+\frac{1}{2}\right) s}{s}\right| d s=4 \int_{0}^{\left(m+\frac{1}{2}\right) \pi} \frac{|\sin t|}{t} d t \\
& =4\left[\sum_{n=1}^{m} \int_{(n-1) \pi}^{n \pi} \frac{|\sin t|}{t} d t+\int_{m \pi}^{\left(m+\frac{1}{2}\right) \pi} \frac{|\sin t|}{t} d t\right]
\end{aligned}
$$

Proof: For any $s \in \mathbb{R}$, we have $|\sin s| \leq|s|$. Thus,

$$
\begin{aligned}
\int_{-\pi}^{\pi}\left|D_{m}(s)\right| d s & =2 \int_{0}^{\pi}\left|D_{m}(s)\right| d s=2 \int_{0}^{\pi}\left|\frac{\sin \left(m+\frac{1}{2}\right) s}{\sin \frac{s}{2}}\right| d s \\
& \geq 4 \int_{0}^{\pi}\left|\frac{\sin \left(m+\frac{1}{2}\right) s}{s}\right| d s=4 \int_{0}^{\left(m+\frac{1}{2}\right) \pi} \frac{|\sin t|}{t} d t \\
& =4\left[\sum_{n=1}^{m} \int_{(n-1) \pi}^{n \pi} \frac{|\sin t|}{t} d t+\int_{m \pi}^{\left(m+\frac{1}{2}\right) \pi} \frac{|\sin t|}{t} d t\right] \\
& >4 \sum_{n=1}^{m} \int_{(n-1) \pi}^{n \pi} \frac{|\sin t|}{t} d t
\end{aligned}
$$

Proof: For any $s \in \mathbb{R}$, we have $|\sin s| \leq|s|$. Thus,

$$
\begin{aligned}
\int_{-\pi}^{\pi}\left|D_{m}(s)\right| d s & =2 \int_{0}^{\pi}\left|D_{m}(s)\right| d s=2 \int_{0}^{\pi}\left|\frac{\sin \left(m+\frac{1}{2}\right) s}{\sin \frac{s}{2}}\right| d s \\
& \geq 4 \int_{0}^{\pi}\left|\frac{\sin \left(m+\frac{1}{2}\right) s}{s}\right| d s=4 \int_{0}^{\left(m+\frac{1}{2}\right) \pi} \frac{|\sin t|}{t} d t \\
& =4\left[\sum_{n=1}^{m} \int_{(n-1) \pi}^{n \pi} \frac{|\sin t|}{t} d t+\int_{m \pi}^{\left(m+\frac{1}{2}\right) \pi} \frac{|\sin t|}{t} d t\right] \\
& >4 \sum_{n=1}^{m} \int_{(n-1) \pi}^{n \pi} \frac{|\sin t|}{t} d t>4 \sum_{n=1}^{m} \int_{(n-1) \pi}^{n \pi} \frac{|\sin t|}{n \pi} d t
\end{aligned}
$$

Proof: For any $s \in \mathbb{R}$, we have $|\sin s| \leq|s|$. Thus,

$$
\begin{aligned}
\int_{-\pi}^{\pi}\left|D_{m}(s)\right| d s & =2 \int_{0}^{\pi}\left|D_{m}(s)\right| d s=2 \int_{0}^{\pi}\left|\frac{\sin \left(m+\frac{1}{2}\right) s}{\sin \frac{s}{2}}\right| d s \\
& \geq 4 \int_{0}^{\pi}\left|\frac{\sin \left(m+\frac{1}{2}\right) s}{s}\right| d s=4 \int_{0}^{\left(m+\frac{1}{2}\right) \pi} \frac{|\sin t|}{t} d t \\
& =4\left[\sum_{n=1}^{m} \int_{(n-1) \pi}^{n \pi} \frac{|\sin t|}{t} d t+\int_{m \pi}^{\left(m+\frac{1}{2}\right) \pi} \frac{|\sin t|}{t} d t\right] \\
& >4 \sum_{n=1}^{m} \int_{(n-1) \pi}^{n \pi} \frac{|\sin t|}{t} d t>4 \sum_{n=1}^{m} \int_{(n-1) \pi}^{n \pi} \frac{|\sin t|}{n \pi} d t \\
& =\frac{4}{\pi} \sum_{n=1}^{m} \frac{1}{n} \int_{(n-1) \pi}^{n \pi}|\sin t| d t
\end{aligned}
$$

Proof: For any $s \in \mathbb{R}$, we have $|\sin s| \leq|s|$. Thus,

$$
\begin{aligned}
\int_{-\pi}^{\pi}\left|D_{m}(s)\right| d s & =2 \int_{0}^{\pi}\left|D_{m}(s)\right| d s=2 \int_{0}^{\pi}\left|\frac{\sin \left(m+\frac{1}{2}\right) s}{\sin \frac{s}{2}}\right| d s \\
& \geq 4 \int_{0}^{\pi}\left|\frac{\sin \left(m+\frac{1}{2}\right) s}{s}\right| d s=4 \int_{0}^{\left(m+\frac{1}{2}\right) \pi} \frac{|\sin t|}{t} d t \\
& =4\left[\sum_{n=1}^{m} \int_{(n-1) \pi}^{n \pi} \frac{|\sin t|}{t} d t+\int_{m \pi}^{\left(m+\frac{1}{2}\right) \pi} \frac{|\sin t|}{t} d t\right] \\
& >4 \sum_{n=1}^{m} \int_{(n-1) \pi}^{n \pi} \frac{|\sin t|}{t} d t>4 \sum_{n=1}^{m} \int_{(n-1) \pi}^{n \pi} \frac{|\sin t|}{n \pi} d t \\
& =\frac{4}{\pi} \sum_{n=1}^{m} \frac{1}{n} \int_{(n-1) \pi}^{n \pi}|\sin t| d t \\
& =\frac{4}{\pi} \sum_{n=1}^{m} \frac{1}{n} \int_{0}^{\pi} \sin t d t
\end{aligned}
$$

Proof: For any $s \in \mathbb{R}$, we have $|\sin s| \leq|s|$. Thus,

$$
\begin{aligned}
\int_{-\pi}^{\pi}\left|D_{m}(s)\right| d s & =2 \int_{0}^{\pi}\left|D_{m}(s)\right| d s=2 \int_{0}^{\pi}\left|\frac{\sin \left(m+\frac{1}{2}\right) s}{\sin \frac{s}{2}}\right| d s \\
& \geq 4 \int_{0}^{\pi}\left|\frac{\sin \left(m+\frac{1}{2}\right) s}{s}\right| d s=4 \int_{0}^{\left(m+\frac{1}{2}\right) \pi} \frac{|\sin t|}{t} d t \\
& =4\left[\sum_{n=1}^{m} \int_{(n-1) \pi}^{n \pi} \frac{|\sin t|}{t} d t+\int_{m \pi}^{\left(m+\frac{1}{2}\right) \pi} \frac{|\sin t|}{t} d t\right] \\
& >4 \sum_{n=1}^{m} \int_{(n-1) \pi}^{n \pi} \frac{|\sin t|}{t} d t>4 \sum_{n=1}^{m} \int_{(n-1) \pi}^{n \pi} \frac{|\sin t|}{n \pi} d t \\
& =\frac{4}{\pi} \sum_{n=1}^{m} \frac{1}{n} \int_{(n-1) \pi}^{n \pi}|\sin t| d t \\
& =\frac{4}{\pi} \sum_{n=1}^{m} \frac{1}{n} \int_{0}^{\pi} \sin t d t=\frac{8}{\pi} \sum_{n=1}^{m} \frac{1}{n} .
\end{aligned}
$$

As $m \rightarrow \infty$, the series in RHS diverges, we get our desired result,

Theorem

Let $X=C[-\pi, \pi]$ be the space of continuous functions with the supremum norm and define the linear functionals $\left\{T_{n}\right\}: X \rightarrow \mathbb{R}$ as

$$
T_{n}(f):=S_{f}^{n}(0),
$$

where S_{f}^{n} is the n-th partial sum of the Fourier series associated to f. Then T_{n} continuous (bounded), for each n, and

$$
\begin{equation*}
\left\|T_{n}\right\|:=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|D_{n}(s)\right| d s \tag{7.3}
\end{equation*}
$$

Theorem

Let $X=C[-\pi, \pi]$ be the space of continuous functions with the supremum norm and define the linear functionals $\left\{T_{n}\right\}: X \rightarrow \mathbb{R}$ as

$$
T_{n}(f):=S_{f}^{n}(0),
$$

where S_{f}^{n} is the n-th partial sum of the Fourier series associated to f.
Then T_{n} continuous (bounded), for each n, and

$$
\begin{equation*}
\left\|T_{n}\right\|:=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|D_{n}(s)\right| d s \tag{7.3}
\end{equation*}
$$

Proof: Note that

$$
T_{n}(f)=S_{f}^{n}(0)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x)\left[\sum_{n=-m}^{m} e^{-i n x}\right] d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) D_{n}(x) d x
$$

Proof Continued

Therefore,

$$
\left|T_{n}(f)\right| \leq \frac{\|f\|_{\infty}}{2 \pi} \int_{-\pi}^{\pi}\left|D_{n}(x)\right| d x
$$

Proof Continued

Therefore,

$$
\left|T_{n}(f)\right| \leq \frac{\|f\|_{\infty}}{2 \pi} \int_{-\pi}^{\pi}\left|D_{n}(x)\right| d x
$$

and, hence,

$$
\left\|T_{n}\right\| \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|D_{n}(x)\right| d x
$$

Proof Continued

Therefore,

$$
\left|T_{n}(f)\right| \leq \frac{\|f\|_{\infty}}{2 \pi} \int_{-\pi}^{\pi}\left|D_{n}(x)\right| d x
$$

and, hence,

$$
\left\|T_{n}\right\| \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|D_{n}(x)\right| d x
$$

To show equality, we shall construct a sequence of continuous functions which converges to the equality case.

Proof Continued

Therefore,

$$
\left|T_{n}(f)\right| \leq \frac{\|f\|_{\infty}}{2 \pi} \int_{-\pi}^{\pi}\left|D_{n}(x)\right| d x
$$

and, hence,

$$
\left\|T_{n}\right\| \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|D_{n}(x)\right| d x
$$

To show equality, we shall construct a sequence of continuous functions which converges to the equality case. For each fixed $n \in \mathbb{N}$, let

$$
E_{n}:=\left\{x \in[-\pi, \pi] \mid D_{n}(x) \geq 0\right\}
$$

Proof Continued

Therefore,

$$
\left|T_{n}(f)\right| \leq \frac{\|f\|_{\infty}}{2 \pi} \int_{-\pi}^{\pi}\left|D_{n}(x)\right| d x
$$

and, hence,

$$
\left\|T_{n}\right\| \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|D_{n}(x)\right| d x
$$

To show equality, we shall construct a sequence of continuous functions which converges to the equality case. For each fixed $n \in \mathbb{N}$, let

$$
E_{n}:=\left\{x \in[-\pi, \pi] \mid D_{n}(x) \geq 0\right\}
$$

and define, for $m \in \mathbb{N}$,

$$
f_{m}(x):=\frac{1-m d\left(x, E_{n}\right)}{1+m d\left(x, E_{n}\right)}
$$

Proof Continued

Therefore,

$$
\left|T_{n}(f)\right| \leq \frac{\|f\|_{\infty}}{2 \pi} \int_{-\pi}^{\pi}\left|D_{n}(x)\right| d x
$$

and, hence,

$$
\left\|T_{n}\right\| \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|D_{n}(x)\right| d x
$$

To show equality, we shall construct a sequence of continuous functions which converges to the equality case. For each fixed $n \in \mathbb{N}$, let

$$
E_{n}:=\left\{x \in[-\pi, \pi] \mid D_{n}(x) \geq 0\right\}
$$

and define, for $m \in \mathbb{N}$,

$$
f_{m}(x):=\frac{1-m d\left(x, E_{n}\right)}{1+m d\left(x, E_{n}\right)}
$$

Note that

$$
f_{m}(x)= \begin{cases}1 & x \in E_{n} \\ \frac{1 / m-d\left(x, E_{n}\right)}{1 / m+d\left(x, E_{n}\right)} & x \in E_{n}^{c}\end{cases}
$$

Proof Continued

and $\left\{f_{m}\right\} \subset C[-\pi, \pi]$ because, for each $n, d\left(x, E_{n}\right)$ is a continuous function on $[-\pi, \pi]$ (cf. Exercise 19).

Proof Continued

and $\left\{f_{m}\right\} \subset C[-\pi, \pi]$ because, for each $n, d\left(x, E_{n}\right)$ is a continuous function on $[-\pi, \pi]$ (cf. Exercise 19). Further, $\left\|f_{m}\right\|_{\infty}<1$ because $1-m d\left(x, E_{n}\right) \leq 1+m d\left(x, E_{n}\right)$.

Proof Continued

and $\left\{f_{m}\right\} \subset C[-\pi, \pi]$ because, for each $n, d\left(x, E_{n}\right)$ is a continuous function on $[-\pi, \pi]$ (cf. Exercise 19). Further, $\left\|f_{m}\right\|_{\infty}<1$ because $1-m d\left(x, E_{n}\right) \leq 1+m d\left(x, E_{n}\right)$. Note that $f_{m}(x) \rightarrow 1$, for all $x \in E_{n}$, and $f_{m}(x) \rightarrow-1$, for all $x \in E_{n}^{c}$, as $m \rightarrow \infty$.

Proof Continued

and $\left\{f_{m}\right\} \subset C[-\pi, \pi]$ because, for each $n, d\left(x, E_{n}\right)$ is a continuous function on $[-\pi, \pi]$ (cf. Exercise 19). Further, $\left\|f_{m}\right\|_{\infty}<1$ because $1-m d\left(x, E_{n}\right) \leq 1+m d\left(x, E_{n}\right)$. Note that $f_{m}(x) \rightarrow 1$, for all $x \in E_{n}$, and $f_{m}(x) \rightarrow-1$, for all $x \in E_{n}^{c}$, as $m \rightarrow \infty$. Therefore, by Dominated convergence theorem,

$$
\lim _{m \rightarrow \infty} T_{n}\left(f_{m}\right)=\lim _{m \rightarrow \infty} \frac{1}{2 \pi} \int_{-\pi}^{\pi} f_{m}(x) D_{n}(x) d x
$$

Proof Continued

and $\left\{f_{m}\right\} \subset C[-\pi, \pi]$ because, for each $n, d\left(x, E_{n}\right)$ is a continuous function on $[-\pi, \pi]$ (cf. Exercise 19). Further, $\left\|f_{m}\right\|_{\infty}<1$ because $1-m d\left(x, E_{n}\right) \leq 1+m d\left(x, E_{n}\right)$. Note that $f_{m}(x) \rightarrow 1$, for all $x \in E_{n}$, and $f_{m}(x) \rightarrow-1$, for all $x \in E_{n}^{c}$, as $m \rightarrow \infty$. Therefore, by Dominated convergence theorem,

$$
\begin{aligned}
\lim _{m \rightarrow \infty} T_{n}\left(f_{m}\right) & =\lim _{m \rightarrow \infty} \frac{1}{2 \pi} \int_{-\pi}^{\pi} f_{m}(x) D_{n}(x) d x \\
& =\frac{1}{2 \pi}\left[\int_{E_{n}} D_{n}(x) d x+\int_{E_{n}^{c}}-D_{n}(x) d x\right]
\end{aligned}
$$

Proof Continued

and $\left\{f_{m}\right\} \subset C[-\pi, \pi]$ because, for each $n, d\left(x, E_{n}\right)$ is a continuous function on $[-\pi, \pi]$ (cf. Exercise 19). Further, $\left\|f_{m}\right\|_{\infty}<1$ because $1-m d\left(x, E_{n}\right) \leq 1+m d\left(x, E_{n}\right)$. Note that $f_{m}(x) \rightarrow 1$, for all $x \in E_{n}$, and $f_{m}(x) \rightarrow-1$, for all $x \in E_{n}^{c}$, as $m \rightarrow \infty$. Therefore, by Dominated convergence theorem,

$$
\begin{aligned}
\lim _{m \rightarrow \infty} T_{n}\left(f_{m}\right) & =\lim _{m \rightarrow \infty} \frac{1}{2 \pi} \int_{-\pi}^{\pi} f_{m}(x) D_{n}(x) d x \\
& =\frac{1}{2 \pi}\left[\int_{E_{n}} D_{n}(x) d x+\int_{E_{n}^{c}}-D_{n}(x) d x\right] \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|D_{n}(x)\right| d x
\end{aligned}
$$

Thus, we have proved (7.3).

Divergence of Fourier Series

For the Banach space $X=C[-\pi, \pi]$, the sub-family $\mathcal{F} \subset X^{\star}$ defined as $T_{n}(f)=S_{f}^{n}(0)$ is such that $\sup _{n}\left\|T_{n}\right\|=\infty$ using Proposition 2 and Theorem 28.

Divergence of Fourier Series

For the Banach space $X=C[-\pi, \pi]$, the sub-family $\mathcal{F} \subset X^{\star}$ defined as $T_{n}(f)=S_{f}^{n}(0)$ is such that $\sup _{n}\left\|T_{n}\right\|=\infty$ using Proposition 2 and Theorem 28. Thus, by Uniform Boundedness Principle (cf. Theorem 22), there is a dense G_{δ} subset $G_{0} \subset C[-\pi, \pi]$ such that $\sup _{n}\left\|T_{n}(f)\right\|=\infty$ for all $f \in G_{0}$,

Divergence of Fourier Series

For the Banach space $X=C[-\pi, \pi]$, the sub-family $\mathcal{F} \subset X^{\star}$ defined as $T_{n}(f)=S_{f}^{n}(0)$ is such that $\sup _{n}\left\|T_{n}\right\|=\infty$ using Proposition 2 and Theorem 28. Thus, by Uniform Boundedness Principle (cf. Theorem 22), there is a dense G_{δ} subset $G_{0} \subset C[-\pi, \pi]$ such that $\sup _{n}\left\|T_{n}(f)\right\|=\infty$ for all $f \in G_{0}$, i.e., the Fourier series of all $f \in G_{0}$ diverges at $x=0$.

Divergence of Fourier Series

For the Banach space $X=C[-\pi, \pi]$, the sub-family $\mathcal{F} \subset X^{\star}$ defined as $T_{n}(f)=S_{f}^{n}(0)$ is such that $\sup _{n}\left\|T_{n}\right\|=\infty$ using Proposition 2 and Theorem 28. Thus, by Uniform Boundedness Principle (cf. Theorem 22), there is a dense G_{δ} subset $G_{0} \subset C[-\pi, \pi]$ such that $\sup _{n}\left\|T_{n}(f)\right\|=\infty$ for all $f \in G_{0}$, i.e., the Fourier series of all $f \in G_{0}$ diverges at $x=0$. Note that this result is true for any point $x \in[-\pi, \pi]$.

Divergence of Fourier Series

For the Banach space $X=C[-\pi, \pi]$, the sub-family $\mathcal{F} \subset X^{\star}$ defined as $T_{n}(f)=S_{f}^{n}(0)$ is such that $\sup _{n}\left\|T_{n}\right\|=\infty$ using Proposition 2 and Theorem 28. Thus, by Uniform Boundedness Principle (cf. Theorem 22), there is a dense G_{δ} subset $G_{0} \subset C[-\pi, \pi]$ such that $\sup _{n}\left\|T_{n}(f)\right\|=\infty$ for all $f \in G_{0}$, i.e., the Fourier series of all $f \in G_{0}$ diverges at $x=0$. Note that this result is true for any point $x \in[-\pi, \pi]$. In fact, for each $x \in[-\pi, \pi]$, there is a dense G_{δ} subset $G_{x} \subset C[-\pi, \pi]$ such that the Fourier series of all $f \in G_{x}$ diverge at x.

Divergence of Fourier Series

For the Banach space $X=C[-\pi, \pi]$, the sub-family $\mathcal{F} \subset X^{\star}$ defined as $T_{n}(f)=S_{f}^{n}(0)$ is such that $\sup _{n}\left\|T_{n}\right\|=\infty$ using Proposition 2 and Theorem 28. Thus, by Uniform Boundedness Principle (cf. Theorem 22), there is a dense G_{δ} subset $G_{0} \subset C[-\pi, \pi]$ such that $\sup _{n}\left\|T_{n}(f)\right\|=\infty$ for all $f \in G_{0}$, i.e., the Fourier series of all $f \in G_{0}$ diverges at $x=0$. Note that this result is true for any point $x \in[-\pi, \pi]$. In fact, for each $x \in[-\pi, \pi]$, there is a dense G_{δ} subset $G_{x} \subset C[-\pi, \pi]$ such that the Fourier series of all $f \in G_{x}$ diverge at x. For any countable subset $\left\{x_{i}\right\} \subset[-\pi, \pi]$, we define $G:=\cap_{i} G_{x_{i}} \subset C[-\pi, \pi]$.

Divergence of Fourier Series

For the Banach space $X=C[-\pi, \pi]$, the sub-family $\mathcal{F} \subset X^{\star}$ defined as $T_{n}(f)=S_{f}^{n}(0)$ is such that $\sup _{n}\left\|T_{n}\right\|=\infty$ using Proposition 2 and Theorem 28. Thus, by Uniform Boundedness Principle (cf. Theorem 22), there is a dense G_{δ} subset $G_{0} \subset C[-\pi, \pi]$ such that $\sup _{n}\left\|T_{n}(f)\right\|=\infty$ for all $f \in G_{0}$, i.e., the Fourier series of all $f \in G_{0}$ diverges at $x=0$. Note that this result is true for any point $x \in[-\pi, \pi]$. In fact, for each $x \in[-\pi, \pi]$, there is a dense G_{δ} subset $G_{x} \subset C[-\pi, \pi]$ such that the Fourier series of all $f \in G_{x}$ diverge at x. For any countable subset $\left\{x_{i}\right\} \subset[-\pi, \pi]$, we define $G:=\cap_{i} G_{x_{i}} \subset C[-\pi, \pi]$. Then G is a dense G_{δ} subset of $C[-\pi, \pi]$ and the Fourier series of $f \in G$ diverge at x_{i}, for all i.

Divergence of Fourier Series

For the Banach space $X=C[-\pi, \pi]$, the sub-family $\mathcal{F} \subset X^{\star}$ defined as $T_{n}(f)=S_{f}^{n}(0)$ is such that $\sup _{n}\left\|T_{n}\right\|=\infty$ using Proposition 2 and Theorem 28. Thus, by Uniform Boundedness Principle (cf. Theorem 22), there is a dense G_{δ} subset $G_{0} \subset C[-\pi, \pi]$ such that $\sup _{n}\left\|T_{n}(f)\right\|=\infty$ for all $f \in G_{0}$, i.e., the Fourier series of all $f \in G_{0}$ diverges at $x=0$. Note that this result is true for any point $x \in[-\pi, \pi]$. In fact, for each $x \in[-\pi, \pi]$, there is a dense G_{δ} subset $G_{x} \subset C[-\pi, \pi]$ such that the Fourier series of all $f \in G_{x}$ diverge at x. For any countable subset $\left\{x_{i}\right\} \subset[-\pi, \pi]$, we define $G:=\cap_{i} G_{x_{i}} \subset C[-\pi, \pi]$. Then G is a dense G_{δ} subset of $C[-\pi, \pi]$ and the Fourier series of $f \in G$ diverge at x_{i}, for all i. The set G cannot be countable because it is a dense G_{δ} subset (cf. Corollary 3).

Divergence of Fourier Series

For the Banach space $X=C[-\pi, \pi]$, the sub-family $\mathcal{F} \subset X^{\star}$ defined as $T_{n}(f)=S_{f}^{n}(0)$ is such that $\sup _{n}\left\|T_{n}\right\|=\infty$ using Proposition 2 and Theorem 28. Thus, by Uniform Boundedness Principle (cf. Theorem 22), there is a dense G_{δ} subset $G_{0} \subset C[-\pi, \pi]$ such that $\sup _{n}\left\|T_{n}(f)\right\|=\infty$ for all $f \in G_{0}$, i.e., the Fourier series of all $f \in G_{0}$ diverges at $x=0$. Note that this result is true for any point $x \in[-\pi, \pi]$. In fact, for each $x \in[-\pi, \pi]$, there is a dense G_{δ} subset $G_{x} \subset C[-\pi, \pi]$ such that the Fourier series of all $f \in G_{x}$ diverge at x. For any countable subset $\left\{x_{i}\right\} \subset[-\pi, \pi]$, we define $G:=\cap_{i} G_{x_{i}} \subset C[-\pi, \pi]$. Then G is a dense G_{δ} subset of $C[-\pi, \pi]$ and the Fourier series of $f \in G$ diverge at x_{i}, for all i. The set G cannot be countable because it is a dense G_{δ} subset (cf. Corollary 3). Thus, the set of functions whose Fourier series diverges is very 'big'. In fact, the points x_{i} on which the Fourier series diverge is also quite 'big'.

Convolution

The technique of regularization by convolution was introduced by Leray and Friedrichs.

Convolution

The technique of regularization by convolution was introduced by Leray and Friedrichs.

Definition

Let $f, g \in L^{1}\left(\mathbb{R}^{n}\right)$. The convolution $f * g$ is defined as,

$$
(f * g)(x)=\int_{\mathbb{R}^{n}} f(x-y) g(y) d y \quad \forall x \in \mathbb{R}^{n}
$$

Convolution

The technique of regularization by convolution was introduced by Leray and Friedrichs.

Definition

Let $f, g \in L^{1}\left(\mathbb{R}^{n}\right)$. The convolution $f * g$ is defined as,

$$
(f * g)(x)=\int_{\mathbb{R}^{n}} f(x-y) g(y) d y \quad \forall x \in \mathbb{R}^{n}
$$

The integral on RHS is well-defined, since by Fubini's Theorem and the translation invariance of the Lebesgue measure, we have
$\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}}|f(x-y) g(y)| d x d y=\int_{\mathbb{R}^{n}}|g(y)| d y \int_{\mathbb{R}^{n}}|f(x-y)| d x=\|g\|_{1}\|f\|_{1}$.
Thus, for a fixed $x, f(x-y) g(y) \in L^{1}\left(\mathbb{R}^{n}\right)$.

Properties of Convolution

Exercise

The convolution operation on $L^{1}\left(\mathbb{R}^{n}\right)$ is both commutative and associative.

Properties of Convolution

Exercise

The convolution operation on $L^{1}\left(\mathbb{R}^{n}\right)$ is both commutative and associative.

Exercise (Young's inequality)

Let $1 \leq p, q, r<\infty$ such that $(1 / p)+(1 / q)=1+(1 / r)$. If $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $g \in L^{q}\left(\mathbb{R}^{n}\right)$, then the convolution $f * g \in L^{r}\left(\mathbb{R}^{n}\right)$ and

$$
\|f * g\|_{r} \leq\|f\|_{p}\|g\|_{q}
$$

In particular, for $1 \leq p<\infty$, if $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and $g \in L^{p}\left(\mathbb{R}^{n}\right)$, then the convolution $f * g \in L^{p}\left(\mathbb{R}^{n}\right)$ and

$$
\|f * g\|_{p} \leq\|f\|_{1}\|g\|_{p}
$$

Properties of Convolution

Exercise

Let $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and $g \in L^{p}\left(\mathbb{R}^{n}\right)$, for $1 \leq p \leq \infty$. Then

$$
\operatorname{supp}(f * g) \subset \overline{\operatorname{supp}(f)+\operatorname{supp}(g)}
$$

If both f and g have compact support, then support of $f * g$ is also compact.

Properties of Convolution

Exercise

Let $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and $g \in L^{p}\left(\mathbb{R}^{n}\right)$, for $1 \leq p \leq \infty$. Then

$$
\operatorname{supp}(f * g) \subset \overline{\operatorname{supp}(f)+\operatorname{supp}(g)}
$$

If both f and g have compact support, then support of $f * g$ is also compact.
The convolution operation preserves smoothness.

Exercise

Let $f \in C_{c}^{k}\left(\mathbb{R}^{n}\right)(k \geq 1)$ and let $g \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$. Then $f * g \in C^{k}\left(\mathbb{R}^{n}\right)$ and for all $|\alpha| \leq k$

$$
D^{\alpha}(f * g)=D^{\alpha} f * g=f * D^{\alpha} g
$$

Mollifiers

For $\varepsilon>0$,

$$
\rho_{\varepsilon}(x)= \begin{cases}c \varepsilon^{-n} \exp \left(\frac{-\varepsilon^{2}}{\varepsilon^{2}-|x|^{2}}\right) & \text { if }|x|<\varepsilon \tag{7.4}\\ 0 & \text { if }|x| \geq \varepsilon\end{cases}
$$

Mollifiers

For $\varepsilon>0$,

$$
\rho_{\varepsilon}(x)= \begin{cases}c \varepsilon^{-n} \exp \left(\frac{-\varepsilon^{2}}{\varepsilon^{2}-|x|^{2}}\right) & \text { if }|x|<\varepsilon \tag{7.4}\\ 0 & \text { if }|x| \geq \varepsilon\end{cases}
$$

where

$$
c^{-1}=\int_{|y| \leq 1} \exp \left(\frac{-1}{1-|y|^{2}}\right) d y
$$

Mollifiers

For $\varepsilon>0$,

$$
\rho_{\varepsilon}(x)= \begin{cases}c \varepsilon^{-n} \exp \left(\frac{-\varepsilon^{2}}{\varepsilon^{2}-|x|^{2}}\right) & \text { if }|x|<\varepsilon \tag{7.4}\\ 0 & \text { if }|x| \geq \varepsilon\end{cases}
$$

where

$$
c^{-1}=\int_{|y| \leq 1} \exp \left(\frac{-1}{1-|y|^{2}}\right) d y
$$

Note that $\rho_{\varepsilon} \geq 0$ and is in $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ with support in $B(0 ; \varepsilon)$. The sequence $\left\{\rho_{\varepsilon}\right\}$ is an example of mollifiers, a particular case of the Dirac sequence. The notion of mollifiers is also an example for the approximation of identity concept in functional analysis and ring theory.

Dirac Sequence and Approximate Identity

Definition

A sequence of functions $\left\{\rho_{k}\right\}$, say on \mathbb{R}^{n}, is said to be a Dirac Sequence if
(1) $\rho_{k} \geq 0$ for all k.
(1) $\int_{\mathbb{R}^{n}} \rho_{k}(x) d x=1$ for all k.
(1) For every given $r>0$ and $\varepsilon>0$, there exists a $N_{0} \in \mathbb{N}$ such that

$$
\int_{\mathbb{R}^{n} \backslash B(0 ; r)} \rho_{k}(x) d x<\varepsilon, \quad \forall k>N_{0} .
$$

Definition

An approximate identity is a sequence (or net) $\left\{\rho_{k}\right.$ in a Banach algebra or ring (possible with no identity), (X, \star) such that for any element a in the algebra or ring, the limit of $a \star \rho_{k}\left(\right.$ or $\left.\rho_{k} \star a\right)$ is a.

Regularization

Theorem
Let $\Omega \subset \mathbb{R}^{n}$ be an open subset of \mathbb{R}^{n} and let

$$
\Omega_{\varepsilon}:=\{x \in \Omega \mid \operatorname{dist}(x, \partial \Omega)>\varepsilon\} .
$$

If $f \in L_{\text {loc }}^{1}(\Omega)$ then $f_{\varepsilon}:=\rho_{\varepsilon} * f$ is in $C^{\infty}\left(\Omega_{\varepsilon}\right)$.

Regularization

Theorem
Let $\Omega \subset \mathbb{R}^{n}$ be an open subset of \mathbb{R}^{n} and let

$$
\Omega_{\varepsilon}:=\{x \in \Omega \mid \operatorname{dist}(x, \partial \Omega)>\varepsilon\} .
$$

If $f \in L_{\text {loc }}^{1}(\Omega)$ then $f_{\varepsilon}:=\rho_{\varepsilon} * f$ is in $C^{\infty}\left(\Omega_{\varepsilon}\right)$.
Proof: Fix $x \in \Omega_{\varepsilon}$. Consider

$$
\frac{f_{\varepsilon}\left(x+h e_{i}\right)-f_{\varepsilon}(x)}{h}
$$

Regularization

Theorem

Let $\Omega \subset \mathbb{R}^{n}$ be an open subset of \mathbb{R}^{n} and let

$$
\Omega_{\varepsilon}:=\{x \in \Omega \mid \operatorname{dist}(x, \partial \Omega)>\varepsilon\} .
$$

If $f \in L_{\text {loc }}^{1}(\Omega)$ then $f_{\varepsilon}:=\rho_{\varepsilon} * f$ is in $C^{\infty}\left(\Omega_{\varepsilon}\right)$.
Proof: Fix $x \in \Omega_{\varepsilon}$. Consider

$$
\frac{f_{\varepsilon}\left(x+h e_{i}\right)-f_{\varepsilon}(x)}{h}=\frac{1}{h} \int_{\Omega}\left[\rho_{\varepsilon}\left(x+h e_{i}-y\right)-\rho_{\varepsilon}(x-y)\right] f(y) d y
$$

Regularization

Theorem

Let $\Omega \subset \mathbb{R}^{n}$ be an open subset of \mathbb{R}^{n} and let

$$
\Omega_{\varepsilon}:=\{x \in \Omega \mid \operatorname{dist}(x, \partial \Omega)>\varepsilon\} .
$$

If $f \in L_{\text {loc }}^{1}(\Omega)$ then $f_{\varepsilon}:=\rho_{\varepsilon} * f$ is in $C^{\infty}\left(\Omega_{\varepsilon}\right)$.
Proof: Fix $x \in \Omega_{\varepsilon}$. Consider

$$
\begin{aligned}
\frac{f_{\varepsilon}\left(x+h e_{i}\right)-f_{\varepsilon}(x)}{h} & =\frac{1}{h} \int_{\Omega}\left[\rho_{\varepsilon}\left(x+h e_{i}-y\right)-\rho_{\varepsilon}(x-y)\right] f(y) d y \\
& =\int_{B_{\varepsilon}(x)} \frac{1}{h}\left[\rho_{\varepsilon}\left(x+h e_{i}-y\right)-\rho_{\varepsilon}(x-y)\right] f(y) d y
\end{aligned}
$$

Proof Continued...

Now, taking $\lim _{h \rightarrow 0}$ both sides, we get $\frac{\partial f_{\varepsilon}(x)}{\partial x_{i}}$

Proof Continued...

Now, taking $\lim _{h \rightarrow 0}$ both sides, we get

$$
\frac{\partial f_{\varepsilon}(x)}{\partial x_{i}}=\lim _{h \rightarrow 0} \int_{B_{\varepsilon}(x)} \frac{1}{h}\left[\rho_{\varepsilon}\left(x+h e_{i}-y\right)-\rho_{\varepsilon}(x-y)\right] f(y) d y
$$

Proof Continued...

Now, taking $\lim _{h \rightarrow 0}$ both sides, we get

$$
\begin{aligned}
\frac{\partial f_{\varepsilon}(x)}{\partial x_{i}} & =\lim _{h \rightarrow 0} \int_{B_{\varepsilon}(x)} \frac{1}{h}\left[\rho_{\varepsilon}\left(x+h e_{i}-y\right)-\rho_{\varepsilon}(x-y)\right] f(y) d y \\
& =\int_{B_{\varepsilon}(x)} \frac{\partial \rho_{\varepsilon}(x-y)}{\partial x_{i}} f(y) d y
\end{aligned}
$$

(interchange of limits is due to the uniform convergence)

Proof Continued...

Now, taking $\lim _{h \rightarrow 0}$ both sides, we get

$$
\begin{aligned}
\frac{\partial f_{\varepsilon}(x)}{\partial x_{i}}= & \lim _{h \rightarrow 0} \int_{B_{\varepsilon}(x)} \frac{1}{h}\left[\rho_{\varepsilon}\left(x+h e_{i}-y\right)-\rho_{\varepsilon}(x-y)\right] f(y) d y \\
= & \int_{B_{\varepsilon}(x)} \frac{\partial \rho_{\varepsilon}(x-y)}{\partial x_{i}} f(y) d y \\
& \text { (interchange of limits is due to the uniform convergence) } \\
= & \int_{\Omega} \frac{\partial \rho_{\varepsilon}(x-y)}{\partial x_{i}} f(y) d y=\frac{\partial \rho_{\varepsilon}}{\partial x_{i}} * f
\end{aligned}
$$

Proof Continued...

Now, taking $\lim _{h \rightarrow 0}$ both sides, we get

$$
\begin{aligned}
\frac{\partial f_{\varepsilon}(x)}{\partial x_{i}} & =\lim _{h \rightarrow 0} \int_{B_{\varepsilon}(x)} \frac{1}{h}\left[\rho_{\varepsilon}\left(x+h e_{i}-y\right)-\rho_{\varepsilon}(x-y)\right] f(y) d y \\
& =\int_{B_{\varepsilon}(x)} \frac{\partial \rho_{\varepsilon}(x-y)}{\partial x_{i}} f(y) d y
\end{aligned}
$$

(interchange of limits is due to the uniform convergence)

$$
=\int_{\Omega} \frac{\partial \rho_{\varepsilon}(x-y)}{\partial x_{i}} f(y) d y=\frac{\partial \rho_{\varepsilon}}{\partial x_{i}} * f
$$

Similarly, one can show that, for any tuple $\alpha, D^{\alpha} f_{\varepsilon}(x)=\left(D^{\alpha} \rho_{\varepsilon} * f\right)(x)$. Thus, $u_{\varepsilon} \in C^{\infty}\left(\Omega_{\varepsilon}\right)$.

Theorem (Regularization technique)
$C^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $C\left(\mathbb{R}^{n}\right)$ under the uniform convergence on compact sets topology.

Theorem (Regularization technique)
$C^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $C\left(\mathbb{R}^{n}\right)$ under the uniform convergence on compact sets topology.

Proof: Let $g \in C\left(\mathbb{R}^{n}\right)$ and $K \subset \mathbb{R}^{n}$ be a compact subset.

Theorem (Regularization technique)

$C^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $C\left(\mathbb{R}^{n}\right)$ under the uniform convergence on compact sets topology.

Proof: Let $g \in C\left(\mathbb{R}^{n}\right)$ and $K \subset \mathbb{R}^{n}$ be a compact subset. Note that g is uniformly continuous on K. Hence, for every $\eta>0$, there exist a $\delta>0$ (independent of x and dependent on K and η) such that $|g(x-y)-g(x)|<\eta$ whenever $|y|<\delta$ for all $x \in K$.

Theorem (Regularization technique)

$C^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $C\left(\mathbb{R}^{n}\right)$ under the uniform convergence on compact sets topology.

Proof: Let $g \in C\left(\mathbb{R}^{n}\right)$ and $K \subset \mathbb{R}^{n}$ be a compact subset. Note that g is uniformly continuous on K. Hence, for every $\eta>0$, there exist a $\delta>0$ (independent of x and dependent on K and η) such that $|g(x-y)-g(x)|<\eta$ whenever $|y|<\delta$ for all $x \in K$. For each $m \in \mathbb{N}$, set $\rho_{m}:=\rho_{1 / m}$, the sequence of mollifiers.

Theorem (Regularization technique)

$C^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $C\left(\mathbb{R}^{n}\right)$ under the uniform convergence on compact sets topology.

Proof: Let $g \in C\left(\mathbb{R}^{n}\right)$ and $K \subset \mathbb{R}^{n}$ be a compact subset. Note that g is uniformly continuous on K. Hence, for every $\eta>0$, there exist a $\delta>0$ (independent of x and dependent on K and η) such that $|g(x-y)-g(x)|<\eta$ whenever $|y|<\delta$ for all $x \in K$. For each $m \in \mathbb{N}$, set $\rho_{m}:=\rho_{1 / m}$, the sequence of mollifiers. Define $g_{m}:=\rho_{m} * g$. Note that $g_{m} \in C^{\infty}\left(\mathbb{R}^{n}\right)\left(D^{\alpha} g_{m}=D^{\alpha} \rho_{m} * g\right)$.

Proof Continued...

Now, for all $x \in \mathbb{R}^{n}$,

$$
\left|g_{m}(x)-g(x)\right|=\left|\int_{|y| \leq 1 / m} g(x-y) \rho_{m}(y) d y-g(x) \int_{|y| \leq 1 / m} \rho_{m}(y) d y\right|
$$

Proof Continued...

Now, for all $x \in \mathbb{R}^{n}$,

$$
\begin{aligned}
\left|g_{m}(x)-g(x)\right| & =\left|\int_{|y| \leq 1 / m} g(x-y) \rho_{m}(y) d y-g(x) \int_{|y| \leq 1 / m} \rho_{m}(y) d y\right| \\
& \leq \int_{|y| \leq 1 / m}|g(x-y)-g(x)| \rho_{m}(y) d y
\end{aligned}
$$

Proof Continued...

Now, for all $x \in \mathbb{R}^{n}$,

$$
\begin{aligned}
\left|g_{m}(x)-g(x)\right| & =\left|\int_{|y| \leq 1 / m} g(x-y) \rho_{m}(y) d y-g(x) \int_{|y| \leq 1 / m} \rho_{m}(y) d y\right| \\
& \leq \int_{|y| \leq 1 / m}|g(x-y)-g(x)| \rho_{m}(y) d y
\end{aligned}
$$

Hence, for all $x \in K$ and $m>1 / \delta$, we have

$$
\begin{aligned}
\left|g_{m}(x)-g(x)\right| & \leq \int_{|y|<\delta}|g(x-y)-g(x)| \rho_{m}(y) d y \\
& \leq \eta \int_{|y|<\delta} \rho_{m}(y) d y=\eta
\end{aligned}
$$

Proof Continued...

Now, for all $x \in \mathbb{R}^{n}$,

$$
\begin{aligned}
\left|g_{m}(x)-g(x)\right| & =\left|\int_{|y| \leq 1 / m} g(x-y) \rho_{m}(y) d y-g(x) \int_{|y| \leq 1 / m} \rho_{m}(y) d y\right| \\
& \leq \int_{|y| \leq 1 / m}|g(x-y)-g(x)| \rho_{m}(y) d y
\end{aligned}
$$

Hence, for all $x \in K$ and $m>1 / \delta$, we have

$$
\begin{aligned}
\left|g_{m}(x)-g(x)\right| & \leq \int_{|y|<\delta}|g(x-y)-g(x)| \rho_{m}(y) d y \\
& \leq \eta \int_{|y|<\delta} \rho_{m}(y) d y=\eta
\end{aligned}
$$

Since the δ is independent of $x \in K$, we have $\left\|g_{m}-g\right\|_{\infty}<\eta$ for all $m>1 / \delta$. Hence, $g_{m} \rightarrow g$ uniformly on K.

Density of Smooth Bump Functions

Theorem
For any $\Omega \subseteq \mathbb{R}^{n}, C_{c}^{\infty}(\Omega)$ is dense in $C_{c}(\Omega)$ under the uniform topology.

Density of Smooth Bump Functions

Theorem
For any $\Omega \subseteq \mathbb{R}^{n}, C_{c}^{\infty}(\Omega)$ is dense in $C_{c}(\Omega)$ under the uniform topology.
Proof: Let $g \in C_{c}(\Omega)$ and $K:=\operatorname{supp}(g)$.

Density of Smooth Bump Functions

Theorem

For any $\Omega \subseteq \mathbb{R}^{n}, C_{c}^{\infty}(\Omega)$ is dense in $C_{c}(\Omega)$ under the uniform topology.
Proof: Let $g \in C_{c}(\Omega)$ and $K:=\operatorname{supp}(g)$. One can view $C_{c}(\Omega)$ as a subset of $C_{c}\left(\mathbb{R}^{n}\right)$ under the following identification: Each $g \in C_{c}(\Omega)$ is extended to \mathbb{R}^{n} as \tilde{g}

$$
\tilde{g}(x)= \begin{cases}g(x) & x \in K \\ 0 & x \in \mathbb{R}^{n} \backslash K .\end{cases}
$$

Density of Smooth Bump Functions

Theorem

For any $\Omega \subseteq \mathbb{R}^{n}, C_{c}^{\infty}(\Omega)$ is dense in $C_{c}(\Omega)$ under the uniform topology.
Proof: Let $g \in C_{c}(\Omega)$ and $K:=\operatorname{supp}(g)$. One can view $C_{c}(\Omega)$ as a subset of $C_{c}\left(\mathbb{R}^{n}\right)$ under the following identification: Each $g \in C_{c}(\Omega)$ is extended to \mathbb{R}^{n} as \tilde{g}

$$
\tilde{g}(x)= \begin{cases}g(x) & x \in K \\ 0 & x \in \mathbb{R}^{n} \backslash K .\end{cases}
$$

By Theorem 29, the sequence $g_{m}:=\rho_{m} * \tilde{g}$ in $C^{\infty}\left(\mathbb{R}^{n}\right)$ converges to \tilde{g} uniformly on every compact subsets of \mathbb{R}^{n}.

Density of Smooth Bump Functions

Theorem

For any $\Omega \subseteq \mathbb{R}^{n}, C_{c}^{\infty}(\Omega)$ is dense in $C_{c}(\Omega)$ under the uniform topology.
Proof: Let $g \in C_{c}(\Omega)$ and $K:=\operatorname{supp}(g)$. One can view $C_{c}(\Omega)$ as a subset of $C_{c}\left(\mathbb{R}^{n}\right)$ under the following identification: Each $g \in C_{c}(\Omega)$ is extended to \mathbb{R}^{n} as \tilde{g}

$$
\tilde{g}(x)= \begin{cases}g(x) & x \in K \\ 0 & x \in \mathbb{R}^{n} \backslash K .\end{cases}
$$

By Theorem 29, the sequence $g_{m}:=\rho_{m} * \tilde{g}$ in $C^{\infty}\left(\mathbb{R}^{n}\right)$ converges to \tilde{g} uniformly on every compact subsets of \mathbb{R}^{n}. Note that $\operatorname{supp}\left(g_{m}\right) \subset K+B(0 ; 1 / m)$ is compact because K is compact.

Density of Smooth Bump Functions

Theorem

For any $\Omega \subseteq \mathbb{R}^{n}, C_{c}^{\infty}(\Omega)$ is dense in $C_{c}(\Omega)$ under the uniform topology.
Proof: Let $g \in C_{c}(\Omega)$ and $K:=\operatorname{supp}(g)$. One can view $C_{c}(\Omega)$ as a subset of $C_{c}\left(\mathbb{R}^{n}\right)$ under the following identification: Each $g \in C_{c}(\Omega)$ is extended to \mathbb{R}^{n} as \tilde{g}

$$
\tilde{g}(x)= \begin{cases}g(x) & x \in K \\ 0 & x \in \mathbb{R}^{n} \backslash K .\end{cases}
$$

By Theorem 29, the sequence $g_{m}:=\rho_{m} * \tilde{g}$ in $C^{\infty}\left(\mathbb{R}^{n}\right)$ converges to \tilde{g} uniformly on every compact subsets of \mathbb{R}^{n}. Note that $\operatorname{supp}\left(g_{m}\right) \subset K+B(0 ; 1 / m)$ is compact because K is compact. Since we want $g_{m} \in C_{c}^{\infty}(\Omega)$, we choose $m_{0} \in \mathbb{N}$ such that $1 / m_{0}<\operatorname{dist}\left(K, \Omega^{c}\right)$.

Density of Smooth Bump Functions

Theorem

For any $\Omega \subseteq \mathbb{R}^{n}, C_{c}^{\infty}(\Omega)$ is dense in $C_{c}(\Omega)$ under the uniform topology.
Proof: Let $g \in C_{c}(\Omega)$ and $K:=\operatorname{supp}(g)$. One can view $C_{c}(\Omega)$ as a subset of $C_{c}\left(\mathbb{R}^{n}\right)$ under the following identification: Each $g \in C_{c}(\Omega)$ is extended to \mathbb{R}^{n} as \tilde{g}

$$
\tilde{g}(x)= \begin{cases}g(x) & x \in K \\ 0 & x \in \mathbb{R}^{n} \backslash K .\end{cases}
$$

By Theorem 29, the sequence $g_{m}:=\rho_{m} * \tilde{g}$ in $C^{\infty}\left(\mathbb{R}^{n}\right)$ converges to \tilde{g} uniformly on every compact subsets of \mathbb{R}^{n}. Note that $\operatorname{supp}\left(g_{m}\right) \subset K+B(0 ; 1 / m)$ is compact because K is compact. Since we want $g_{m} \in C_{c}^{\infty}(\Omega)$, we choose $m_{0} \in \mathbb{N}$ such that $1 / m_{0}<\operatorname{dist}\left(K, \Omega^{c}\right)$.Thus, $\operatorname{supp}\left(g_{m}\right) \subset \Omega$ and $g_{m} \in C_{c}^{\infty}(\Omega)$, for all $m \geq m_{0}$.

Density of Smooth Bump Functions

Theorem

For any $\Omega \subseteq \mathbb{R}^{n}, C_{c}^{\infty}(\Omega)$ is dense in $C_{c}(\Omega)$ under the uniform topology.
Proof: Let $g \in C_{c}(\Omega)$ and $K:=\operatorname{supp}(g)$. One can view $C_{c}(\Omega)$ as a subset of $C_{c}\left(\mathbb{R}^{n}\right)$ under the following identification: Each $g \in C_{c}(\Omega)$ is extended to \mathbb{R}^{n} as \tilde{g}

$$
\tilde{g}(x)= \begin{cases}g(x) & x \in K \\ 0 & x \in \mathbb{R}^{n} \backslash K\end{cases}
$$

By Theorem 29, the sequence $g_{m}:=\rho_{m} * \tilde{g}$ in $C^{\infty}\left(\mathbb{R}^{n}\right)$ converges to \tilde{g} uniformly on every compact subsets of \mathbb{R}^{n}. Note that $\operatorname{supp}\left(g_{m}\right) \subset K+B(0 ; 1 / m)$ is compact because K is compact. Since we want $g_{m} \in C_{c}^{\infty}(\Omega)$, we choose $m_{0} \in \mathbb{N}$ such that $1 / m_{0}<\operatorname{dist}\left(K, \Omega^{c}\right)$. Thus, $\operatorname{supp}\left(g_{m}\right) \subset \Omega$ and $g_{m} \in C_{c}^{\infty}(\Omega)$, for all $m \geq m_{0}$. The proof of the uniform convergence of g_{m} to g on Ω is same as in Theorem 29.

Corollary

For any $\Omega \subseteq \mathbb{R}^{n}, C_{c}^{\infty}(\Omega)$ is dense in $C(\Omega)$ under the uniform convergence on compact sets topology.

Density of Simple Functions

A simple function ϕ is a non-zero function on \mathbb{R}^{n} having the (canonical) form

$$
\phi(x)=\sum_{i=1}^{k} a_{i} 1_{E_{i}}
$$

with disjoint measurable subsets $E_{i} \subset \mathbb{R}^{n}$ with $\mu\left(E_{i}\right)<+\infty$ and $a_{i} \neq 0$, for all i, and $a_{i} \neq a_{j}$ for $i \neq j$. By our definition, simple function is non-zero on a finite measure.

Density of Simple Functions

A simple function ϕ is a non-zero function on \mathbb{R}^{n} having the (canonical) form

$$
\phi(x)=\sum_{i=1}^{k} a_{i} 1_{E_{i}}
$$

with disjoint measurable subsets $E_{i} \subset \mathbb{R}^{n}$ with $\mu\left(E_{i}\right)<+\infty$ and $a_{i} \neq 0$, for all i, and $a_{i} \neq a_{j}$ for $i \neq j$. By our definition, simple function is non-zero on a finite measure.

Theorem
Let $\Omega \subset \mathbb{R}^{n}$. The class of all simple functions are dense in $L^{p}(\Omega)$ for $1 \leq p<\infty$.

Density of Simple Functions

A simple function ϕ is a non-zero function on \mathbb{R}^{n} having the (canonical) form

$$
\phi(x)=\sum_{i=1}^{k} a_{i} 1_{E_{i}}
$$

with disjoint measurable subsets $E_{i} \subset \mathbb{R}^{n}$ with $\mu\left(E_{i}\right)<+\infty$ and $a_{i} \neq 0$, for all i, and $a_{i} \neq a_{j}$ for $i \neq j$. By our definition, simple function is non-zero on a finite measure.

Theorem
Let $\Omega \subset \mathbb{R}^{n}$. The class of all simple functions are dense in $L^{p}(\Omega)$ for $1 \leq p<\infty$.

Proof: Fix $1 \leq p<\infty$ and let $f \in L^{p}(\Omega)$ such that $f \geq 0$.

Density of Simple Functions

A simple function ϕ is a non-zero function on \mathbb{R}^{n} having the (canonical) form

$$
\phi(x)=\sum_{i=1}^{k} a_{i} 1_{E_{i}}
$$

with disjoint measurable subsets $E_{i} \subset \mathbb{R}^{n}$ with $\mu\left(E_{i}\right)<+\infty$ and $a_{i} \neq 0$, for all i, and $a_{i} \neq a_{j}$ for $i \neq j$. By our definition, simple function is non-zero on a finite measure.

Theorem

Let $\Omega \subset \mathbb{R}^{n}$. The class of all simple functions are dense in $L^{p}(\Omega)$ for $1 \leq p<\infty$.

Proof: Fix $1 \leq p<\infty$ and let $f \in L^{p}(\Omega)$ such that $f \geq 0$. Then, we have an increasing sequence of non-negative simple functions $\left\{\phi_{k}\right\}$ that converge point-wise a.e. to f and $\phi_{k} \leq f$ for all k.

Proof Continued...

Thus,

$$
\left|\phi_{k}(x)-f(x)\right|^{p} \leq 2^{p}|f(x)|^{p}
$$

and, by Dominated Convergence Theorem, we have

$$
\lim _{k \rightarrow \infty}\left\|\phi_{k}-f\right\|_{p}^{p}=\lim _{k \rightarrow \infty} \int_{\Omega}\left|\phi_{k}-f\right|^{p} \rightarrow 0
$$

Proof Continued...

Thus,

$$
\left|\phi_{k}(x)-f(x)\right|^{p} \leq 2^{p}|f(x)|^{p}
$$

and, by Dominated Convergence Theorem, we have

$$
\lim _{k \rightarrow \infty}\left\|\phi_{k}-f\right\|_{p}^{p}=\lim _{k \rightarrow \infty} \int_{\Omega}\left|\phi_{k}-f\right|^{p} \rightarrow 0
$$

For an arbitrary $f \in L^{p}(\Omega)$, we use the decomposition $f=f^{+}-f^{-}$where $f^{+}, f^{-} \geq 0$.

Proof Continued...

Thus,

$$
\left|\phi_{k}(x)-f(x)\right|^{p} \leq 2^{p}|f(x)|^{p}
$$

and, by Dominated Convergence Theorem, we have

$$
\lim _{k \rightarrow \infty}\left\|\phi_{k}-f\right\|_{p}^{p}=\lim _{k \rightarrow \infty} \int_{\Omega}\left|\phi_{k}-f\right|^{p} \rightarrow 0
$$

For an arbitrary $f \in L^{p}(\Omega)$, we use the decomposition $f=f^{+}-f^{-}$where $f^{+}, f^{-} \geq 0$. Thus we have sequences of simple functions $\left\{\phi_{k}\right\}$ and $\left\{\psi_{k}\right\}$ such that $\phi_{m}-\psi_{m} \rightarrow f$ in $L^{P}(\Omega)$ (using triangle inequality). Thus, the space of simple functions is dense in $L^{p}(\Omega)$.

Density of Compactly Supported Functions

Theorem

The space of all compactly supported continuous functions on Ω, denoted as $C_{c}(\Omega)$ is dense in $L^{p}(\Omega)$ for $1 \leq p<\infty$.

Density of Compactly Supported Functions

Theorem

The space of all compactly supported continuous functions on Ω, denoted as $C_{c}(\Omega)$ is dense in $L^{p}(\Omega)$ for $1 \leq p<\infty$.

Proof: It is enough to prove the result for a characteristic function χ_{F}, where $F \subset \Omega$ such that F is bounded.

Density of Compactly Supported Functions

Theorem

The space of all compactly supported continuous functions on Ω, denoted as $C_{c}(\Omega)$ is dense in $L^{p}(\Omega)$ for $1 \leq p<\infty$.

Proof: It is enough to prove the result for a characteristic function χ_{F}, where $F \subset \Omega$ such that F is bounded. By outer regularity, for a given $\varepsilon>0$ there is an open (bounded) set ω such that $\omega \supset F$ and $\mu(\omega \backslash F)<\varepsilon / 2$.

Density of Compactly Supported Functions

Theorem

The space of all compactly supported continuous functions on Ω, denoted as $C_{c}(\Omega)$ is dense in $L^{p}(\Omega)$ for $1 \leq p<\infty$.

Proof: It is enough to prove the result for a characteristic function χ_{F}, where $F \subset \Omega$ such that F is bounded. By outer regularity, for a given $\varepsilon>0$ there is an open (bounded) set ω such that $\omega \supset F$ and $\mu(\omega \backslash F)<\varepsilon / 2$. Also, by inner regularity, there is a compact set $K \subset F$ such that $\mu(F \backslash K)<\varepsilon / 2$.

Density of Compactly Supported Functions

Theorem

The space of all compactly supported continuous functions on Ω, denoted as $C_{c}(\Omega)$ is dense in $L^{p}(\Omega)$ for $1 \leq p<\infty$.

Proof: It is enough to prove the result for a characteristic function χ_{F}, where $F \subset \Omega$ such that F is bounded. By outer regularity, for a given $\varepsilon>0$ there is an open (bounded) set ω such that $\omega \supset F$ and $\mu(\omega \backslash F)<\varepsilon / 2$. Also, by inner regularity, there is a compact set $K \subset F$ such that $\mu(F \backslash K)<\varepsilon / 2$. By Urysohn lemma, there is a continuous function $g: \Omega \rightarrow \mathbb{R}$ such that $g \equiv 0$ on $\Omega \backslash \omega, g \equiv 1$ on K and $0 \leq g \leq 1$ on $\omega \backslash K$.

Density of Compactly Supported Functions

Theorem

The space of all compactly supported continuous functions on Ω, denoted as $C_{c}(\Omega)$ is dense in $L^{p}(\Omega)$ for $1 \leq p<\infty$.

Proof: It is enough to prove the result for a characteristic function χ_{F}, where $F \subset \Omega$ such that F is bounded. By outer regularity, for a given $\varepsilon>0$ there is an open (bounded) set ω such that $\omega \supset F$ and $\mu(\omega \backslash F)<\varepsilon / 2$. Also, by inner regularity, there is a compact set $K \subset F$ such that $\mu(F \backslash K)<\varepsilon / 2$. By Urysohn lemma, there is a continuous function $g: \Omega \rightarrow \mathbb{R}$ such that $g \equiv 0$ on $\Omega \backslash \omega, g \equiv 1$ on K and $0 \leq g \leq 1$ on $\omega \backslash K$. Note that $g \in C_{c}(\Omega)$.

Density of Compactly Supported Functions

Theorem

The space of all compactly supported continuous functions on Ω, denoted as $C_{c}(\Omega)$ is dense in $L^{p}(\Omega)$ for $1 \leq p<\infty$.

Proof: It is enough to prove the result for a characteristic function χ_{F}, where $F \subset \Omega$ such that F is bounded. By outer regularity, for a given $\varepsilon>0$ there is an open (bounded) set ω such that $\omega \supset F$ and $\mu(\omega \backslash F)<\varepsilon / 2$. Also, by inner regularity, there is a compact set $K \subset F$ such that $\mu(F \backslash K)<\varepsilon / 2$. By Urysohn lemma, there is a continuous function $g: \Omega \rightarrow \mathbb{R}$ such that $g \equiv 0$ on $\Omega \backslash \omega, g \equiv 1$ on K and $0 \leq g \leq 1$ on $\omega \backslash K$. Note that $g \in C_{c}(\Omega)$. Therefore,

$$
\left\|\chi_{F}-g\right\|_{p}^{p}=\int_{\Omega}\left|\chi_{F}-g\right|^{p}=\int_{\Omega \backslash K}\left|\chi_{F}-g\right|^{p} \leq \mu(\Omega \backslash K)=\varepsilon
$$

Alternate Proof

Proof: Let $f \in L^{p}(\Omega)$ and fix $\varepsilon>0$.

Alternate Proof

Proof: Let $f \in L^{p}(\Omega)$ and fix $\varepsilon>0$. By Theorem 31, there is a simple function ϕ such that $\|\phi-f\|_{p}<\varepsilon / 2$.

Alternate Proof

Proof: Let $f \in L^{p}(\Omega)$ and fix $\varepsilon>0$. By Theorem 31, there is a simple function ϕ such that $\|\phi-f\|_{p}<\varepsilon / 2$. Note that ϕ is supported on a finite measure set, by definition of simple funciton.

Alternate Proof

Proof: Let $f \in L^{p}(\Omega)$ and fix $\varepsilon>0$. By Theorem 31, there is a simple function ϕ such that $\|\phi-f\|_{p}<\varepsilon / 2$. Note that ϕ is supported on a finite measure set, by definition of simple funciton.Let $F:=\operatorname{supp}(\phi)$ and $F \subset \Omega$.

Alternate Proof

Proof: Let $f \in L^{p}(\Omega)$ and fix $\varepsilon>0$. By Theorem 31, there is a simple function ϕ such that $\|\phi-f\|_{p}<\varepsilon / 2$. Note that ϕ is supported on a finite measure set, by definition of simple funciton. Let $F:=\operatorname{supp}(\phi)$ and $F \subset \Omega$. By Luzin's theorem, there is a closed subset $\Gamma \subset F$ such that $\phi \in C(\Gamma)$ and

$$
\mu(F \backslash \Gamma)<\left(\frac{\varepsilon}{2\|\phi\|_{\infty}}\right)^{p}
$$

Alternate Proof

Proof: Let $f \in L^{p}(\Omega)$ and fix $\varepsilon>0$. By Theorem 31, there is a simple function ϕ such that $\|\phi-f\|_{p}<\varepsilon / 2$. Note that ϕ is supported on a finite measure set, by definition of simple funciton. Let $F:=\operatorname{supp}(\phi)$ and $F \subset \Omega$. By Luzin's theorem, there is a closed subset $\Gamma \subset F$ such that $\phi \in C(\Gamma)$ and

$$
\mu(F \backslash \Gamma)<\left(\frac{\varepsilon}{2\|\phi\|_{\infty}}\right)^{p}
$$

Γ being a closed subset of finite measure set F, Γ is compact in Ω.

Alternate Proof

Proof: Let $f \in L^{p}(\Omega)$ and fix $\varepsilon>0$. By Theorem 31, there is a simple function ϕ such that $\|\phi-f\|_{p}<\varepsilon / 2$. Note that ϕ is supported on a finite measure set, by definition of simple funciton. Let $F:=\operatorname{supp}(\phi)$ and $F \subset \Omega$. By Luzin's theorem, there is a closed subset $\Gamma \subset F$ such that $\phi \in C(\Gamma)$ and

$$
\mu(F \backslash \Gamma)<\left(\frac{\varepsilon}{2\|\phi\|_{\infty}}\right)^{p}
$$

Γ being a closed subset of finite measure set F, Γ is compact in Ω. Thus, we put ϕ to be zero on $\Gamma^{c}:=\Omega \backslash \Gamma$, call it g, and $g \in C_{c}(\Omega)$ with $\operatorname{supp}(g)=\Gamma$.

Alternate Proof

Proof: Let $f \in L^{p}(\Omega)$ and fix $\varepsilon>0$. By Theorem 31, there is a simple function ϕ such that $\|\phi-f\|_{p}<\varepsilon / 2$. Note that ϕ is supported on a finite measure set, by definition of simple funciton. Let $F:=\operatorname{supp}(\phi)$ and $F \subset \Omega$. By Luzin's theorem, there is a closed subset $\Gamma \subset F$ such that $\phi \in C(\Gamma)$ and

$$
\mu(F \backslash \Gamma)<\left(\frac{\varepsilon}{2\|\phi\|_{\infty}}\right)^{p}
$$

Γ being a closed subset of finite measure set F, Γ is compact in Ω. Thus, we put ϕ to be zero on $\Gamma^{c}:=\Omega \backslash \Gamma$, call it g, and $g \in C_{c}(\Omega)$ with $\operatorname{supp}(g)=\Gamma$. Further, by our construction, we have $|g(x)| \leq\|\phi\|_{\infty}$.

Alternate Proof

Proof: Let $f \in L^{p}(\Omega)$ and fix $\varepsilon>0$. By Theorem 31, there is a simple function ϕ such that $\|\phi-f\|_{p}<\varepsilon / 2$. Note that ϕ is supported on a finite measure set, by definition of simple funciton.Let $F:=\operatorname{supp}(\phi)$ and $F \subset \Omega$. By Luzin's theorem, there is a closed subset $\Gamma \subset F$ such that $\phi \in C(\Gamma)$ and

$$
\mu(F \backslash \Gamma)<\left(\frac{\varepsilon}{2\|\phi\|_{\infty}}\right)^{p}
$$

Γ being a closed subset of finite measure set F, Γ is compact in Ω. Thus, we put ϕ to be zero on $\Gamma^{c}:=\Omega \backslash \Gamma$, call it g, and $g \in C_{c}(\Omega)$ with $\operatorname{supp}(g)=\Gamma$. Further, by our construction, we have $|g(x)| \leq\|\phi\|_{\infty}$. Hence,

$$
\|g-\phi\|_{p}=\|\phi\|_{p,\lceil c}=\|\phi\|_{p, F \backslash \Gamma}<\frac{\varepsilon}{2\|\phi\|_{\infty}}\|\phi\|_{\infty}=\frac{\varepsilon}{2}
$$

Alternate Proof

Proof: Let $f \in L^{p}(\Omega)$ and fix $\varepsilon>0$. By Theorem 31, there is a simple function ϕ such that $\|\phi-f\|_{p}<\varepsilon / 2$. Note that ϕ is supported on a finite measure set, by definition of simple funciton.Let $F:=\operatorname{supp}(\phi)$ and $F \subset \Omega$. By Luzin's theorem, there is a closed subset $\Gamma \subset F$ such that $\phi \in C(\Gamma)$ and

$$
\mu(F \backslash \Gamma)<\left(\frac{\varepsilon}{2\|\phi\|_{\infty}}\right)^{p}
$$

Γ being a closed subset of finite measure set F, Γ is compact in Ω. Thus, we put ϕ to be zero on $\Gamma^{c}:=\Omega \backslash \Gamma$, call it g, and $g \in C_{c}(\Omega)$ with $\operatorname{supp}(g)=\Gamma$. Further, by our construction, we have $|g(x)| \leq\|\phi\|_{\infty}$. Hence,

$$
\|g-\phi\|_{p}=\|\phi\|_{p,\lceil c}=\|\phi\|_{p, F \backslash \Gamma}<\frac{\varepsilon}{2\|\phi\|_{\infty}}\|\phi\|_{\infty}=\frac{\varepsilon}{2}
$$

Therefore, $\|g-f\|_{p}<\varepsilon$. Thus, $C_{c}(\Omega)$ is dense in $L^{p}(\Omega)$.

Theorem (Regularization technique)
The space $C^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $L^{p}\left(\mathbb{R}^{n}\right)$, for $1 \leq p<\infty$, under the p-norm.
Proof: Let $f \in L^{p}\left(\mathbb{R}^{n}\right)$.

Theorem (Regularization technique)

The space $C^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $L^{p}\left(\mathbb{R}^{n}\right)$, for $1 \leq p<\infty$, under the p-norm.
Proof: Let $f \in L^{p}\left(\mathbb{R}^{n}\right)$. For each $m \in \mathbb{N}$, set $\rho_{m}:=\rho_{1 / m}$, the sequence of mollifiers.

Theorem (Regularization technique)

The space $C^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $L^{p}\left(\mathbb{R}^{n}\right)$, for $1 \leq p<\infty$, under the p-norm.
Proof: Let $f \in L^{p}\left(\mathbb{R}^{n}\right)$. For each $m \in \mathbb{N}$, set $\rho_{m}:=\rho_{1 / m}$, the sequence of mollifiers. Then the sequence $f_{m}:=\rho_{m} * f$ is in $C^{\infty}\left(\mathbb{R}^{n}\right)$.

Theorem (Regularization technique)

The space $C^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $L^{p}\left(\mathbb{R}^{n}\right)$, for $1 \leq p<\infty$, under the p-norm.
Proof: Let $f \in L^{p}\left(\mathbb{R}^{n}\right)$. For each $m \in \mathbb{N}$, set $\rho_{m}:=\rho_{1 / m}$, the sequence of mollifiers. Then the sequence $f_{m}:=\rho_{m} * f$ is in $C^{\infty}\left(\mathbb{R}^{n}\right)$. Since $\rho_{m} \in L^{1}\left(\mathbb{R}^{n}\right)$, by Young's inequality, $f_{m} \in L^{p}\left(\mathbb{R}^{n}\right)$.

Theorem (Regularization technique)

The space $C^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $L^{p}\left(\mathbb{R}^{n}\right)$, for $1 \leq p<\infty$, under the p-norm.
Proof: Let $f \in L^{p}\left(\mathbb{R}^{n}\right)$. For each $m \in \mathbb{N}$, set $\rho_{m}:=\rho_{1 / m}$, the sequence of mollifiers. Then the sequence $f_{m}:=\rho_{m} * f$ is in $C^{\infty}\left(\mathbb{R}^{n}\right)$. Since $\rho_{m} \in L^{1}\left(\mathbb{R}^{n}\right)$, by Young's inequality, $f_{m} \in L^{p}\left(\mathbb{R}^{n}\right)$. We shall prove that f_{m} converges to f in p-norm.

Theorem (Regularization technique)

The space $C^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $L^{p}\left(\mathbb{R}^{n}\right)$, for $1 \leq p<\infty$, under the p-norm.
Proof: Let $f \in L^{p}\left(\mathbb{R}^{n}\right)$. For each $m \in \mathbb{N}$, set $\rho_{m}:=\rho_{1 / m}$, the sequence of mollifiers. Then the sequence $f_{m}:=\rho_{m} * f$ is in $C^{\infty}\left(\mathbb{R}^{n}\right)$. Since $\rho_{m} \in L^{1}\left(\mathbb{R}^{n}\right)$, by Young's inequality, $f_{m} \in L^{p}\left(\mathbb{R}^{n}\right)$. We shall prove that f_{m} converges to f in p-norm. For any given $\varepsilon>0$, by Theorem 32, we choose a $g \in C_{c}\left(\mathbb{R}^{n}\right)$ such that $\|g-f\|_{p}<\varepsilon / 3$.

Theorem (Regularization technique)

The space $C^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $L^{p}\left(\mathbb{R}^{n}\right)$, for $1 \leq p<\infty$, under the p-norm.
Proof: Let $f \in L^{p}\left(\mathbb{R}^{n}\right)$. For each $m \in \mathbb{N}$, set $\rho_{m}:=\rho_{1 / m}$, the sequence of mollifiers. Then the sequence $f_{m}:=\rho_{m} * f$ is in $C^{\infty}\left(\mathbb{R}^{n}\right)$. Since $\rho_{m} \in L^{1}\left(\mathbb{R}^{n}\right)$, by Young's inequality, $f_{m} \in L^{p}\left(\mathbb{R}^{n}\right)$. We shall prove that f_{m} converges to f in p-norm. For any given $\varepsilon>0$, by Theorem 32, we choose a $g \in C_{c}\left(\mathbb{R}^{n}\right)$ such that $\|g-f\|_{p}<\varepsilon / 3$. Therefore, by Theorem 30, there is a compact subset $K \subset \mathbb{R}^{n}$ such that $\left\|\rho_{m} * g-g\right\|_{\infty}<\varepsilon / 3(\mu(K))^{1 / p}$.

Theorem (Regularization technique)

The space $C^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $L^{p}\left(\mathbb{R}^{n}\right)$, for $1 \leq p<\infty$, under the p-norm.
Proof: Let $f \in L^{p}\left(\mathbb{R}^{n}\right)$. For each $m \in \mathbb{N}$, set $\rho_{m}:=\rho_{1 / m}$, the sequence of mollifiers. Then the sequence $f_{m}:=\rho_{m} * f$ is in $C^{\infty}\left(\mathbb{R}^{n}\right)$. Since $\rho_{m} \in L^{1}\left(\mathbb{R}^{n}\right)$, by Young's inequality, $f_{m} \in L^{p}\left(\mathbb{R}^{n}\right)$. We shall prove that f_{m} converges to f in p-norm. For any given $\varepsilon>0$, by Theorem 32, we choose a $g \in C_{c}\left(\mathbb{R}^{n}\right)$ such that $\|g-f\|_{p}<\varepsilon / 3$. Therefore, by Theorem 30, there is a compact subset $K \subset \mathbb{R}^{n}$ such that $\left\|\rho_{m} * g-g\right\|_{\infty}<\varepsilon / 3(\mu(K))^{1 / p}$. Hence, $\left\|\rho_{m} * g-g\right\|_{p}<\varepsilon / 3$.

Theorem (Regularization technique)

The space $C^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $L^{p}\left(\mathbb{R}^{n}\right)$, for $1 \leq p<\infty$, under the p-norm.
Proof: Let $f \in L^{p}\left(\mathbb{R}^{n}\right)$. For each $m \in \mathbb{N}$, set $\rho_{m}:=\rho_{1 / m}$, the sequence of mollifiers. Then the sequence $f_{m}:=\rho_{m} * f$ is in $C^{\infty}\left(\mathbb{R}^{n}\right)$. Since $\rho_{m} \in L^{1}\left(\mathbb{R}^{n}\right)$, by Young's inequality, $f_{m} \in L^{p}\left(\mathbb{R}^{n}\right)$. We shall prove that f_{m} converges to f in p-norm. For any given $\varepsilon>0$, by Theorem 32, we choose a $g \in C_{c}\left(\mathbb{R}^{n}\right)$ such that $\|g-f\|_{p}<\varepsilon / 3$. Therefore, by Theorem 30, there is a compact subset $K \subset \mathbb{R}^{n}$ such that $\left\|\rho_{m} * g-g\right\|_{\infty}<\varepsilon / 3(\mu(K))^{1 / p}$. Hence, $\left\|\rho_{m} * g-g\right\|_{p}<\varepsilon / 3$. Thus, for sufficiently large m, we have

$$
\begin{aligned}
\left\|f_{m}-f\right\|_{p} & \leq\left\|\rho_{m} * f-\rho_{m} * g\right\|_{p}+\left\|\rho_{m} * g-g\right\|_{p}+\|g-f\|_{p} \\
& <\left\|\rho_{m} *(f-g)\right\|_{p}+\frac{2 \varepsilon}{3}
\end{aligned}
$$

Theorem (Regularization technique)

The space $C^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $L^{p}\left(\mathbb{R}^{n}\right)$, for $1 \leq p<\infty$, under the p-norm.
Proof: Let $f \in L^{p}\left(\mathbb{R}^{n}\right)$. For each $m \in \mathbb{N}$, set $\rho_{m}:=\rho_{1 / m}$, the sequence of mollifiers. Then the sequence $f_{m}:=\rho_{m} * f$ is in $C^{\infty}\left(\mathbb{R}^{n}\right)$. Since $\rho_{m} \in L^{1}\left(\mathbb{R}^{n}\right)$, by Young's inequality, $f_{m} \in L^{p}\left(\mathbb{R}^{n}\right)$. We shall prove that f_{m} converges to f in p-norm. For any given $\varepsilon>0$, by Theorem 32, we choose a $g \in C_{c}\left(\mathbb{R}^{n}\right)$ such that $\|g-f\|_{p}<\varepsilon / 3$. Therefore, by Theorem 30, there is a compact subset $K \subset \mathbb{R}^{n}$ such that $\left\|\rho_{m} * g-g\right\|_{\infty}<\varepsilon / 3(\mu(K))^{1 / p}$. Hence, $\left\|\rho_{m} * g-g\right\|_{p}<\varepsilon / 3$. Thus, for sufficiently large m, we have

$$
\begin{aligned}
\left\|f_{m}-f\right\|_{p} & \leq\left\|\rho_{m} * f-\rho_{m} * g\right\|_{p}+\left\|\rho_{m} * g-g\right\|_{p}+\|g-f\|_{p} \\
& <\left\|\rho_{m} *(f-g)\right\|_{p}+\frac{2 \varepsilon}{3} \leq\|f-g\|_{p}\left\|\rho_{m}\right\|_{1}+\frac{2 \varepsilon}{3}
\end{aligned}
$$

Theorem (Regularization technique)

The space $C^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $L^{p}\left(\mathbb{R}^{n}\right)$, for $1 \leq p<\infty$, under the p-norm.
Proof: Let $f \in L^{p}\left(\mathbb{R}^{n}\right)$. For each $m \in \mathbb{N}$, set $\rho_{m}:=\rho_{1 / m}$, the sequence of mollifiers. Then the sequence $f_{m}:=\rho_{m} * f$ is in $C^{\infty}\left(\mathbb{R}^{n}\right)$. Since $\rho_{m} \in L^{1}\left(\mathbb{R}^{n}\right)$, by Young's inequality, $f_{m} \in L^{p}\left(\mathbb{R}^{n}\right)$. We shall prove that f_{m} converges to f in p-norm. For any given $\varepsilon>0$, by Theorem 32, we choose a $g \in C_{c}\left(\mathbb{R}^{n}\right)$ such that $\|g-f\|_{p}<\varepsilon / 3$. Therefore, by Theorem 30, there is a compact subset $K \subset \mathbb{R}^{n}$ such that $\left\|\rho_{m} * g-g\right\|_{\infty}<\varepsilon / 3(\mu(K))^{1 / p}$. Hence, $\left\|\rho_{m} * g-g\right\|_{p}<\varepsilon / 3$. Thus, for sufficiently large m, we have

$$
\begin{aligned}
\left\|f_{m}-f\right\|_{p} & \leq\left\|\rho_{m} * f-\rho_{m} * g\right\|_{p}+\left\|\rho_{m} * g-g\right\|_{p}+\|g-f\|_{p} \\
& <\left\|\rho_{m} *(f-g)\right\|_{p}+\frac{2 \varepsilon}{3} \leq\|f-g\|_{p}\left\|\rho_{m}\right\|_{1}+\frac{2 \varepsilon}{3} \\
& <\frac{\varepsilon}{3}+\frac{2 \varepsilon}{3}=\varepsilon .
\end{aligned}
$$

The first term has been handled using Young's inequality.

Theorem (Cut-Off Technique)

For $1 \leq p<\infty$ and $\Omega \subseteq \mathbb{R}^{n}, C_{c}^{\infty}(\Omega)$ is dense in $L^{p}(\Omega)$.

Theorem (Cut-Off Technique)

For $1 \leq p<\infty$ and $\Omega \subseteq \mathbb{R}^{n}, C_{c}^{\infty}(\Omega)$ is dense in $L^{p}(\Omega)$.
Proof: Any $f \in L^{p}(\Omega)$ can be viewed as an element in $L^{p}\left(\mathbb{R}^{n}\right)$ under the extension

$$
\tilde{f}(x)= \begin{cases}f(x) & x \in \Omega \\ 0 & x \in \Omega^{c}\end{cases}
$$

Theorem (Cut-Off Technique)

For $1 \leq p<\infty$ and $\Omega \subseteq \mathbb{R}^{n}, C_{c}^{\infty}(\Omega)$ is dense in $L^{p}(\Omega)$.
Proof: Any $f \in L^{p}(\Omega)$ can be viewed as an element in $L^{p}\left(\mathbb{R}^{n}\right)$ under the extension

$$
\tilde{f}(x)= \begin{cases}f(x) & x \in \Omega \\ 0 & x \in \Omega^{c}\end{cases}
$$

By Theorem 33, the sequence $f_{m}:=\rho_{m} * \tilde{f}$ converges to \tilde{f} in p-norm.

Theorem (Cut-Off Technique)

For $1 \leq p<\infty$ and $\Omega \subseteq \mathbb{R}^{n}, C_{c}^{\infty}(\Omega)$ is dense in $L^{p}(\Omega)$.
Proof: Any $f \in L^{p}(\Omega)$ can be viewed as an element in $L^{p}\left(\mathbb{R}^{n}\right)$ under the extension

$$
\tilde{f}(x)= \begin{cases}f(x) & x \in \Omega \\ 0 & x \in \Omega^{c}\end{cases}
$$

By Theorem 33, the sequence $f_{m}:=\rho_{m} * \tilde{f}$ converges to \tilde{f} in p-norm. The sequence $\left\{f_{m}\right\}$ may fail to have compact support in Ω because support of \tilde{f} is not necessarily compact in Ω.

Theorem (Cut-Off Technique)

For $1 \leq p<\infty$ and $\Omega \subseteq \mathbb{R}^{n}, C_{c}^{\infty}(\Omega)$ is dense in $L^{p}(\Omega)$.
Proof: Any $f \in L^{p}(\Omega)$ can be viewed as an element in $L^{p}\left(\mathbb{R}^{n}\right)$ under the extension

$$
\tilde{f}(x)= \begin{cases}f(x) & x \in \Omega \\ 0 & x \in \Omega^{c}\end{cases}
$$

By Theorem 33, the sequence $f_{m}:=\rho_{m} * \tilde{f}$ converges to \tilde{f} in p-norm. The sequence $\left\{f_{m}\right\}$ may fail to have compact support in Ω because support of \tilde{f} is not necessarily compact in Ω. To fix this issue, we shall multiply the sequence with suitable choice of test functions in $C_{c}^{\infty}(\Omega)$.

Theorem (Cut-Off Technique)

For $1 \leq p<\infty$ and $\Omega \subseteq \mathbb{R}^{n}, C_{c}^{\infty}(\Omega)$ is dense in $L^{p}(\Omega)$.
Proof: Any $f \in L^{p}(\Omega)$ can be viewed as an element in $L^{p}\left(\mathbb{R}^{n}\right)$ under the extension

$$
\tilde{f}(x)= \begin{cases}f(x) & x \in \Omega \\ 0 & x \in \Omega^{c}\end{cases}
$$

By Theorem 33, the sequence $f_{m}:=\rho_{m} * \tilde{f}$ converges to \tilde{f} in p-norm. The sequence $\left\{f_{m}\right\}$ may fail to have compact support in Ω because support of \tilde{f} is not necessarily compact in Ω. To fix this issue, we shall multiply the sequence with suitable choice of test functions in $C_{c}^{\infty}(\Omega)$. Choose the sequence of exhaustion compact sets $\left\{K_{m}\right\}$ in Ω. In particular, for $\Omega=\mathbb{R}^{n}$, we can choose $K_{m}=B(0 ; m)$. Note that $\Omega=\cup_{m} K_{m}$.

Theorem (Cut-Off Technique)

For $1 \leq p<\infty$ and $\Omega \subseteq \mathbb{R}^{n}, C_{c}^{\infty}(\Omega)$ is dense in $L^{p}(\Omega)$.
Proof: Any $f \in L^{p}(\Omega)$ can be viewed as an element in $L^{p}\left(\mathbb{R}^{n}\right)$ under the extension

$$
\tilde{f}(x)= \begin{cases}f(x) & x \in \Omega \\ 0 & x \in \Omega^{c}\end{cases}
$$

By Theorem 33, the sequence $f_{m}:=\rho_{m} * \tilde{f}$ converges to \tilde{f} in p-norm. The sequence $\left\{f_{m}\right\}$ may fail to have compact support in Ω because support of \tilde{f} is not necessarily compact in Ω. To fix this issue, we shall multiply the sequence with suitable choice of test functions in $C_{c}^{\infty}(\Omega)$. Choose the sequence of exhaustion compact sets $\left\{K_{m}\right\}$ in Ω. In particular, for $\Omega=\mathbb{R}^{n}$, we can choose $K_{m}=B(0 ; m)$. Note that $\Omega=\cup_{m} K_{m}$. Consider (The type of functions, ϕ_{k}, are called cut-off functions) $\left\{\phi_{m}\right\} \subset C_{c}^{\infty}(\Omega)$ such that $\phi_{m} \equiv 1$ on K_{m} and $0 \leq \phi_{m} \leq 1$, for all m.

Theorem (Cut-Off Technique)

For $1 \leq p<\infty$ and $\Omega \subseteq \mathbb{R}^{n}, C_{c}^{\infty}(\Omega)$ is dense in $L^{p}(\Omega)$.
Proof: Any $f \in L^{p}(\Omega)$ can be viewed as an element in $L^{p}\left(\mathbb{R}^{n}\right)$ under the extension

$$
\tilde{f}(x)= \begin{cases}f(x) & x \in \Omega \\ 0 & x \in \Omega^{c}\end{cases}
$$

By Theorem 33, the sequence $f_{m}:=\rho_{m} * \tilde{f}$ converges to \tilde{f} in p-norm. The sequence $\left\{f_{m}\right\}$ may fail to have compact support in Ω because support of \tilde{f} is not necessarily compact in Ω. To fix this issue, we shall multiply the sequence with suitable choice of test functions in $C_{c}^{\infty}(\Omega)$. Choose the sequence of exhaustion compact sets $\left\{K_{m}\right\}$ in Ω. In particular, for $\Omega=\mathbb{R}^{n}$, we can choose $K_{m}=B(0 ; m)$. Note that $\Omega=\cup_{m} K_{m}$. Consider (The type of functions, ϕ_{k}, are called cut-off functions) $\left\{\phi_{m}\right\} \subset C_{c}^{\infty}(\Omega)$ such that $\phi_{m} \equiv 1$ on K_{m} and $0 \leq \phi_{m} \leq 1$, for all m. We extend ϕ_{m} by zero on Ω^{c}.

Proof Continued...

Define $F_{m}:=\phi_{m} f_{m}$ and, hence, $F_{m} \in C_{c}^{\infty}(\Omega)$.

Proof Continued...

Define $F_{m}:=\phi_{m} f_{m}$ and, hence, $F_{m} \in C_{c}^{\infty}(\Omega)$. Also, $F_{m}=f_{m}$ on K_{m} and $\left|F_{m}\right| \leq\left|f_{m}\right|$ in \mathbb{R}^{n}.
Thus,

$$
\left\|F_{m}-f\right\|_{p, \Omega}=\left\|F_{m}-\tilde{f}\right\|_{p, \mathbb{R}^{n}} \leq\left\|\phi_{m} f_{m}-\phi_{m} \tilde{f}\right\|_{p, \mathbb{R}^{n}}+\left\|\phi_{m} \tilde{f}-\tilde{f}\right\|_{p, \mathbb{R}^{n}}
$$

Proof Continued...

Define $F_{m}:=\phi_{m} f_{m}$ and, hence, $F_{m} \in C_{c}^{\infty}(\Omega)$. Also, $F_{m}=f_{m}$ on K_{m} and $\left|F_{m}\right| \leq\left|f_{m}\right|$ in \mathbb{R}^{n}.
Thus,

$$
\begin{aligned}
\left\|F_{m}-f\right\|_{p, \Omega} & =\left\|F_{m}-\tilde{f}\right\|_{p, \mathbb{R}^{n}} \leq\left\|\phi_{m} f_{m}-\phi_{m} \tilde{f}\right\|_{p, \mathbb{R}^{n}}+\left\|\phi_{m} \tilde{f}-\tilde{f}\right\|_{p, \mathbb{R}^{n}} \\
& \leq\left\|f_{m}-\tilde{f}\right\|_{p, \mathbb{R}^{n}}+\left\|\phi_{m} \tilde{f}-\tilde{f}\right\|_{p, \mathbb{R}^{n}}
\end{aligned}
$$

Proof Continued...

Define $F_{m}:=\phi_{m} f_{m}$ and, hence, $F_{m} \in C_{c}^{\infty}(\Omega)$. Also, $F_{m}=f_{m}$ on K_{m} and $\left|F_{m}\right| \leq\left|f_{m}\right|$ in \mathbb{R}^{n}.
Thus,

$$
\begin{aligned}
\left\|F_{m}-f\right\|_{p, \Omega} & =\left\|F_{m}-\tilde{f}\right\|_{p, \mathbb{R}^{n}} \leq\left\|\phi_{m} f_{m}-\phi_{m} \tilde{f}\right\|_{p, \mathbb{R}^{n}}+\left\|\phi_{m} \tilde{f}-\tilde{f}\right\|_{p, \mathbb{R}^{n}} \\
& \leq\left\|f_{m}-\tilde{f}\right\|_{p, \mathbb{R}^{n}}+\left\|\phi_{m} \tilde{f}-\tilde{f}\right\|_{p, \mathbb{R}^{n}}
\end{aligned}
$$

The first term converges to zero by Theorem 33

Proof Continued...

Define $F_{m}:=\phi_{m} f_{m}$ and, hence, $F_{m} \in C_{c}^{\infty}(\Omega)$. Also, $F_{m}=f_{m}$ on K_{m} and $\left|F_{m}\right| \leq\left|f_{m}\right|$ in \mathbb{R}^{n}.
Thus,

$$
\begin{aligned}
\left\|F_{m}-f\right\|_{p, \Omega} & =\left\|F_{m}-\tilde{f}\right\|_{p, \mathbb{R}^{n}} \leq\left\|\phi_{m} f_{m}-\phi_{m} \tilde{f}\right\|_{p, \mathbb{R}^{n}}+\left\|\phi_{m} \tilde{f}-\tilde{f}\right\|_{p, \mathbb{R}^{n}} \\
& \leq\left\|f_{m}-\tilde{f}\right\|_{p, \mathbb{R}^{n}}+\left\|\phi_{m} \tilde{f}-\tilde{f}\right\|_{p, \mathbb{R}^{n}}
\end{aligned}
$$

The first term converges to zero by Theorem 33 and the second term converges to zero by Dominated convergence theorem.

Proof Continued...

Define $F_{m}:=\phi_{m} f_{m}$ and, hence, $F_{m} \in C_{c}^{\infty}(\Omega)$. Also, $F_{m}=f_{m}$ on K_{m} and $\left|F_{m}\right| \leq\left|f_{m}\right|$ in \mathbb{R}^{n}.
Thus,

$$
\begin{aligned}
\left\|F_{m}-f\right\|_{p, \Omega} & =\left\|F_{m}-\tilde{f}\right\|_{p, \mathbb{R}^{n}} \leq\left\|\phi_{m} f_{m}-\phi_{m} \tilde{f}\right\|_{p, \mathbb{R}^{n}}+\left\|\phi_{m} \tilde{f}-\tilde{f}\right\|_{p, \mathbb{R}^{n}} \\
& \leq\left\|f_{m}-\tilde{f}\right\|_{p, \mathbb{R}^{n}}+\left\|\phi_{m} \tilde{f}-\tilde{f}\right\|_{p, \mathbb{R}^{n}}
\end{aligned}
$$

The first term converges to zero by Theorem 33 and the second term converges to zero by Dominated convergence theorem.

Remark

The case $p=\infty$ is ignored in the above results, because the L^{∞}-limit of $\rho_{m} * f$ is continuous and we do have discontinuous functions in $L^{\infty}(\Omega)$.

Total Boundedness

Definition

Let (X, d) be a metric space. A set $E \subset X$ is said to be totally bounded if, for every given $\varepsilon>0$, there exists a finite collection of points $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\} \subset X$ such that $E \subset \cup_{i=1}^{n} B_{\varepsilon}\left(x_{i}\right)$.

Total Boundedness

Definition

Let (X, d) be a metric space. A set $E \subset X$ is said to be totally bounded if, for every given $\varepsilon>0$, there exists a finite collection of points $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\} \subset X$ such that $E \subset \cup_{i=1}^{n} B_{\varepsilon}\left(x_{i}\right)$.

Exercise

If $E \subset X$ is totally bounded then $E^{n} \subset X^{n}$ is also totally bounded.

Total Boundedness

> Definition
> Let (X, d) be a metric space. A set $E \subset X$ is said to be totally bounded if, for every given $\varepsilon>0$, there exists a finite collection of points $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\} \subset X$ such that $E \subset \cup_{i=1}^{n} B_{\varepsilon}\left(x_{i}\right)$.

Exercise

If $E \subset X$ is totally bounded then $E^{n} \subset X^{n}$ is also totally bounded.

Definition

A subset $A \subset C(X)$ is said to be bounded if there exists a $M \in \mathbb{N}$ such that $\|f\|_{\infty} \leq M$ for all $f \in A$.

Equicontinuity

Definition

A subset $A \subset C(X)$ is said to be equicontinuous at $x_{0} \in X$ if, for every given $\varepsilon>0$, there is an open set U of x_{0} such that

$$
\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon \quad \forall x \in U ; f \in A .
$$

A is said to be equicontinuous if it is equicontinuous at every point of X.

Total Boundedness implies Equicontinuity

Theorem
Let X be a compact topological space and $A \subset C(X)$. If A is totally bounded then A is equicontinuous.

Total Boundedness implies Equicontinuity

Theorem

Let X be a compact topological space and $A \subset C(X)$. If A is totally bounded then A is equicontinuous.

Proof: Let A be totally bounded. Then, for given $\varepsilon>0$, there is a collection of $\left\{f_{1}, f_{2}, \cdots, f_{m}\right\} \subset C(X)$ such that $A \subset \cup_{j=1}^{m} B_{\varepsilon / 3}\left(f_{j}\right)$.

Total Boundedness implies Equicontinuity

Theorem

Let X be a compact topological space and $A \subset C(X)$. If A is totally bounded then A is equicontinuous.

Proof: Let A be totally bounded. Then, for given $\varepsilon>0$, there is a collection of $\left\{f_{1}, f_{2}, \cdots, f_{m}\right\} \subset C(X)$ such that $A \subset \cup_{j=1}^{m} B_{\varepsilon / 3}\left(f_{j}\right)$. By the continuity of f_{j}, for each $x \in X$, there is an open set U_{j}^{x} containing x such that $\left|f_{j}(y)-f_{j}(x)\right|<\varepsilon / 3$ for all $y \in U_{j}^{x}$.

Total Boundedness implies Equicontinuity

Abstract

Theorem Let X be a compact topological space and $A \subset C(X)$. If A is totally bounded then A is equicontinuous.

Proof: Let A be totally bounded. Then, for given $\varepsilon>0$, there is a collection of $\left\{f_{1}, f_{2}, \cdots, f_{m}\right\} \subset C(X)$ such that $A \subset \cup_{j=1}^{m} B_{\varepsilon / 3}\left(f_{j}\right)$. By the continuity of f_{j}, for each $x \in X$, there is an open set U_{j}^{x} containing x such that $\left|f_{j}(y)-f_{j}(x)\right|<\varepsilon / 3$ for all $y \in U_{j}^{x}$. Let $U_{x}:=\cap_{j=1}^{m} U_{j}^{x}$ which is an open set containing x.

Total Boundedness implies Equicontinuity

```
Theorem
Let }X\mathrm{ be a compact topological space and }A\subsetC(X)\mathrm{ . If }A\mathrm{ is totally bounded then \(A\) is equicontinuous.
```

Proof: Let A be totally bounded. Then, for given $\varepsilon>0$, there is a collection of $\left\{f_{1}, f_{2}, \cdots, f_{m}\right\} \subset C(X)$ such that $A \subset \cup_{j=1}^{m} B_{\varepsilon / 3}\left(f_{j}\right)$. By the continuity of f_{j}, for each $x \in X$, there is an open set U_{j}^{x} containing x such that $\left|f_{j}(y)-f_{j}(x)\right|<\varepsilon / 3$ for all $y \in U_{j}^{x}$. Let $U_{x}:=\cap_{j=1}^{m} U_{j}^{x}$ which is an open set containing x. Now, for any $f \in A$, choose j such that $f \in B_{\varepsilon / 3}\left(f_{j}\right)$.

Total Boundedness implies Equicontinuity

Theorem

Let X be a compact topological space and $A \subset C(X)$. If A is totally bounded then A is equicontinuous.

Proof: Let A be totally bounded. Then, for given $\varepsilon>0$, there is a collection of $\left\{f_{1}, f_{2}, \cdots, f_{m}\right\} \subset C(X)$ such that $A \subset \cup_{j=1}^{m} B_{\varepsilon / 3}\left(f_{j}\right)$. By the continuity of f_{j}, for each $x \in X$, there is an open set U_{j}^{x} containing x such that $\left|f_{j}(y)-f_{j}(x)\right|<\varepsilon / 3$ for all $y \in U_{j}^{x}$. Let $U_{x}:=\cap_{j=1}^{m} U_{j}^{x}$ which is an open set containing x. Now, for any $f \in A$, choose j such that $f \in B_{\varepsilon / 3}\left(f_{j}\right)$. Then, for all $y \in U_{x}$, we have

$$
|f(x)-f(y)| \leq\left|f(x)-f_{j}(x)\right|+\left|f_{j}(x)-f_{j}(y)\right|+\left|f_{j}(y)-f(y)\right|<\varepsilon
$$

Total Boundedness implies Equicontinuity

Theorem

Let X be a compact topological space and $A \subset C(X)$. If A is totally bounded then A is equicontinuous.

Proof: Let A be totally bounded. Then, for given $\varepsilon>0$, there is a collection of $\left\{f_{1}, f_{2}, \cdots, f_{m}\right\} \subset C(X)$ such that $A \subset \cup_{j=1}^{m} B_{\varepsilon / 3}\left(f_{j}\right)$. By the continuity of f_{j}, for each $x \in X$, there is an open set U_{j}^{x} containing x such that $\left|f_{j}(y)-f_{j}(x)\right|<\varepsilon / 3$ for all $y \in U_{j}^{x}$. Let $U_{x}:=\cap_{j=1}^{m} U_{j}^{x}$ which is an open set containing x. Now, for any $f \in A$, choose j such that $f \in B_{\varepsilon / 3}\left(f_{j}\right)$. Then, for all $y \in U_{x}$, we have

$$
|f(x)-f(y)| \leq\left|f(x)-f_{j}(x)\right|+\left|f_{j}(x)-f_{j}(y)\right|+\left|f_{j}(y)-f(y)\right|<\varepsilon
$$

The first and third term is smaller that $\varepsilon / 3$, by the total boundedness of A

Total Boundedness implies Equicontinuity

Theorem

Let X be a compact topological space and $A \subset C(X)$. If A is totally bounded then A is equicontinuous.

Proof: Let A be totally bounded. Then, for given $\varepsilon>0$, there is a collection of $\left\{f_{1}, f_{2}, \cdots, f_{m}\right\} \subset C(X)$ such that $A \subset \cup_{j=1}^{m} B_{\varepsilon / 3}\left(f_{j}\right)$. By the continuity of f_{j}, for each $x \in X$, there is an open set U_{j}^{x} containing x such that $\left|f_{j}(y)-f_{j}(x)\right|<\varepsilon / 3$ for all $y \in U_{j}^{x}$. Let $U_{x}:=\cap_{j=1}^{m} U_{j}^{x}$ which is an open set containing x. Now, for any $f \in A$, choose j such that $f \in B_{\varepsilon / 3}\left(f_{j}\right)$. Then, for all $y \in U_{x}$, we have

$$
|f(x)-f(y)| \leq\left|f(x)-f_{j}(x)\right|+\left|f_{j}(x)-f_{j}(y)\right|+\left|f_{j}(y)-f(y)\right|<\varepsilon
$$

The first and third term is smaller that $\varepsilon / 3$, by the total boundedness of A and the second term is smaller than $\varepsilon / 3$ by the continuity of f_{j}.

Total Boundedness implies Equicontinuity

Theorem

Let X be a compact topological space and $A \subset C(X)$. If A is totally bounded then A is equicontinuous.

Proof: Let A be totally bounded. Then, for given $\varepsilon>0$, there is a collection of $\left\{f_{1}, f_{2}, \cdots, f_{m}\right\} \subset C(X)$ such that $A \subset \cup_{j=1}^{m} B_{\varepsilon / 3}\left(f_{j}\right)$. By the continuity of f_{j}, for each $x \in X$, there is an open set U_{j}^{x} containing x such that $\left|f_{j}(y)-f_{j}(x)\right|<\varepsilon / 3$ for all $y \in U_{j}^{x}$. Let $U_{x}:=\cap_{j=1}^{m} U_{j}^{x}$ which is an open set containing x. Now, for any $f \in A$, choose j such that $f \in B_{\varepsilon / 3}\left(f_{j}\right)$.Then, for all $y \in U_{x}$, we have

$$
|f(x)-f(y)| \leq\left|f(x)-f_{j}(x)\right|+\left|f_{j}(x)-f_{j}(y)\right|+\left|f_{j}(y)-f(y)\right|<\varepsilon
$$

The first and third term is smaller that $\varepsilon / 3$, by the total boundedness of A and the second term is smaller than $\varepsilon / 3$ by the continuity of f_{j}. Hence A is equicontinuous.

Ascoli-Arzela Theorem

Corollary (one implication of Ascoli-Arzela Theorem)
Let X be a compact topological space. If a subset $A \subset C(X)$ is compact then A is closed and equicontinuous.

Ascoli-Arzela Theorem

Corollary (one implication of Ascoli-Arzela Theorem)
Let X be a compact topological space. If a subset $A \subset C(X)$ is compact then A is closed and equicontinuous.

Proof.

Since $C(X)$ is a metric space and A is compact we have that A is closed and totally bounded. By above theorem, A is equicontinuous.

Ascoli-Arzela Theorem

```
Corollary (one implication of Ascoli-Arzela Theorem) Let \(X\) be a compact topological space. If a subset \(A \subset C(X)\) is compact then \(A\) is closed and equicontinuous.
```


Proof.

Since $C(X)$ is a metric space and A is compact we have that A is closed and totally bounded. By above theorem, A is equicontinuous.

The converse of the Theorem proved above is true with some restriction on the range.

Equicontinuity implies Total Boundedness

Theorem
Let X be a compact topological space and (Y, d) be a totally bounded metric space. If a subset $A \subset C(X, Y)$ is equicontinuous then A is totally bounded.

Equicontinuity implies Total Boundedness

Theorem

Let X be a compact topological space and (Y, d) be a totally bounded metric space. If a subset $A \subset C(X, Y)$ is equicontinuous then A is totally bounded.

Proof: Let A be equicontinuous and $\varepsilon>0$. Then, for each $x \in X$, there is a open set U_{x} containing x such that

$$
|f(y)-f(x)|<\frac{\varepsilon}{3} \quad \forall y \in U_{x} ; f \in A .
$$

Equicontinuity implies Total Boundedness

Theorem

Let X be a compact topological space and (Y, d) be a totally bounded metric space. If a subset $A \subset C(X, Y)$ is equicontinuous then A is totally bounded.

Proof: Let A be equicontinuous and $\varepsilon>0$. Then, for each $x \in X$, there is a open set U_{x} containing x such that

$$
|f(y)-f(x)|<\frac{\varepsilon}{3} \quad \forall y \in U_{x} ; f \in A .
$$

Since X is compact, there is a finite set of points $\left\{x_{i}\right\}_{1}^{n} \subset X$ such that $X=\cup_{i=1}^{n} U_{X_{i}}$.

Equicontinuity implies Total Boundedness

Theorem

Let X be a compact topological space and (Y, d) be a totally bounded metric space. If a subset $A \subset C(X, Y)$ is equicontinuous then A is totally bounded.

Proof: Let A be equicontinuous and $\varepsilon>0$. Then, for each $x \in X$, there is a open set U_{x} containing x such that

$$
|f(y)-f(x)|<\frac{\varepsilon}{3} \quad \forall y \in U_{x} ; f \in A .
$$

Since X is compact, there is a finite set of points $\left\{x_{i}\right\}_{1}^{n} \subset X$ such that $X=\cup_{i=1}^{n} U_{x_{i}}$. Define the subset E_{A} of Y^{n} as,

$$
E_{A}:=\left\{\left(f\left(x_{1}\right), f\left(x_{2}\right), \cdots, f\left(x_{n}\right)\right) \mid f \in A\right\}
$$

which is endowed with the product metric, i.e.,

$$
d(y, z)=\max _{1 \leq i \leq n}\left\{\left|y_{i}-z_{i}\right|\right\}
$$

where $v, z \in Y^{n}$ are n-tudles.

Proof Continued...

Since Y is totally bounded, Y^{n} is also totally bounded (cf. Exercise 8).

Proof Continued...

Since Y is totally bounded, Y^{n} is also totally bounded (cf. Exercise 8).
Thus, E_{A} is totally bounded and there are m number of n-tuples, $y_{j}:=\left(f_{j}\left(x_{1}\right), f_{j}\left(x_{2}\right), \cdots, f_{j}\left(x_{n}\right)\right) \in Y^{n}$, for each $1 \leq j \leq m$, such that $E_{A} \subset \cup_{j=1}^{m} B_{\varepsilon / 3}\left(y_{j}\right)$.

Proof Continued...

Since Y is totally bounded, Y^{n} is also totally bounded (cf. Exercise 8).
Thus, E_{A} is totally bounded and there are m number of n-tuples, $y_{j}:=\left(f_{j}\left(x_{1}\right), f_{j}\left(x_{2}\right), \cdots, f_{j}\left(x_{n}\right)\right) \in Y^{n}$, for each $1 \leq j \leq m$, such that $E_{A} \subset \cup_{j=1}^{m} B_{\varepsilon / 3}\left(y_{j}\right)$. For any $f \in A$, there is a j such that $d\left(y_{j}, z_{f}\right)<\frac{\varepsilon}{3}$ where $z_{f}=\left(f\left(x_{1}\right), f\left(x_{2}\right), \cdots, f\left(x_{n}\right)\right)$.

Proof Continued...

Since Y is totally bounded, Y^{n} is also totally bounded (cf. Exercise 8).
Thus, E_{A} is totally bounded and there are m number of n-tuples, $y_{j}:=\left(f_{j}\left(x_{1}\right), f_{j}\left(x_{2}\right), \cdots, f_{j}\left(x_{n}\right)\right) \in Y^{n}$, for each $1 \leq j \leq m$, such that $E_{A} \subset \cup_{j=1}^{m} B_{\varepsilon / 3}\left(y_{j}\right)$. For any $f \in A$, there is a j such that $d\left(y_{j}, z_{f}\right)<\frac{\varepsilon}{3}$ where $z_{f}=\left(f\left(x_{1}\right), f\left(x_{2}\right), \cdots, f\left(x_{n}\right)\right)$. In particular, given any $f \in A$, there is a j such that, for all $1 \leq i \leq n$,

$$
\left|f_{j}\left(x_{i}\right)-f\left(x_{i}\right)\right|<\frac{\varepsilon}{3}
$$

Proof Continued...

Since Y is totally bounded, Y^{n} is also totally bounded (cf. Exercise 8).
Thus, E_{A} is totally bounded and there are m number of n-tuples, $y_{j}:=\left(f_{j}\left(x_{1}\right), f_{j}\left(x_{2}\right), \cdots, f_{j}\left(x_{n}\right)\right) \in Y^{n}$, for each $1 \leq j \leq m$, such that $E_{A} \subset \cup_{j=1}^{m} B_{\varepsilon / 3}\left(y_{j}\right)$. For any $f \in A$, there is a j such that $d\left(y_{j}, z_{f}\right)<\frac{\varepsilon}{3}$ where $z_{f}=\left(f\left(x_{1}\right), f\left(x_{2}\right), \cdots, f\left(x_{n}\right)\right)$. In particular, given any $f \in A$, there is a j such that, for all $1 \leq i \leq n$,

$$
\left|f_{j}\left(x_{i}\right)-f\left(x_{i}\right)\right|<\frac{\varepsilon}{3}
$$

Given $f \in A$, fix the j as chosen above.

Proof Continued...

Since Y is totally bounded, Y^{n} is also totally bounded (cf. Exercise 8).
Thus, E_{A} is totally bounded and there are m number of n-tuples, $y_{j}:=\left(f_{j}\left(x_{1}\right), f_{j}\left(x_{2}\right), \cdots, f_{j}\left(x_{n}\right)\right) \in Y^{n}$, for each $1 \leq j \leq m$, such that $E_{A} \subset \cup_{j=1}^{m} B_{\varepsilon / 3}\left(y_{j}\right)$. For any $f \in A$, there is a j such that $d\left(y_{j}, z_{f}\right)<\frac{\varepsilon}{3}$ where $z_{f}=\left(f\left(x_{1}\right), f\left(x_{2}\right), \cdots, f\left(x_{n}\right)\right)$. In particular, given any $f \in A$, there is a j such that, for all $1 \leq i \leq n$,

$$
\left|f_{j}\left(x_{i}\right)-f\left(x_{i}\right)\right|<\frac{\varepsilon}{3}
$$

Given $f \in A$, fix the j as chosen above. Now, for any given $x \in X$, there is a i such that $x \in U_{x_{i}}$.

Proof Continued..

Since Y is totally bounded, Y^{n} is also totally bounded (cf. Exercise 8).
Thus, E_{A} is totally bounded and there are m number of n-tuples, $y_{j}:=\left(f_{j}\left(x_{1}\right), f_{j}\left(x_{2}\right), \cdots, f_{j}\left(x_{n}\right)\right) \in Y^{n}$, for each $1 \leq j \leq m$, such that $E_{A} \subset \cup_{j=1}^{m} B_{\varepsilon / 3}\left(y_{j}\right)$. For any $f \in A$, there is a j such that $d\left(y_{j}, z_{f}\right)<\frac{\varepsilon}{3}$ where $z_{f}=\left(f\left(x_{1}\right), f\left(x_{2}\right), \cdots, f\left(x_{n}\right)\right)$. In particular, given any $f \in A$, there is a j such that, for all $1 \leq i \leq n$,

$$
\left|f_{j}\left(x_{i}\right)-f\left(x_{i}\right)\right|<\frac{\varepsilon}{3}
$$

Given $f \in A$, fix the j as chosen above. Now, for any given $x \in X$, there is a i such that $x \in U_{x_{i}}$. For this choice of i, j, we have

$$
\left|f(x)-f_{j}(x)\right| \leq\left|f(x)-f\left(x_{i}\right)\right|+\left|f\left(x_{i}\right)-f_{j}\left(x_{i}\right)\right|+\left|f_{j}\left(x_{i}\right)-f_{j}(x)\right| .
$$

Proof Continued...

Since Y is totally bounded, Y^{n} is also totally bounded (cf. Exercise 8).
Thus, E_{A} is totally bounded and there are m number of n-tuples, $y_{j}:=\left(f_{j}\left(x_{1}\right), f_{j}\left(x_{2}\right), \cdots, f_{j}\left(x_{n}\right)\right) \in Y^{n}$, for each $1 \leq j \leq m$, such that $E_{A} \subset \cup_{j=1}^{m} B_{\varepsilon / 3}\left(y_{j}\right)$. For any $f \in A$, there is a j such that $d\left(y_{j}, z_{f}\right)<\frac{\varepsilon}{3}$ where $z_{f}=\left(f\left(x_{1}\right), f\left(x_{2}\right), \cdots, f\left(x_{n}\right)\right)$. In particular, given any $f \in A$, there is a j such that, for all $1 \leq i \leq n$,

$$
\left|f_{j}\left(x_{i}\right)-f\left(x_{i}\right)\right|<\frac{\varepsilon}{3}
$$

Given $f \in A$, fix the j as chosen above. Now, for any given $x \in X$, there is a i such that $x \in U_{x_{i}}$. For this choice of i, j, we have

$$
\left|f(x)-f_{j}(x)\right| \leq\left|f(x)-f\left(x_{i}\right)\right|+\left|f\left(x_{i}\right)-f_{j}\left(x_{i}\right)\right|+\left|f_{j}\left(x_{i}\right)-f_{j}(x)\right|
$$

The first and third term is smaller that $\varepsilon / 3$ by the continuity of f and f_{j}, respectively,

Proof Continued..

Since Y is totally bounded, Y^{n} is also totally bounded (cf. Exercise 8).
Thus, E_{A} is totally bounded and there are m number of n-tuples, $y_{j}:=\left(f_{j}\left(x_{1}\right), f_{j}\left(x_{2}\right), \cdots, f_{j}\left(x_{n}\right)\right) \in Y^{n}$, for each $1 \leq j \leq m$, such that $E_{A} \subset \cup_{j=1}^{m} B_{\varepsilon / 3}\left(y_{j}\right)$. For any $f \in A$, there is a j such that $d\left(y_{j}, z_{f}\right)<\frac{\varepsilon}{3}$ where $z_{f}=\left(f\left(x_{1}\right), f\left(x_{2}\right), \cdots, f\left(x_{n}\right)\right)$. In particular, given any $f \in A$, there is a j such that, for all $1 \leq i \leq n$,

$$
\left|f_{j}\left(x_{i}\right)-f\left(x_{i}\right)\right|<\frac{\varepsilon}{3}
$$

Given $f \in A$, fix the j as chosen above. Now, for any given $x \in X$, there is a i such that $x \in U_{x_{i}}$. For this choice of i, j, we have

$$
\left|f(x)-f_{j}(x)\right| \leq\left|f(x)-f\left(x_{i}\right)\right|+\left|f\left(x_{i}\right)-f_{j}\left(x_{i}\right)\right|+\left|f_{j}\left(x_{i}\right)-f_{j}(x)\right|
$$

The first and third term is smaller that $\varepsilon / 3$ by the continuity of f and f_{j}, respectively, and the second term is smaller than $\varepsilon / 3$ by choice of f_{j}.

Proof Continued..

Since Y is totally bounded, Y^{n} is also totally bounded (cf. Exercise 8).
Thus, E_{A} is totally bounded and there are m number of n-tuples, $y_{j}:=\left(f_{j}\left(x_{1}\right), f_{j}\left(x_{2}\right), \cdots, f_{j}\left(x_{n}\right)\right) \in Y^{n}$, for each $1 \leq j \leq m$, such that $E_{A} \subset \cup_{j=1}^{m} B_{\varepsilon / 3}\left(y_{j}\right)$. For any $f \in A$, there is a j such that $d\left(y_{j}, z_{f}\right)<\frac{\varepsilon}{3}$ where $z_{f}=\left(f\left(x_{1}\right), f\left(x_{2}\right), \cdots, f\left(x_{n}\right)\right)$. In particular, given any $f \in A$, there is a j such that, for all $1 \leq i \leq n$,

$$
\left|f_{j}\left(x_{i}\right)-f\left(x_{i}\right)\right|<\frac{\varepsilon}{3}
$$

Given $f \in A$, fix the j as chosen above. Now, for any given $x \in X$, there is a i such that $x \in U_{x_{i}}$. For this choice of i, j, we have

$$
\left|f(x)-f_{j}(x)\right| \leq\left|f(x)-f\left(x_{i}\right)\right|+\left|f\left(x_{i}\right)-f_{j}\left(x_{i}\right)\right|+\left|f_{j}\left(x_{i}\right)-f_{j}(x)\right| .
$$

The first and third term is smaller that $\varepsilon / 3$ by the continuity of f and f_{j}, respectively, and the second term is smaller than $\varepsilon / 3$ by choice of f_{j}. Hence A is totally bounded, i.e., $A \subset \cup_{j=1}^{m} B_{\varepsilon}\left(f_{j}\right)$, equivalently, for any $f \in A$ there is a j such that $\left\|f-f_{j}\right\|_{\infty}<\varepsilon$.

Necessary Conditions for Bounded Subsets of $C(X)$

Lemma

Let X be compact topological space. If $A \subset C(X)$ is bounded then there is a compact subset $K \subset \mathbb{R}$ such that $f(x) \in K$ for all $f \in A$ and $x \in X$.

Necessary Conditions for Bounded Subsets of $C(X)$

Lemma

Let X be compact topological space. If $A \subset C(X)$ is bounded then there is a compact subset $K \subset \mathbb{R}$ such that $f(x) \in K$ for all $f \in A$ and $x \in X$.

Proof.

Choose an element $g \in A$. Since A is bounded in the uniform topology, there is a M such that $\|f-g\|_{\infty}<M$ for all $f \in A$.

Necessary Conditions for Bounded Subsets of $C(X)$

Lemma

Let X be compact topological space. If $A \subset C(X)$ is bounded then there is a compact subset $K \subset \mathbb{R}$ such that $f(x) \in K$ for all $f \in A$ and $x \in X$.

Proof.

Choose an element $g \in A$. Since A is bounded in the uniform topology, there is a M such that $\|f-g\|_{\infty}<M$ for all $f \in A$. Since X is compact, $g(X)$ is compact. Hence there is a $N>0$ such that $g(X) \subset[-N, N]$.

Necessary Conditions for Bounded Subsets of $C(X)$

Lemma

Let X be compact topological space. If $A \subset C(X)$ is bounded then there is a compact subset $K \subset \mathbb{R}$ such that $f(x) \in K$ for all $f \in A$ and $x \in X$.

Proof.

Choose an element $g \in A$. Since A is bounded in the uniform topology, there is a M such that $\|f-g\|_{\infty}<M$ for all $f \in A$. Since X is compact, $g(X)$ is compact. Hence there is a $N>0$ such that $g(X) \subset[-N, N]$. Then $f(X) \subset[-M-N, M+N]$ for all $f \in A$.

Necessary Conditions for Bounded Subsets of $C(X)$

Lemma

Let X be compact topological space. If $A \subset C(X)$ is bounded then there is a compact subset $K \subset \mathbb{R}$ such that $f(x) \in K$ for all $f \in A$ and $x \in X$.

Proof.

Choose an element $g \in A$. Since A is bounded in the uniform topology, there is a M such that $\|f-g\|_{\infty}<M$ for all $f \in A$. Since X is compact, $g(X)$ is compact. Hence there is a $N>0$ such that $g(X) \subset[-N, N]$. Then $f(X) \subset[-M-N, M+N]$ for all $f \in A$. Set $K:=[-M-N, M+N]$ and we are done.

Ascoli-Arzela Theorem

Corollary (other part of Ascoli-Arzela Theorem)
Let X be a compact topological space. If a subset $A \subset C(X)$ is closed, bounded and equicontinuous then A is compact.

Ascoli-Arzela Theorem

Corollary (other part of Ascoli-Arzela Theorem)
Let X be a compact topological space. If a subset $A \subset C(X)$ is closed, bounded and equicontinuous then A is compact.

Proof.

Since A is bounded, by Lemma 13, we have $A \subset C(X, K) \subset C(X)$ for some compact subset $K \subset \mathbb{R}$.

Ascoli-Arzela Theorem

Corollary (other part of Ascoli-Arzela Theorem)
Let X be a compact topological space. If a subset $A \subset C(X)$ is closed, bounded and equicontinuous then A is compact.

Proof.

Since A is bounded, by Lemma 13 , we have $A \subset C(X, K) \subset C(X)$ for some compact subset $K \subset \mathbb{R}$. Then, by Theorem 36, A is totally bounded.

Ascoli-Arzela Theorem

Corollary (other part of Ascoli-Arzela Theorem)
Let X be a compact topological space. If a subset $A \subset C(X)$ is closed, bounded and equicontinuous then A is compact.

Proof.

Since A is bounded, by Lemma 13 , we have $A \subset C(X, K) \subset C(X)$ for some compact subset $K \subset \mathbb{R}$. Then, by Theorem 36, A is totally bounded. Since A is a closed and totally bounded subset of the metric space $C(X)$, A is compact.

Kolmogorov Compactness Criteria

Theorem (Kolmogorov Compactness Criteria)

Let $p \in[1, \infty)$ and let A be a subset of $L^{p}\left(\mathbb{R}^{n}\right)$. Then A is relatively compact in $L^{p}\left(\mathbb{R}^{n}\right)$ iff the following conditions are satisfied:
(1) A is bounded in $L^{p}\left(\mathbb{R}^{n}\right)$;
(1) $\lim _{r \rightarrow+\infty} \int_{\{|x|>r\}}|f(x)|^{p} d x=0$ uniformly with respect to $f \in A$;
(1) $\lim _{h \rightarrow 0}\left\|\tau_{h} f-f\right\|_{p}=0$ uniformly with respect to $f \in A$, where $\tau_{h} f$ is the translated function $\left(\tau_{h} f\right)(x):=f(x-h)$.

Kolmogorov Compactness Criteria

Theorem (Kolmogorov Compactness Criteria)

Let $p \in[1, \infty)$ and let A be a subset of $L^{p}\left(\mathbb{R}^{n}\right)$. Then A is relatively compact in $L^{P}\left(\mathbb{R}^{n}\right)$ iff the following conditions are satisfied:
(1) A is bounded in $L^{p}\left(\mathbb{R}^{n}\right)$;
(1) $\lim _{r \rightarrow+\infty} \int_{\{|x|>r\}}|f(x)|^{p} d x=0$ uniformly with respect to $f \in A$;
(1. $\lim _{h \rightarrow 0}\left\|\tau_{h} f-f\right\|_{p}=0$ uniformly with respect to $f \in A$, where $\tau_{h} f$ is the translated function $\left(\tau_{h} f\right)(x):=f(x-h)$.

Proof: We shall prove the sufficiency part, i.e, (i), (ii), (iii) implies that A is relatively compact in $L^{P}\left(\mathbb{R}^{n}\right)$.

Kolmogorov Compactness Criteria

Theorem (Kolmogorov Compactness Criteria)

Let $p \in[1, \infty)$ and let A be a subset of $L^{p}\left(\mathbb{R}^{n}\right)$. Then A is relatively compact in $L^{p}\left(\mathbb{R}^{n}\right)$ iff the following conditions are satisfied:
(1) A is bounded in $L^{p}\left(\mathbb{R}^{n}\right)$;
(1) $\lim _{r \rightarrow+\infty} \int_{\{|x|>r\}}|f(x)|^{p} d x=0$ uniformly with respect to $f \in A$;
(1. $\lim _{h \rightarrow 0}\left\|\tau_{h} f-f\right\|_{p}=0$ uniformly with respect to $f \in A$, where $\tau_{h} f$ is the translated function $\left(\tau_{h} f\right)(x):=f(x-h)$.

Proof: We shall prove the sufficiency part, i.e, (i), (ii), (iii) implies that A is relatively compact in $L^{p}\left(\mathbb{R}^{n}\right)$. Equivalently, we have to prove that A is precompact, which means that for any $\varepsilon>0$, there exists a finite number of balls $B_{\varepsilon}\left(f_{1}\right), \ldots, B_{\varepsilon}\left(f_{k}\right)$ which cover A.

Proof Continued...

Let us choose $\varepsilon>0$. By (ii) there exists a $r>0$ such that

$$
\int_{|x|>r}|f(x)|^{p} d x<\varepsilon \quad \forall f \in A
$$

Proof Continued...

Let us choose $\varepsilon>0$. By (ii) there exists a $r>0$ such that

$$
\int_{|x|>r}|f(x)|^{p} d x<\varepsilon \quad \forall f \in A
$$

Let $\left(\rho_{n}\right)_{n \in \mathbb{N}}$ be a mollifier. It follows from Theorem 34 that, for all $n \geq 1$ and $f \in L^{p}\left(\mathbb{R}^{n}\right)$

$$
\left\|f-f * \rho_{n}\right\|_{p}^{p} \leq \int_{\mathbb{R}^{n}} \rho_{n}(y)\left\|f-\tau_{y} f\right\|_{p}^{p} d y
$$

Hence

$$
\left\|f-f * \rho_{n}\right\|_{p} \leq \sup _{|y| \leq \frac{1}{n}}\left\|f-\tau_{y} f\right\|_{p}
$$

Proof Continued...

Let us choose $\varepsilon>0$. By (ii) there exists a $r>0$ such that

$$
\int_{|x|>r}|f(x)|^{p} d x<\varepsilon \quad \forall f \in A
$$

Let $\left(\rho_{n}\right)_{n \in \mathbb{N}}$ be a mollifier. It follows from Theorem 34 that, for all $n \geq 1$ and $f \in L^{p}\left(\mathbb{R}^{n}\right)$

$$
\left\|f-f * \rho_{n}\right\|_{p}^{p} \leq \int_{\mathbb{R}^{n}} \rho_{n}(y)\left\|f-\tau_{y} f\right\|_{p}^{p} d y
$$

Hence

$$
\left\|f-f * \rho_{n}\right\|_{p} \leq \sup _{|y| \leq \frac{1}{n}}\left\|f-\tau_{y} f\right\|_{p}
$$

By (iii), there exists an integer $N(\varepsilon) \in \mathbb{N}$ such that, for all $f \in A$,

$$
\left\|f-f * \rho_{N(\varepsilon)}\right\|_{p}<\varepsilon
$$

Proof Continued...

On the other hand, for any $x, z \in \mathbb{R}^{n}, f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $n \in \mathbb{N}$,

$$
\begin{aligned}
\left|\left(f * \rho_{n}\right)(x)-\left(f * \rho_{n}\right)(z)\right| & \leq \int_{\mathbb{R}^{n}}|f(x-y)-f(z-y)| \rho_{n}(y) d y \\
& \leq\left\|\tau_{x} \check{f}-\tau_{z} \check{f}\right\|_{p}\left\|\rho_{n}\right\|_{q} \\
& \leq\left\|\tau_{x-z} f-f\right\|_{p}\left\|\rho_{n}\right\|_{q} .
\end{aligned}
$$

The last inequality follows from the invariance property of the Lebesgue measure.

Proof Continued...

On the other hand, for any $x, z \in \mathbb{R}^{n}, f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $n \in \mathbb{N}$,

$$
\begin{aligned}
\left|\left(f * \rho_{n}\right)(x)-\left(f * \rho_{n}\right)(z)\right| & \leq \int_{\mathbb{R}^{n}}|f(x-y)-f(z-y)| \rho_{n}(y) d y \\
& \leq\left\|\tau_{x} \check{f}-\tau_{z} \check{f}\right\|_{p}\left\|\rho_{n}\right\|_{q} \\
& \leq\left\|\tau_{x-z} f-f\right\|_{p}\left\|\rho_{n}\right\|_{q} .
\end{aligned}
$$

The last inequality follows from the invariance property of the Lebesgue measure. Moreover,

$$
\left|\left(f * \rho_{n}\right)(x)\right| \leq\|f\|_{p}\left\|\rho_{n}\right\|_{q} .
$$

Let us consider the family $\mathcal{A}=\left\{f * \rho_{N(\varepsilon)}: B_{r}(0) \rightarrow \mathbb{R} \mid f \in A\right\}$.

Proof Continued...

On the other hand, for any $x, z \in \mathbb{R}^{n}, f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $n \in \mathbb{N}$,

$$
\begin{aligned}
\left|\left(f * \rho_{n}\right)(x)-\left(f * \rho_{n}\right)(z)\right| & \leq \int_{\mathbb{R}^{n}}|f(x-y)-f(z-y)| \rho_{n}(y) d y \\
& \leq\left\|\tau_{x} \check{f}-\tau_{z} \check{f}\right\|_{p}\left\|\rho_{n}\right\|_{q} \\
& \leq\left\|\tau_{x-z} f-f\right\|_{p}\left\|\rho_{n}\right\|_{q} .
\end{aligned}
$$

The last inequality follows from the invariance property of the Lebesgue measure. Moreover,

$$
\left|\left(f * \rho_{n}\right)(x)\right| \leq\|f\|_{p}\left\|\rho_{n}\right\|_{q} .
$$

Let us consider the family $\mathcal{A}=\left\{f * \rho_{N(\varepsilon)}: B_{r}(0) \rightarrow \mathbb{R} \mid f \in A\right\}$. By using (i), (iii) and Ascoli-Arzela result, we observe that \mathcal{A} is relatively compact w.r.t the uniform topology on $C\left(B_{r}(0)\right)$.

Proof Continued..

On the other hand, for any $x, z \in \mathbb{R}^{n}, f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $n \in \mathbb{N}$,

$$
\begin{aligned}
\left|\left(f * \rho_{n}\right)(x)-\left(f * \rho_{n}\right)(z)\right| & \leq \int_{\mathbb{R}^{n}}|f(x-y)-f(z-y)| \rho_{n}(y) d y \\
& \leq\left\|\tau_{x} \check{f}-\tau_{z} \check{f}\right\|_{p}\left\|\rho_{n}\right\|_{q} \\
& \leq\left\|\tau_{x-z} f-f\right\|_{p}\left\|\rho_{n}\right\|_{q} .
\end{aligned}
$$

The last inequality follows from the invariance property of the Lebesgue measure. Moreover,

$$
\left|\left(f * \rho_{n}\right)(x)\right| \leq\|f\|_{p}\left\|\rho_{n}\right\|_{q} .
$$

Let us consider the family $\mathcal{A}=\left\{f * \rho_{N(\varepsilon)}: B_{r}(0) \rightarrow \mathbb{R} \mid f \in A\right\}$. By using (i), (iii) and Ascoli-Arzela result, we observe that \mathcal{A} is relatively compact w.r.t the uniform topology on $C\left(B_{r}(0)\right)$. Hence, there exists a finite set $\left\{f_{1}, \ldots, f_{k}\right\} \subset A$ such that

$$
\mathcal{A} \subset \cup_{i=1}^{k} B_{\varepsilon r^{-n / p}}\left(f_{i} * \rho_{N(\varepsilon)}\right)
$$

Proof Continued...

Thus, for all $f \in A$, there exists some $j \in\{1,2, \ldots, k\}$ such that, for all $x \in B_{r}(0)$

$$
\left|f * \rho_{N(\varepsilon)}(x)-f_{j} * \rho_{N(\varepsilon)}(x)\right| \leq \varepsilon\left|B_{r}(0)\right|^{-1 / p}
$$

Proof Continued...

Thus, for all $f \in A$, there exists some $j \in\{1,2, \ldots, k\}$ such that, for all $x \in B_{r}(0)$

$$
\left|f * \rho_{N(\varepsilon)}(x)-f_{j} * \rho_{N(\varepsilon)}(x)\right| \leq \varepsilon\left|B_{r}(0)\right|^{-1 / p}
$$

Hence,

$$
\begin{aligned}
\left\|f-f_{j}\right\|_{p} \leq & \left(\int_{|x|>r}|f|^{p} d x\right)^{1 / p}+\left(\int_{|x|>r}\left|f_{j}\right|^{p} d x\right)^{1 / p} \\
& +\left\|f-f * \rho_{N(\varepsilon)}\right\|_{p}+\left\|f_{j}-f_{j} * \rho_{N(\varepsilon)}\right\|_{p} \\
& +\left\|f * \rho_{N(\varepsilon)}-f_{j} * \rho_{N(\varepsilon)}\right\|_{p, B_{r}(0)} .
\end{aligned}
$$

Proof Continued...

Thus, for all $f \in A$, there exists some $j \in\{1,2, \ldots, k\}$ such that, for all $x \in B_{r}(0)$

$$
\left|f * \rho_{N(\varepsilon)}(x)-f_{j} * \rho_{N(\varepsilon)}(x)\right| \leq \varepsilon\left|B_{r}(0)\right|^{-1 / p}
$$

Hence,

$$
\begin{aligned}
\left\|f-f_{j}\right\|_{p} \leq & \left(\int_{|x|>r}|f|^{p} d x\right)^{1 / p}+\left(\int_{|x|>r}\left|f_{j}\right|^{p} d x\right)^{1 / p} \\
& +\left\|f-f * \rho_{N(\varepsilon)}\right\|_{p}+\left\|f_{j}-f_{j} * \rho_{N(\varepsilon)}\right\|_{p} \\
& +\left\|f * \rho_{N(\varepsilon)}-f_{j} * \rho_{N(\varepsilon)}\right\|_{p, B_{r}(0)} .
\end{aligned}
$$

The last term may be treated as follows:

$$
\begin{aligned}
\left\|f * \rho_{N(\varepsilon)}-f_{j} * \rho_{N(\varepsilon)}\right\|_{p, B_{r}(0)} & =\left(\int_{B_{r}(0)}\left|f * \rho_{N(\varepsilon)}(x)-f_{j} * \rho_{N(\varepsilon)}(x)\right|^{p} d x\right) \\
& \leq \varepsilon\left|B_{r}(0)\right|^{-1 / p}\left|B_{r}(0)\right|^{1 / p}=\varepsilon
\end{aligned}
$$

Proof Continued...

Finally,

$$
\left\|f-f_{j}\right\|_{p} \leq 5 \varepsilon
$$

and, hence, A is precompact in $L^{p}\left(\mathbb{R}^{n}\right)$.

Continuous Bijection on Intervals

- The function $f:[0,1] \rightarrow(0,1)$, defined as

$$
f(x)= \begin{cases}\frac{1}{2} & \text { for } x=0 \\ \frac{1}{n+2} & \text { for } x=\frac{1}{n} \\ x & \text { otherwise }\end{cases}
$$

is a bijection.

Continuous Bijection on Intervals

- The function $f:[0,1] \rightarrow(0,1)$, defined as

$$
f(x)= \begin{cases}\frac{1}{2} & \text { for } x=0 \\ \frac{1}{n+2} & \text { for } x=\frac{1}{n} \\ x & \text { otherwise }\end{cases}
$$

is a bijection.

- In fact, there is also a bijection between $[0,1]$ and \mathbb{R}.

Continuous Bijection on Intervals

- The function $f:[0,1] \rightarrow(0,1)$, defined as

$$
f(x)= \begin{cases}\frac{1}{2} & \text { for } x=0 \\ \frac{1}{n+2} & \text { for } x=\frac{1}{n} \\ x & \text { otherwise }\end{cases}
$$

is a bijection.

- In fact, there is also a bijection between $[0,1]$ and \mathbb{R}.
- However, there is no continuous bijection between $[0,1]$ and $(0,1)$. This is because image of compact sets under continuous function is compact (Exercise!).

Continuous Bijection on Intervals

- The function $f:[0,1] \rightarrow(0,1)$, defined as

$$
f(x)= \begin{cases}\frac{1}{2} & \text { for } x=0 \\ \frac{1}{n+2} & \text { for } x=\frac{1}{n} \\ x & \text { otherwise }\end{cases}
$$

is a bijection.

- In fact, there is also a bijection between $[0,1]$ and \mathbb{R}.
- However, there is no continuous bijection between $[0,1]$ and $(0,1)$. This is because image of compact sets under continuous function is compact (Exercise!).
- Also, there is no continuous bijection $f:(0,1) \rightarrow[0,1]$.

Continuous Bijection on Intervals

- The function $f:[0,1] \rightarrow(0,1)$, defined as

$$
f(x)= \begin{cases}\frac{1}{2} & \text { for } x=0 \\ \frac{1}{n+2} & \text { for } x=\frac{1}{n} \\ x & \text { otherwise }\end{cases}
$$

is a bijection.

- In fact, there is also a bijection between $[0,1]$ and \mathbb{R}.
- However, there is no continuous bijection between $[0,1]$ and $(0,1)$. This is because image of compact sets under continuous function is compact (Exercise!).
- Also, there is no continuous bijection $f:(0,1) \rightarrow[0,1]$. If $f:(0,1) \rightarrow[0,1]$ is bijection, then there exist distinct $x \neq y$ such that $f(x)=0$ and $f(y)=1$.

Continuous Bijection on Intervals

- The function $f:[0,1] \rightarrow(0,1)$, defined as

$$
f(x)= \begin{cases}\frac{1}{2} & \text { for } x=0 \\ \frac{1}{n+2} & \text { for } x=\frac{1}{n} \\ x & \text { otherwise }\end{cases}
$$

is a bijection.

- In fact, there is also a bijection between $[0,1]$ and \mathbb{R}.
- However, there is no continuous bijection between $[0,1]$ and $(0,1)$. This is because image of compact sets under continuous function is compact (Exercise!).
- Also, there is no continuous bijection $f:(0,1) \rightarrow[0,1]$. If $f:(0,1) \rightarrow[0,1]$ is bijection, then there exist distinct $x \neq y$ such that $f(x)=0$ and $f(y)=1$. Let $I:=[x, y]$ denote the closed interval with endpoints x and y.

Continuous Bijection on Intervals

- The function $f:[0,1] \rightarrow(0,1)$, defined as

$$
f(x)= \begin{cases}\frac{1}{2} & \text { for } x=0 \\ \frac{1}{n+2} & \text { for } x=\frac{1}{n} \\ x & \text { otherwise }\end{cases}
$$

is a bijection.

- In fact, there is also a bijection between $[0,1]$ and \mathbb{R}.
- However, there is no continuous bijection between $[0,1]$ and $(0,1)$. This is because image of compact sets under continuous function is compact (Exercise!).
- Also, there is no continuous bijection $f:(0,1) \rightarrow[0,1]$. If $f:(0,1) \rightarrow[0,1]$ is bijection, then there exist distinct $x \neq y$ such that $f(x)=0$ and $f(y)=1$. Let $I:=[x, y]$ denote the closed interval with endpoints x and y. If f is continuous, then $f(I)$ is a proper connected subset (or proper subinterval) of $[0,1]$ containing both 0 and 1 . This is a contradiction.

Bijection onto Square

- In 1878, Cantor showed a bijection between [0, 1] and $[0,1] \times[0,1] \subset \mathbb{R}^{2}$.

Bijection onto Square

- In 1878, Cantor showed a bijection between [0, 1] and $[0,1] \times[0,1] \subset \mathbb{R}^{2}$.
- The decimal form of any $a \in[0,1]$ is

$$
a=0 . a_{1} a_{2} a_{3} \ldots \text { or } a=\sum_{n=1}^{\infty} a_{n} 10^{-n},
$$

where a_{i} takes values between 0 and 9 .

Bijection onto Square

- In 1878, Cantor showed a bijection between [0, 1] and $[0,1] \times[0,1] \subset \mathbb{R}^{2}$.
- The decimal form of any $a \in[0,1]$ is

$$
a=0 . a_{1} a_{2} a_{3} \ldots \text { or } a=\sum_{n=1}^{\infty} a_{n} 10^{-n},
$$

where a_{i} takes values between 0 and 9 .

- Define the map $f:[0,1] \rightarrow[0,1] \times[0,1]$ as

$$
f\left(0 . a_{1} a_{2} a_{3} a_{4} \ldots\right)=\left(0 . a_{1} a_{3} a_{5} \ldots, 0 . a_{2} a_{4} a_{6} \ldots\right)
$$

Bijection onto Square

- In 1878, Cantor showed a bijection between $[0,1]$ and $[0,1] \times[0,1] \subset \mathbb{R}^{2}$.
- The decimal form of any $a \in[0,1]$ is

$$
a=0 . a_{1} a_{2} a_{3} \ldots \text { or } a=\sum_{n=1}^{\infty} a_{n} 10^{-n}
$$

where a_{i} takes values between 0 and 9 .

- Define the map $f:[0,1] \rightarrow[0,1] \times[0,1]$ as

$$
f\left(0 . a_{1} a_{2} a_{3} a_{4} \ldots\right)=\left(0 . a_{1} a_{3} a_{5} \ldots, 0 . a_{2} a_{4} a_{6} \ldots\right) .
$$

This map f is not well defined because the decimal representation is not unique.

Bijection onto Square

- In 1878, Cantor showed a bijection between $[0,1]$ and $[0,1] \times[0,1] \subset \mathbb{R}^{2}$.
- The decimal form of any $a \in[0,1]$ is

$$
a=0 . a_{1} a_{2} a_{3} \ldots \text { or } a=\sum_{n=1}^{\infty} a_{n} 10^{-n},
$$

where a_{i} takes values between 0 and 9 .

- Define the map $f:[0,1] \rightarrow[0,1] \times[0,1]$ as

$$
f\left(0 . a_{1} a_{2} a_{3} a_{4} \ldots\right)=\left(0 . a_{1} a_{3} a_{5} \ldots, 0 . a_{2} a_{4} a_{6} \ldots\right) .
$$

This map f is not well defined because the decimal representation is not unique. For instance, since $0.2=0.1999999999$,

Bijection onto Square

- In 1878, Cantor showed a bijection between $[0,1]$ and $[0,1] \times[0,1] \subset \mathbb{R}^{2}$.
- The decimal form of any $a \in[0,1]$ is

$$
a=0 . a_{1} a_{2} a_{3} \ldots \text { or } a=\sum_{n=1}^{\infty} a_{n} 10^{-n},
$$

where a_{i} takes values between 0 and 9 .

- Define the map $f:[0,1] \rightarrow[0,1] \times[0,1]$ as

$$
f\left(0 . a_{1} a_{2} a_{3} a_{4} \ldots\right)=\left(0 . a_{1} a_{3} a_{5} \ldots, 0 . a_{2} a_{4} a_{6} \ldots\right) .
$$

This map f is not well defined because the decimal representation is not unique. For instance, since $0.2=0.1999999999$,

$$
f(0.1999999999 \ldots)=(0.19999 \ldots, 0.99999 \ldots)=(0.2,1)
$$

Bijection onto Square

- In 1878, Cantor showed a bijection between $[0,1]$ and $[0,1] \times[0,1] \subset \mathbb{R}^{2}$.
- The decimal form of any $a \in[0,1]$ is

$$
a=0 . a_{1} a_{2} a_{3} \ldots \text { or } a=\sum_{n=1}^{\infty} a_{n} 10^{-n},
$$

where a_{i} takes values between 0 and 9 .

- Define the map $f:[0,1] \rightarrow[0,1] \times[0,1]$ as

$$
f\left(0 . a_{1} a_{2} a_{3} a_{4} \ldots\right)=\left(0 . a_{1} a_{3} a_{5} \ldots, 0 . a_{2} a_{4} a_{6} \ldots\right) .
$$

This map f is not well defined because the decimal representation is not unique. For instance, since $0.2=0.1999999999$,

$$
f(0.1999999999 \ldots)=(0.19999 \ldots, 0.99999 \ldots)=(0.2,1)
$$

and $f(0.2)=(0.2,0)$.

Bijection onto Square

- f is made well defined by choosing one of the possible decimal expansion, the infinitely repeated 9's.

Bijection onto Square

- f is made well defined by choosing one of the possible decimal expansion, the infinitely repeated 9's.
- f is a surjection except that f is not defined for all $x \in[0,1]$.

Bijection onto Square

- f is made well defined by choosing one of the possible decimal expansion, the infinitely repeated 9's.
- f is a surjection except that f is not defined for all $x \in[0,1]$. For instance, there is no $(a, b) \in[0,1] \times[0,1]$ such that

$$
f(0.12304050607080900010 \ldots)=(a, b)
$$

because its image, by definition, is ($0.134567890123 \ldots, 0.2000 \ldots$) which is an image of the element

$$
f(0.11394959697989990919 \ldots)=(0.134567890123 \ldots, 0.19999 \ldots)
$$

since we chose to identify $0.2=0.19999 \ldots$..

Bijection onto Square

- f is made well defined by choosing one of the possible decimal expansion, the infinitely repeated 9's.
- f is a surjection except that f is not defined for all $x \in[0,1]$. For instance, there is no $(a, b) \in[0,1] \times[0,1]$ such that

$$
f(0.12304050607080900010 \ldots)=(a, b)
$$

because its image, by definition, is ($0.134567890123 \ldots, 0.2000 \ldots$) which is an image of the element

$$
f(0.11394959697989990919 \ldots)=(0.134567890123 \ldots, 0.19999 \ldots)
$$

since we chose to identify $0.2=0.19999 \ldots$..

- To avoid above situation, whenever the decimal expansion has zeroes interjected, we identify a number with all its preceding zeros till the previous non-zero number as a single unit. For instance,
$f(0.123040506070809000102 \ldots)=(0.1305070902 \ldots, 0.20406080001$.

Bijection onto Square

- f is made well defined by choosing one of the possible decimal expansion, the infinitely repeated 9's.
- f is a surjection except that f is not defined for all $x \in[0,1]$. For instance, there is no $(a, b) \in[0,1] \times[0,1]$ such that

$$
f(0.12304050607080900010 \ldots)=(a, b)
$$

because its image, by definition, is ($0.134567890123 \ldots, 0.2000 \ldots$) which is an image of the element

$$
f(0.11394959697989990919 \ldots)=(0.134567890123 \ldots, 0.19999 \ldots)
$$

since we chose to identify $0.2=0.19999 \ldots$..

- To avoid above situation, whenever the decimal expansion has zeroes interjected, we identify a number with all its preceding zeros till the previous non-zero number as a single unit. For instance,
$f(0.123040506070809000102 \ldots)=(0.1305070902 \ldots, 0.20406080001$.
With this modification, the function f is a bijection.

No Continuous Bijection onto Square

Non-existence of continuous bijection was proved by E. Netto in 1879.

No Continuous Bijection onto Square

Non-existence of continuous bijection was proved by E. Netto in 1879. We use the following results.

Lemma

Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces and $f: X \rightarrow Y$ be a continuous map.
(1) If $K \subset X$ is a compact subset then $f(K)$ is a compact subset of Y.
(1) If $K \subset X$ is a connected subset then $f(K)$ is a connected subset of Y.

No Continuous Bijection onto Square

Non-existence of continuous bijection was proved by E. Netto in 1879. We use the following results.

Lemma

Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces and $f: X \rightarrow Y$ be a continuous map.
(1) If $K \subset X$ is a compact subset then $f(K)$ is a compact subset of Y.
(1) If $K \subset X$ is a connected subset then $f(K)$ is a connected subset of Y.

Theorem

Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces and $f: X \rightarrow Y$ be an injective map. If X is compact and f is continuous, then $f^{-1}: f(X) \subseteq Y \rightarrow X$ is continuous.

The compactness of X is essential in the above theorem as seen from the example below.

The compactness of X is essential in the above theorem as seen from the example below.

Example

Consider $f:[0,1) \rightarrow \mathbb{C}$ defined as $f(x)=e^{i 2 \pi x}$ which is bijective on to the unit circle $|z|=1$ of \mathbb{C}.

The compactness of X is essential in the above theorem as seen from the example below.

Example

Consider $f:[0,1) \rightarrow \mathbb{C}$ defined as $f(x)=e^{i 2 \pi x}$ which is bijective on to the unit circle $|z|=1$ of \mathbb{C}. However, f^{-1} is not continuous at the point $f(0)=1 \in \mathbb{C}$ because the sequence $f\left(1-\frac{1}{n}\right)$ converges to $f(0)$ while $1-\frac{1}{n}$ do not converge in $[0,1)$.

No Continuous Bijection onto Square

```
Theorem
If f:[0,1]->[0,1]\times[0,1] is a bijection then f is not continuous.
```


No Continuous Bijection onto Square

```
Theorem
If f:[0,1]->[0,1]\times[0,1] is a bijection then }f\mathrm{ is not continuous.
```


Proof.

Assume f is continuous. Since f is bijection and $[0,1]$ is compact, by Theroem $38, f^{-1}$ is also continuous.

No Continuous Bijection onto Square

```
Theorem
If f:[0,1]->[0,1]\times[0,1] is a bijection then }f\mathrm{ is not continuous.
```


Proof.

Assume f is continuous. Since f is bijection and $[0,1]$ is compact, by Theroem $38, f^{-1}$ is also continuous. Consider the two points $f(0)$ and $f(1)$ in the unit square which are distinct due to the injectivity of f.

No Continuous Bijection onto Square

```
Theorem
If f:[0, 1]->[0,1]\times[0,1] is a bijection then f is not continuous.
```


Proof.

Assume f is continuous. Since f is bijection and $[0,1]$ is compact, by Theroem $38, f^{-1}$ is also continuous. Consider the two points $f(0)$ and $f(1)$ in the unit square which are distinct due to the injectivity of f. Let γ_{1} and γ_{2} be two disjoint curves in the unit square with endpoints $f(0)$ and $f(1)$. Then both $f^{-1}\left(\gamma_{1}\right)$ and $f^{-1}\left(\gamma_{2}\right)$ are connected in $[0,1]$ (cf.Lemma 14) and hence $f^{-1}\left(\gamma_{1}\right)=f^{-1}\left(\gamma_{2}\right)=[0,1]$ which contradicts the injectivity of f.
Thus, f cannot be continuous.

Continuous Surjection onto Square

- In 1890, Peano produced a continuous surjective map from the unit interval to unit square. Such curves are now called space filling curve.

Continuous Surjection onto Square

- In 1890, Peano produced a continuous surjective map from the unit interval to unit square. Such curves are now called space filling curve.
- We shall now construct a curve in \mathbb{R}^{2} which passes through all the points of the square $[0,1] \times[0,1]$ using the following results:

Continuous Surjection onto Square

- In 1890, Peano produced a continuous surjective map from the unit interval to unit square. Such curves are now called space filling curve.
- We shall now construct a curve in \mathbb{R}^{2} which passes through all the points of the square $[0,1] \times[0,1]$ using the following results:

Theorem (Weierstrass M-test)

Let $\left\{f_{n}\right\}$ be a sequence of functions and, for all n, there exists a $M_{n} \in \mathbb{R}$ such that $\left|f_{n}(x)\right| \leq M_{n}$ for all x. If $\sum_{n} M_{n}$ converges then $\sum_{n} f_{n}(x)$ converges uniformly on the domain of consideration.

Continuous Surjection onto Square

- In 1890, Peano produced a continuous surjective map from the unit interval to unit square. Such curves are now called space filling curve.
- We shall now construct a curve in \mathbb{R}^{2} which passes through all the points of the square $[0,1] \times[0,1]$ using the following results:

Theorem (Weierstrass M-test)

Let $\left\{f_{n}\right\}$ be a sequence of functions and, for all n, there exists a $M_{n} \in \mathbb{R}$ such that $\left|f_{n}(x)\right| \leq M_{n}$ for all x. If $\sum_{n} M_{n}$ converges then $\sum_{n} f_{n}(x)$ converges uniformly on the domain of consideration.

Theorem

Let $f(x):=\sum_{n} f_{n}(x)$, a uniform limit of the series in its domain. If f_{n} is continuous at x_{0}, for all n, then f is also continuous at x_{0}.

Space Filling Curve

- Define the function $f:[0,2] \rightarrow[0,1]$ as

$$
f(t):= \begin{cases}0 & \text { if } 0 \leq t \leq \frac{1}{3} \text { and } \frac{5}{3} \leq t \leq 2 \\ 3 t-1 & \text { if } \frac{1}{3} \leq t \leq \frac{2}{3} \\ 1 & \text { if } \frac{2}{3} \leq t \leq \frac{4}{3} \\ -3 t+5 & \text { if } \frac{4}{3} \leq t \leq \frac{5}{3}\end{cases}
$$

and extend f periodically to all of \mathbb{R} with period 2 , i.e., $f(t+2)=f(t)$.

Space Filling Curve

- Define the function $f:[0,2] \rightarrow[0,1]$ as

$$
f(t):= \begin{cases}0 & \text { if } 0 \leq t \leq \frac{1}{3} \text { and } \frac{5}{3} \leq t \leq 2 \\ 3 t-1 & \text { if } \frac{1}{3} \leq t \leq \frac{2}{3} \\ 1 & \text { if } \frac{2}{3} \leq t \leq \frac{4}{3} \\ -3 t+5 & \text { if } \frac{4}{3} \leq t \leq \frac{5}{3}\end{cases}
$$

and extend f periodically to all of \mathbb{R} with period 2 , i.e., $f(t+2)=f(t)$.

- Now define two function F_{1} and F_{2} on \mathbb{R} as

$$
F_{1}(t):=\sum_{n=1}^{\infty} \frac{f\left(3^{2 n-2} t\right)}{2^{n}} \text { and } F_{2}(t):=\sum_{n=1}^{\infty} \frac{f\left(3^{2 n-1} t\right)}{2^{n}}
$$

Space Filling Curve

- Define the function $f:[0,2] \rightarrow[0,1]$ as

$$
f(t):= \begin{cases}0 & \text { if } 0 \leq t \leq \frac{1}{3} \text { and } \frac{5}{3} \leq t \leq 2 \\ 3 t-1 & \text { if } \frac{1}{3} \leq t \leq \frac{2}{3} \\ 1 & \text { if } \frac{2}{3} \leq t \leq \frac{4}{3} \\ -3 t+5 & \text { if } \frac{4}{3} \leq t \leq \frac{5}{3}\end{cases}
$$

and extend f periodically to all of \mathbb{R} with period 2 , i.e., $f(t+2)=f(t)$.

- Now define two function F_{1} and F_{2} on \mathbb{R} as

$$
F_{1}(t):=\sum_{n=1}^{\infty} \frac{f\left(3^{2 n-2} t\right)}{2^{n}} \text { and } F_{2}(t):=\sum_{n=1}^{\infty} \frac{f\left(3^{2 n-1} t\right)}{2^{n}}
$$

- By Weierstrass M-test (cf. Theorem 40), and choosing $M_{n}=2^{n}$, we see that both the series converge uniformly (also absolutely) for all $t \in \mathbb{R}$.

Space Filling Curve

- Since f is continuous on \mathbb{R}, by Theorem 41, both F_{1} and F_{2} are continuous on \mathbb{R}.

Space Filling Curve

- Since f is continuous on \mathbb{R}, by Theorem 41, both F_{1} and F_{2} are continuous on \mathbb{R}.
- Since $\sum_{n} 2^{-n}=1$, we have that $0 \leq F_{1} \leq 1$ and $0 \leq F_{2} \leq 1$.

Space Filling Curve

- Since f is continuous on \mathbb{R}, by Theorem 41, both F_{1} and F_{2} are continuous on \mathbb{R}.
- Since $\sum_{n} 2^{-n}=1$, we have that $0 \leq F_{1} \leq 1$ and $0 \leq F_{2} \leq 1$.
- We will show that the image of the function $F=\left(F_{1}, F_{2}\right)$ fills $[0,1] \times[0,1]$, i.e., given $(a, b) \in[0,1] \times[0,1]$, we will find $c \in[0,1]$ such that $F(c)=(a, b)$.

Space Filling Curve

- Since f is continuous on \mathbb{R}, by Theorem 41, both F_{1} and F_{2} are continuous on \mathbb{R}.
- Since $\sum_{n} 2^{-n}=1$, we have that $0 \leq F_{1} \leq 1$ and $0 \leq F_{2} \leq 1$.
- We will show that the image of the function $F=\left(F_{1}, F_{2}\right)$ fills $[0,1] \times[0,1]$, i.e., given $(a, b) \in[0,1] \times[0,1]$, we will find $c \in[0,1]$ such that $F(c)=(a, b)$.
- We consider the binary form of both a and b as

$$
a=\sum_{n=1}^{\infty} \frac{a_{n}}{2^{n}} \text { and } b=\sum_{n=1}^{\infty} \frac{b_{n}}{2^{n}}
$$

where each a_{n} and b_{n} are either 0 or 1.

Space Filling Curve

- Since f is continuous on \mathbb{R}, by Theorem 41, both F_{1} and F_{2} are continuous on \mathbb{R}.
- Since $\sum_{n} 2^{-n}=1$, we have that $0 \leq F_{1} \leq 1$ and $0 \leq F_{2} \leq 1$.
- We will show that the image of the function $F=\left(F_{1}, F_{2}\right)$ fills $[0,1] \times[0,1]$, i.e., given $(a, b) \in[0,1] \times[0,1]$, we will find $c \in[0,1]$ such that $F(c)=(a, b)$.
- We consider the binary form of both a and b as

$$
a=\sum_{n=1}^{\infty} \frac{a_{n}}{2^{n}} \text { and } b=\sum_{n=1}^{\infty} \frac{b_{n}}{2^{n}}
$$

where each a_{n} and b_{n} are either 0 or 1 .

- Now, set

$$
c:=2 \sum_{n=1}^{\infty} \frac{c_{n}}{3^{n}}
$$

where $c_{2 n-1}=a_{n}$ and $c_{2 n}=b_{n}$.

Space Filling Curve

- Since f is continuous on \mathbb{R}, by Theorem 41, both F_{1} and F_{2} are continuous on \mathbb{R}.
- Since $\sum_{n} 2^{-n}=1$, we have that $0 \leq F_{1} \leq 1$ and $0 \leq F_{2} \leq 1$.
- We will show that the image of the function $F=\left(F_{1}, F_{2}\right)$ fills $[0,1] \times[0,1]$, i.e., given $(a, b) \in[0,1] \times[0,1]$, we will find $c \in[0,1]$ such that $F(c)=(a, b)$.
- We consider the binary form of both a and b as

$$
a=\sum_{n=1}^{\infty} \frac{a_{n}}{2^{n}} \text { and } b=\sum_{n=1}^{\infty} \frac{b_{n}}{2^{n}}
$$

where each a_{n} and b_{n} are either 0 or 1 .

- Now, set

$$
c:=2 \sum_{n=1}^{\infty} \frac{c_{n}}{3^{n}}
$$

where $c_{2 n-1}=a_{n}$ and $c_{2 n}=b_{n}$.

- Moreover, $0 \leq c \leq 1$ since $2 \sum_{n} 3^{-n}=1$.

Space Filling Curve

- Consider, for each fixed $k \in \mathbb{N} \cup\{0\}$,

$$
3^{k} c=2 \sum_{n=1}^{k} \frac{c_{n}}{3^{n-k}}+2 \sum_{n=k+1}^{\infty} \frac{c_{n}}{3^{n-k}}=u_{k}+v_{k}
$$

where $v_{k}=2 \sum_{m=1}^{\infty} \frac{c_{m+k}}{3^{m}}$.

Space Filling Curve

- Consider, for each fixed $k \in \mathbb{N} \cup\{0\}$,

$$
3^{k} c=2 \sum_{n=1}^{k} \frac{c_{n}}{3^{n-k}}+2 \sum_{n=k+1}^{\infty} \frac{c_{n}}{3^{n-k}}=u_{k}+v_{k}
$$

where $v_{k}=2 \sum_{m=1}^{\infty} \frac{c_{m+k}}{3^{m}}$.

- Since

$$
u_{k}=2 \sum_{n=1}^{k} c_{n} 3^{k-n}
$$

is an even integer and f is periodic of period 2 , we have $f\left(3^{k} c\right)=f\left(v_{k}\right)$.

Space Filling Curve

- Consider, for each fixed $k \in \mathbb{N} \cup\{0\}$,

$$
3^{k} c=2 \sum_{n=1}^{k} \frac{c_{n}}{3^{n-k}}+2 \sum_{n=k+1}^{\infty} \frac{c_{n}}{3^{n-k}}=u_{k}+v_{k}
$$

where $v_{k}=2 \sum_{m=1}^{\infty} \frac{c_{m+k}}{3^{m}}$.

- Since

$$
u_{k}=2 \sum_{n=1}^{k} c_{n} 3^{k-n}
$$

is an even integer and f is periodic of period 2 , we have $f\left(3^{k} c\right)=f\left(v_{k}\right)$.

- We shall now analyse v_{k} based on c_{k+1}. Recall that c_{k+1} is either 0 or 1 .

Space Filling Curve

- If $c_{k+1}=0$ then

$$
0=2 \sum_{m=2}^{\infty} \frac{0}{3^{m}} \leq v_{k} \leq 2 \sum_{m=2}^{\infty} 3^{-m}=\frac{1}{3}
$$

because the other c_{n+k} are either 0 or 1 . Thus, $f\left(v_{k}\right)=0=c_{k+1}$.

Space Filling Curve

- If $c_{k+1}=0$ then

$$
0=2 \sum_{m=2}^{\infty} \frac{0}{3^{m}} \leq v_{k} \leq 2 \sum_{m=2}^{\infty} 3^{-m}=\frac{1}{3}
$$

because the other c_{n+k} are either 0 or 1 . Thus, $f\left(v_{k}\right)=0=c_{k+1}$.

- If $c_{k+1}=1$ then

$$
\frac{2}{3}=2\left(\frac{1}{3}+\sum_{m=2}^{\infty} \frac{0}{3^{m}}\right) \leq v_{k} \leq 2 \sum_{m=1}^{\infty} 3^{-m}=1
$$

Thus, $f\left(v_{k}\right)=1=c_{k+1}$.

Space Filling Curve

- If $c_{k+1}=0$ then

$$
0=2 \sum_{m=2}^{\infty} \frac{0}{3^{m}} \leq v_{k} \leq 2 \sum_{m=2}^{\infty} 3^{-m}=\frac{1}{3}
$$

because the other c_{n+k} are either 0 or 1 . Thus, $f\left(v_{k}\right)=0=c_{k+1}$.

- If $c_{k+1}=1$ then

$$
\frac{2}{3}=2\left(\frac{1}{3}+\sum_{m=2}^{\infty} \frac{0}{3^{m}}\right) \leq v_{k} \leq 2 \sum_{m=1}^{\infty} 3^{-m}=1
$$

Thus, $f\left(v_{k}\right)=1=c_{k+1}$.

- Therefore, we have $f\left(3^{k} c\right)=c_{k+1}$ for all $k=0,1,2, \ldots$.

Space Filling Curve

- If $c_{k+1}=0$ then

$$
0=2 \sum_{m=2}^{\infty} \frac{0}{3^{m}} \leq v_{k} \leq 2 \sum_{m=2}^{\infty} 3^{-m}=\frac{1}{3}
$$

because the other c_{n+k} are either 0 or 1 . Thus, $f\left(v_{k}\right)=0=c_{k+1}$.

- If $c_{k+1}=1$ then

$$
\frac{2}{3}=2\left(\frac{1}{3}+\sum_{m=2}^{\infty} \frac{0}{3^{m}}\right) \leq v_{k} \leq 2 \sum_{m=1}^{\infty} 3^{-m}=1
$$

Thus, $f\left(v_{k}\right)=1=c_{k+1}$.

- Therefore, we have $f\left(3^{k} c\right)=c_{k+1}$ for all $k=0,1,2, \ldots$.
- Hence, $f\left(3^{2 n-2} c\right)=c_{2 n-1}=a_{n}$ and $f\left(3^{2 n-1} c\right)=c_{2 n}=b_{n}$.

Space Filling Curve

- If $c_{k+1}=0$ then

$$
0=2 \sum_{m=2}^{\infty} \frac{0}{3^{m}} \leq v_{k} \leq 2 \sum_{m=2}^{\infty} 3^{-m}=\frac{1}{3}
$$

because the other c_{n+k} are either 0 or 1 . Thus, $f\left(v_{k}\right)=0=c_{k+1}$.

- If $c_{k+1}=1$ then

$$
\frac{2}{3}=2\left(\frac{1}{3}+\sum_{m=2}^{\infty} \frac{0}{3^{m}}\right) \leq v_{k} \leq 2 \sum_{m=1}^{\infty} 3^{-m}=1
$$

Thus, $f\left(v_{k}\right)=1=c_{k+1}$.

- Therefore, we have $f\left(3^{k} c\right)=c_{k+1}$ for all $k=0,1,2, \ldots$.
- Hence, $f\left(3^{2 n-2} c\right)=c_{2 n-1}=a_{n}$ and $f\left(3^{2 n-1} c\right)=c_{2 n}=b_{n}$.
- Consequently, $F_{1}(c)=a$ and $F_{2}(c)=b$.

Continuity and Differentiability

Recall the following results on continuity and differentiability:

Exercise

If a function $f:[a, b] \rightarrow \mathbb{R}$ is differentiable at an interior point of $[a, b]$ then it is also continuous at that point.

Continuity and Differentiability

Recall the following results on continuity and differentiability:

Exercise

If a function $f:[a, b] \rightarrow \mathbb{R}$ is differentiable at an interior point of $[a, b]$ then it is also continuous at that point.

- Converse of above result is not true! We have seen that $f(x)=|x|$ is continuous at 0 but not differentiable at 0 .

Continuity and Differentiability

Recall the following results on continuity and differentiability:

Exercise

If a function $f:[a, b] \rightarrow \mathbb{R}$ is differentiable at an interior point of $[a, b]$ then it is also continuous at that point.

- Converse of above result is not true! We have seen that $f(x)=|x|$ is continuous at 0 but not differentiable at 0 .
- We have the nested proper inclusions $C^{k+1}[a, b] \subsetneq C^{k}[a, b] \subsetneq C[a, b]$, for all $k \in \mathbb{N}$ (Exercise!).

Continuity and Differentiability

Recall the following results on continuity and differentiability:

Exercise

If a function $f:[a, b] \rightarrow \mathbb{R}$ is differentiable at an interior point of $[a, b]$ then it is also continuous at that point.

- Converse of above result is not true! We have seen that $f(x)=|x|$ is continuous at 0 but not differentiable at 0 .
- We have the nested proper inclusions $C^{k+1}[a, b] \subsetneq C^{k}[a, b] \subsetneq C[a, b]$, for all $k \in \mathbb{N}$ (Exercise!).
- The lack of differentiability signifies a sharp corner at the point.

Continuity and Differentiability

Recall the following results on continuity and differentiability:

Exercise

If a function $f:[a, b] \rightarrow \mathbb{R}$ is differentiable at an interior point of $[a, b]$ then it is also continuous at that point.

- Converse of above result is not true! We have seen that $f(x)=|x|$ is continuous at 0 but not differentiable at 0 .
- We have the nested proper inclusions $C^{k+1}[a, b] \subsetneq C^{k}[a, b] \subsetneq C[a, b]$, for all $k \in \mathbb{N}$ (Exercise!).
- The lack of differentiability signifies a sharp corner at the point.
- Is there a function which is continuous everywhere but nowhere differentiable, i.e. sharp corners everywhere?

Nowhere differentiable Continuous Functions

- An example of a nowhere differentiable continuous was first given by Karl Weierstrass in 1872.

Nowhere differentiable Continuous Functions

- An example of a nowhere differentiable continuous was first given by Karl Weierstrass in 1872. His example was $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
f(x):=\sum_{n=0}^{\infty} \frac{1}{2^{n}} \sin \left(3^{n} x\right)
$$

Nowhere differentiable Continuous Functions

- An example of a nowhere differentiable continuous was first given by Karl Weierstrass in 1872. His example was $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
f(x):=\sum_{n=0}^{\infty} \frac{1}{2^{n}} \sin \left(3^{n} x\right)
$$

Prior to Weierstrass' example it was believed that every continuous function is differentiable except on a set of "isolated" points.

Nowhere differentiable Continuous Functions

- An example of a nowhere differentiable continuous was first given by Karl Weierstrass in 1872. His example was $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
f(x):=\sum_{n=0}^{\infty} \frac{1}{2^{n}} \sin \left(3^{n} x\right)
$$

Prior to Weierstrass' example it was believed that every continuous function is differentiable except on a set of "isolated" points.

- In 1916, G. H. Hardy gave the example $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
f(x):=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \sin \left(n^{2} \pi x\right)
$$

Nowhere differentiable Continuous Functions

- An example of a nowhere differentiable continuous was first given by Karl Weierstrass in 1872. His example was $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
f(x):=\sum_{n=0}^{\infty} \frac{1}{2^{n}} \sin \left(3^{n} x\right)
$$

Prior to Weierstrass' example it was believed that every continuous function is differentiable except on a set of "isolated" points.

- In 1916, G. H. Hardy gave the example $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
f(x):=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \sin \left(n^{2} \pi x\right)
$$

- A nice application of Baire's category theorem gives a non-constructive existential proof for nowhere differentiable continuous functions.

Existence of Nowhere differentiable Continuous Functions

Theorem
There exists nowhere differentiable functions in $C[0,1]$.

Existence of Nowhere differentiable Continuous Functions

Theorem

There exists nowhere differentiable functions in $C[0,1]$.
Proof: Set, for each $n \in \mathbb{N}$,

$$
F_{n}:=\left\{f \in C[0,1] \mid \exists x \in[0,1] \text { s.t. } \sup _{h \neq 0}\left|\frac{f(x+h)-f(x)}{h}\right| \leq n\right\}
$$

and set $Y:=\cup_{n=1}^{\infty} F_{n}$. It is understood that we consider all those non-zero h such that $x+h \in[0,1]$, the domain of f.

Existence of Nowhere differentiable Continuous Functions

Theorem

There exists nowhere differentiable functions in $C[0,1]$.
Proof: Set, for each $n \in \mathbb{N}$,

$$
F_{n}:=\left\{f \in C[0,1] \mid \exists x \in[0,1] \text { s.t. } \sup _{h \neq 0}\left|\frac{f(x+h)-f(x)}{h}\right| \leq n\right\}
$$

and set $Y:=\cup_{n=1}^{\infty} F_{n}$. It is understood that we consider all those non-zero h such that $x+h \in[0,1]$, the domain of f.
We first show that if $f \in C[0,1]$ is differentiable at, at least, one point $x \in[0,1]$ then $f \in Y$.

Existence of Nowhere differentiable Continuous Functions

Theorem

There exists nowhere differentiable functions in $C[0,1]$.
Proof: Set, for each $n \in \mathbb{N}$,

$$
F_{n}:=\left\{f \in C[0,1] \mid \exists x \in[0,1] \text { s.t. } \sup _{h \neq 0}\left|\frac{f(x+h)-f(x)}{h}\right| \leq n\right\}
$$

and set $Y:=\cup_{n=1}^{\infty} F_{n}$. It is understood that we consider all those non-zero h such that $x+h \in[0,1]$, the domain of f.
We first show that if $f \in C[0,1]$ is differentiable at, at least, one point $x \in[0,1]$ then $f \in Y$. By the differentiability of f at x there exists a $\delta>0$ such that, for all $|h| \leq \delta$,

$$
\left|\frac{f(x+h)-f(x)}{h}-f^{\prime}(x)\right| \leq 1 .
$$

Proof Continued...

Therefore, for all $|h| \leq \delta$,

$$
\left|\frac{f(x+h)-f(x)}{h}\right| \leq\left|\frac{f(x+h)-f(x)}{h}-f^{\prime}(x)\right|+\left|f^{\prime}(x)\right| \leq 1+\left|f^{\prime}(x)\right|
$$

Proof Continued...

Therefore, for all $|h| \leq \delta$,

$$
\left|\frac{f(x+h)-f(x)}{h}\right| \leq\left|\frac{f(x+h)-f(x)}{h}-f^{\prime}(x)\right|+\left|f^{\prime}(x)\right| \leq 1+\left|f^{\prime}(x)\right| .
$$

Also, for all $|h| \geq \delta$,

$$
\left|\frac{f(x+h)-f(x)}{h}\right| \leq \frac{2}{\delta}\|f\|_{\infty}
$$

Proof Continued...

Therefore, for all $|h| \leq \delta$,

$$
\left|\frac{f(x+h)-f(x)}{h}\right| \leq\left|\frac{f(x+h)-f(x)}{h}-f^{\prime}(x)\right|+\left|f^{\prime}(x)\right| \leq 1+\left|f^{\prime}(x)\right| .
$$

Also, for all $|h| \geq \delta$,

$$
\left|\frac{f(x+h)-f(x)}{h}\right| \leq \frac{2}{\delta}\|f\|_{\infty} .
$$

Thus,

$$
\sup _{h \neq 0}\left|\frac{f(x+h)-f(x)}{h}\right|<\infty .
$$

Proof Continued...

Therefore, for all $|h| \leq \delta$,

$$
\left|\frac{f(x+h)-f(x)}{h}\right| \leq\left|\frac{f(x+h)-f(x)}{h}-f^{\prime}(x)\right|+\left|f^{\prime}(x)\right| \leq 1+\left|f^{\prime}(x)\right|
$$

Also, for all $|h| \geq \delta$,

$$
\left|\frac{f(x+h)-f(x)}{h}\right| \leq \frac{2}{\delta}\|f\|_{\infty} .
$$

Thus,

$$
\sup _{h \neq 0}\left|\frac{f(x+h)-f(x)}{h}\right|<\infty .
$$

Hence, there exists a $n \in \mathbb{N}$ such that $f \in F_{n} \subset Y$.

Proof Continued...

- We shall now show that each F_{n} is closed in $C[0,1]$.

Proof Continued...

- We shall now show that each F_{n} is closed in $C[0,1]$.
- Consider a sequence $\left\{f_{k}\right\} \subset F_{n}$ that converges to $f \in C[0,1]$ under supremum metric.

Proof Continued...

- We shall now show that each F_{n} is closed in $C[0,1]$.
- Consider a sequence $\left\{f_{k}\right\} \subset F_{n}$ that converges to $f \in C[0,1]$ under supremum metric.
- Since $f_{k} \in F_{n}$, for each $k \in \mathbb{N}$, there exists a $x_{k} \in[0,1]$ such that

$$
\sup _{h \neq 0}\left|\frac{f_{k}\left(x_{k}+h\right)-f_{k}\left(x_{k}\right)}{h}\right| \leq n
$$

Proof Continued...

- We shall now show that each F_{n} is closed in $C[0,1]$.
- Consider a sequence $\left\{f_{k}\right\} \subset F_{n}$ that converges to $f \in C[0,1]$ under supremum metric.
- Since $f_{k} \in F_{n}$, for each $k \in \mathbb{N}$, there exists a $x_{k} \in[0,1]$ such that

$$
\sup _{h \neq 0}\left|\frac{f_{k}\left(x_{k}+h\right)-f_{k}\left(x_{k}\right)}{h}\right| \leq n
$$

- Since $\left\{x_{k}\right\} \subset[0,1]$, by Bolzano-Weierstrass result, there is a subsequence $\left\{x_{j}\right\}$ which converges to, say, x_{0}.

Proof Continued...

- We shall now show that each F_{n} is closed in $C[0,1]$.
- Consider a sequence $\left\{f_{k}\right\} \subset F_{n}$ that converges to $f \in C[0,1]$ under supremum metric.
- Since $f_{k} \in F_{n}$, for each $k \in \mathbb{N}$, there exists a $x_{k} \in[0,1]$ such that

$$
\sup _{h \neq 0}\left|\frac{f_{k}\left(x_{k}+h\right)-f_{k}\left(x_{k}\right)}{h}\right| \leq n
$$

- Since $\left\{x_{k}\right\} \subset[0,1]$, by Bolzano-Weierstrass result, there is a subsequence $\left\{x_{j}\right\}$ which converges to, say, x_{0}.
- Thus, for any $h \neq 0$, there exists a $n_{0} \in \mathbb{N}$ (depending on h) such that $x_{0}-|h|<x_{j}<x_{0}+|h|$, for all $j \geq n_{0}$.

Proof Continued...

- We shall now show that each F_{n} is closed in $C[0,1]$.
- Consider a sequence $\left\{f_{k}\right\} \subset F_{n}$ that converges to $f \in C[0,1]$ under supremum metric.
- Since $f_{k} \in F_{n}$, for each $k \in \mathbb{N}$, there exists a $x_{k} \in[0,1]$ such that

$$
\sup _{h \neq 0}\left|\frac{f_{k}\left(x_{k}+h\right)-f_{k}\left(x_{k}\right)}{h}\right| \leq n
$$

- Since $\left\{x_{k}\right\} \subset[0,1]$, by Bolzano-Weierstrass result, there is a subsequence $\left\{x_{j}\right\}$ which converges to, say, x_{0}.
- Thus, for any $h \neq 0$, there exists a $n_{0} \in \mathbb{N}$ (depending on h) such that $x_{0}-|h|<x_{j}<x_{0}+|h|$, for all $j \geq n_{0}$.
- Let h_{j} be such that $x_{j}+h_{j}=x_{0}+h$. Hence h_{j} is non-zero for all $j \geq n_{0}$. Note that, by definition, $h_{j} \rightarrow h$.

Proof Continued...

Consider

$$
\left|f\left(x_{0}+h\right)-f\left(x_{0}\right)\right| \leq\left|f\left(x_{0}+h\right)-f_{j}\left(x_{j}+h_{j}\right)\right|+\left|f_{j}\left(x_{j}\right)-f\left(x_{0}\right)\right|+\left|f_{j}\left(x_{j}+h_{j}\right)-f_{j}\left(x_{j}\right)\right| .
$$

Proof Continued...

Consider

$$
\left|f\left(x_{0}+h\right)-f\left(x_{0}\right)\right| \leq\left|f\left(x_{0}+h\right)-f_{j}\left(x_{j}+h_{j}\right)\right|+\left|f_{j}\left(x_{j}\right)-f\left(x_{0}\right)\right|+\left|f_{j}\left(x_{j}+h_{j}\right)-f_{j}\left(x_{j}\right)\right| .
$$

The first term satisfies, $j \geq n_{0}$,

$$
\left|f\left(x_{0}+h\right)-f_{j}\left(x_{j}+h_{j}\right)\right|=\left|f\left(x_{j}+h_{j}\right)-f_{j}\left(x_{j}+h_{j}\right)\right| \leq\left\|f_{j}-f\right\|_{\infty}
$$

Proof Continued...

Consider

$$
\left|f\left(x_{0}+h\right)-f\left(x_{0}\right)\right| \leq\left|f\left(x_{0}+h\right)-f_{j}\left(x_{j}+h_{j}\right)\right|+\left|f_{j}\left(x_{j}\right)-f\left(x_{0}\right)\right|+\left|f_{j}\left(x_{j}+h_{j}\right)-f_{j}\left(x_{j}\right)\right| .
$$

The first term satisfies, $j \geq n_{0}$,

$$
\left|f\left(x_{0}+h\right)-f_{j}\left(x_{j}+h_{j}\right)\right|=\left|f\left(x_{j}+h_{j}\right)-f_{j}\left(x_{j}+h_{j}\right)\right| \leq\left\|f_{j}-f\right\|_{\infty}
$$

and the second term satisfies

$$
\left|f_{j}\left(x_{j}\right)-f\left(x_{0}\right)\right| \leq\left|f_{j}\left(x_{j}\right)-f\left(x_{j}\right)\right|+\left|f\left(x_{j}\right)-f\left(x_{0}\right)\right| \leq\left\|f_{j}-f\right\|_{\infty}+\left|f\left(x_{j}\right)-f\left(x_{0}\right)\right| .
$$

Proof Continued...

Consider

$$
\left|f\left(x_{0}+h\right)-f\left(x_{0}\right)\right| \leq\left|f\left(x_{0}+h\right)-f_{j}\left(x_{j}+h_{j}\right)\right|+\left|f_{j}\left(x_{j}\right)-f\left(x_{0}\right)\right|+\left|f_{j}\left(x_{j}+h_{j}\right)-f_{j}\left(x_{j}\right)\right| .
$$

The first term satisfies, $j \geq n_{0}$,

$$
\left|f\left(x_{0}+h\right)-f_{j}\left(x_{j}+h_{j}\right)\right|=\left|f\left(x_{j}+h_{j}\right)-f_{j}\left(x_{j}+h_{j}\right)\right| \leq\left\|f_{j}-f\right\|_{\infty}
$$

and the second term satisfies

$$
\left|f_{j}\left(x_{j}\right)-f\left(x_{0}\right)\right| \leq\left|f_{j}\left(x_{j}\right)-f\left(x_{j}\right)\right|+\left|f\left(x_{j}\right)-f\left(x_{0}\right)\right| \leq\left\|f_{j}-f\right\|_{\infty}+\left|f\left(x_{j}\right)-f\left(x_{0}\right)\right|
$$

Therefore,

$$
\left|\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}\right|=\lim _{j \rightarrow \infty}\left|\frac{f_{j}\left(x_{j}+h_{j}\right)-f_{j}\left(x_{j}\right)}{h_{j}}\right| \leq n .
$$

The last inequality is due to the fact that $f_{j} \in F_{n}$ for all $j \geq n_{0}$.

Proof Continued...

Consider

$$
\left|f\left(x_{0}+h\right)-f\left(x_{0}\right)\right| \leq\left|f\left(x_{0}+h\right)-f_{j}\left(x_{j}+h_{j}\right)\right|+\left|f_{j}\left(x_{j}\right)-f\left(x_{0}\right)\right|+\left|f_{j}\left(x_{j}+h_{j}\right)-f_{j}\left(x_{j}\right)\right| .
$$

The first term satisfies, $j \geq n_{0}$,

$$
\left|f\left(x_{0}+h\right)-f_{j}\left(x_{j}+h_{j}\right)\right|=\left|f\left(x_{j}+h_{j}\right)-f_{j}\left(x_{j}+h_{j}\right)\right| \leq\left\|f_{j}-f\right\|_{\infty}
$$

and the second term satisfies

$$
\left|f_{j}\left(x_{j}\right)-f\left(x_{0}\right)\right| \leq\left|f_{j}\left(x_{j}\right)-f\left(x_{j}\right)\right|+\left|f\left(x_{j}\right)-f\left(x_{0}\right)\right| \leq\left\|f_{j}-f\right\|_{\infty}+\left|f\left(x_{j}\right)-f\left(x_{0}\right)\right|
$$

Therefore,

$$
\left|\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}\right|=\lim _{j \rightarrow \infty}\left|\frac{f_{j}\left(x_{j}+h_{j}\right)-f_{j}\left(x_{j}\right)}{h_{j}}\right| \leq n .
$$

The last inequality is due to the fact that $f_{j} \in F_{n}$ for all $j \geq n_{0}$. Hence, $f \in F_{n}$ and F_{n} is closed.

Proof Continued...

- We now show that each F_{n} has an empty interior, i.e, given any $f \in F_{n}$ and $\varepsilon>0$ there exists a function $g \in C[0,1] \backslash F_{n}$ such that $\|g-f\|_{\infty} \leq \varepsilon$.

Proof Continued...

- We now show that each F_{n} has an empty interior, i.e, given any $f \in F_{n}$ and $\varepsilon>0$ there exists a function $g \in C[0,1] \backslash F_{n}$ such that $\|g-f\|_{\infty} \leq \varepsilon$.
- By Weierstrass approximation theorem (cf. 4), there is a polynomial p such that $\|f-p\|_{\infty} \leq \frac{\varepsilon}{2}$.

Proof Continued...

- We now show that each F_{n} has an empty interior, i.e, given any $f \in F_{n}$ and $\varepsilon>0$ there exists a function $g \in C[0,1] \backslash F_{n}$ such that $\|g-f\|_{\infty} \leq \varepsilon$.
- By Weierstrass approximation theorem (cf. 4), there is a polynomial p such that $\|f-p\|_{\infty} \leq \frac{\varepsilon}{2}$.
- Note that $\left\|p^{\prime}\right\|_{\infty,[0,1]}<\infty$ because p is a polynomial.

Proof Continued...

- We now show that each F_{n} has an empty interior, i.e, given any $f \in F_{n}$ and $\varepsilon>0$ there exists a function $g \in C[0,1] \backslash F_{n}$ such that $\|g-f\|_{\infty} \leq \varepsilon$.
- By Weierstrass approximation theorem (cf. 4), there is a polynomial p such that $\|f-p\|_{\infty} \leq \frac{\varepsilon}{2}$.
- Note that $\left\|p^{\prime}\right\|_{\infty,[0,1]}<\infty$ because p is a polynomial.
- We construct a piecewise affine function g, starting from $(0, p(0))$, such that $\|g-p\|_{\infty} \leq \frac{\varepsilon}{2}$ and $\left|g^{\prime}(x)\right|>n$ for all those $x \in[0,1]$ for which g^{\prime} exists.

Proof Continued...

- We now show that each F_{n} has an empty interior, i.e, given any $f \in F_{n}$ and $\varepsilon>0$ there exists a function $g \in C[0,1] \backslash F_{n}$ such that $\|g-f\|_{\infty} \leq \varepsilon$.
- By Weierstrass approximation theorem (cf. 4), there is a polynomial p such that $\|f-p\|_{\infty} \leq \frac{\varepsilon}{2}$.
- Note that $\left\|p^{\prime}\right\|_{\infty,[0,1]}<\infty$ because p is a polynomial.
- We construct a piecewise affine function g, starting from $(0, p(0))$, such that $\|g-p\|_{\infty} \leq \frac{\varepsilon}{2}$ and $\left|g^{\prime}(x)\right|>n$ for all those $x \in[0,1]$ for which g^{\prime} exists.
- This g satisfies our requirement and, hence, F_{n} has empty interior for all n.

Proof Continued...

- We now show that each F_{n} has an empty interior, i.e, given any $f \in F_{n}$ and $\varepsilon>0$ there exists a function $g \in C[0,1] \backslash F_{n}$ such that $\|g-f\|_{\infty} \leq \varepsilon$.
- By Weierstrass approximation theorem (cf. 4), there is a polynomial p such that $\|f-p\|_{\infty} \leq \frac{\varepsilon}{2}$.
- Note that $\left\|p^{\prime}\right\|_{\infty,[0,1]}<\infty$ because p is a polynomial.
- We construct a piecewise affine function g, starting from $(0, p(0))$, such that $\|g-p\|_{\infty} \leq \frac{\varepsilon}{2}$ and $\left|g^{\prime}(x)\right|>n$ for all those $x \in[0,1]$ for which g^{\prime} exists.
- This g satisfies our requirement and, hence, F_{n} has empty interior for all n.
- Thus, $\operatorname{Int}(Y)=\emptyset$.

Proof Continued...

- Since $C[0,1]$ is complete, by Baire's category theorem, $C[0,1] \backslash Y \neq \emptyset$.

Proof Continued...

- Since $C[0,1]$ is complete, by Baire's category theorem, $C[0,1] \backslash Y \neq \emptyset$.
- This non-empty collection is, precisely, the collection of all nowhere differentiable continuous functions on $[0,1]$.

Proof Continued...

- Since $C[0,1]$ is complete, by Baire's category theorem, $C[0,1] \backslash Y \neq \emptyset$.
- This non-empty collection is, precisely, the collection of all nowhere differentiable continuous functions on $[0,1]$.
- In fact, we have proved that for any $f \in Y$ and $\varepsilon>0$, there is a $g \in C[0,1]$ which is nowhere differentiable such that $\|f-g\|_{\infty} \leq \varepsilon$ or, more particularly, any continuous function which is differentiable, at least, at one point is a uniform limit of a sequence of nowhere differentiable continuous functions.

Span and Linear Independence

Definition

Let V denote a vector space over a field \mathbb{F}. If U is a subset of V, we define the span of U, denoted as $[U]$, to be the set of all finite linear combinations of elements of U. Equivalently,

$$
[U]:=\left\{\sum_{i=1}^{n} \lambda_{i} x_{i} \mid x_{i} \in U, \lambda_{i} \in \mathbb{F}, \text { and } \forall n \in \mathbb{N}\right\} .
$$

Span and Linear Independence

Definition

Let V denote a vector space over a field \mathbb{F}. If U is a subset of V, we define the span of U, denoted as [U], to be the set of all finite linear combinations of elements of U. Equivalently,

$$
[U]:=\left\{\sum_{i=1}^{n} \lambda_{i} x_{i} \mid x_{i} \in U, \lambda_{i} \in \mathbb{F}, \text { and } \forall n \in \mathbb{N}\right\} .
$$

Definition

We say a subset U of V is linearly independent if for any finite set of elements $\left\{x_{i}\right\}_{1}^{n} \subset U, \sum_{i=1}^{n} \lambda_{i} x_{i}=0$ implies that $\lambda_{i}=0$ for all $1 \leq i \leq n$. A subset which is not linearly independent is said to be linearly dependent.

Hamel Basis

Definition

A subset $U \subset V$ is said to be a Hamel basis of V if $[U]=V$ and U is linearly independent.

Every element of V can be written as a finite linear combination of elements from Hamel basis and the elements of Hamel basis are linearly independent.

Hamel Basis

Definition
 A subset $U \subset V$ is said to be a Hamel basis of V if $[U]=V$ and U is linearly independent.

Every element of V can be written as a finite linear combination of elements from Hamel basis and the elements of Hamel basis are linearly independent.

Exercise

Let $\mathbb{R}[x]$ denote the set of all polynomials (finite degree) with real coefficients in one variable. Show that $\mathbb{R}[x]$ is a vector space over \mathbb{R}. Further, show that the subset

$$
U:=\left\{1, x, x^{2}, \ldots\right\}
$$

is a Hamel basis of $\mathbb{R}[x]$.

Exercise

Let $\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ denote the set of all polynomials (finite degree) with real coefficients in n-variable. Show that $\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is a vector space over \mathbb{R}. Further, show that the subset

$$
U:=\cup_{\alpha \in \mathbb{Z}_{+}^{n}}\left\{x^{\alpha}\right\}
$$

is a Hamel basis of $\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

Exercise

Let $\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ denote the set of all polynomials (finite degree) with real coefficients in n-variable. Show that $\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is a vector space over \mathbb{R}. Further, show that the subset

$$
U:=\cup_{\alpha \in \mathbb{Z}_{+}^{n}}\left\{x^{\alpha}\right\}
$$

is a Hamel basis of $\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
A natural question to ask is: Does every vector space V have a basis?

Exercise

Let $\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ denote the set of all polynomials (finite degree) with real coefficients in n-variable. Show that $\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is a vector space over \mathbb{R}. Further, show that the subset

$$
U:=\cup_{\alpha \in \mathbb{Z}_{+}^{n}}\left\{x^{\alpha}\right\}
$$

is a Hamel basis of $\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
A natural question to ask is: Does every vector space V have a basis? Obviously, if $V=\{0\}$ then V has no basis because the only subsets of V are \emptyset and $\{0\}$. Both do not form basis because $\{0\}$ is not linearly independent and $[\emptyset] \neq V$.

Existence of Hamel basis

Theorem
For every non-zero vector space V there exists a Hamel basis for V.

Existence of Hamel basis

Theorem
For every non-zero vector space V there exists a Hamel basis for V.

Proof:

- Since $V \neq\{0\}$, there is a non-zero $x_{1} \in V$.

Existence of Hamel basis

Theorem
For every non-zero vector space V there exists a Hamel basis for V.

Proof:

- Since $V \neq\{0\}$, there is a non-zero $x_{1} \in V$.
- Observe that x_{1} is linearly independent. If $\left[\left\{x_{1}\right\}\right]=V$ then we are done.

Existence of Hamel basis

Theorem

For every non-zero vector space V there exists a Hamel basis for V.

Proof:

- Since $V \neq\{0\}$, there is a non-zero $x_{1} \in V$.
- Observe that x_{1} is linearly independent. If $\left[\left\{x_{1}\right\}\right]=V$ then we are done.
- If not choose $x_{2} \neq \lambda x_{1}$, for all $\lambda \in \mathbb{R}$. Note that by choice the set $\left\{x_{1}, x_{2}\right\}$ is linearly independent.

Existence of Hamel basis

Theorem

For every non-zero vector space V there exists a Hamel basis for V.

Proof:

- Since $V \neq\{0\}$, there is a non-zero $x_{1} \in V$.
- Observe that x_{1} is linearly independent. If $\left[\left\{x_{1}\right\}\right]=V$ then we are done.
- If not choose $x_{2} \neq \lambda x_{1}$, for all $\lambda \in \mathbb{R}$. Note that by choice the set $\left\{x_{1}, x_{2}\right\}$ is linearly independent.
- Extending the argument along similar line and progressively increasing U, we may obtain a basis for V in finite steps, in which case we have a basis with finite number of elements.

Existence of Hamel basis

Theorem

For every non-zero vector space V there exists a Hamel basis for V.

Proof:

- Since $V \neq\{0\}$, there is a non-zero $x_{1} \in V$.
- Observe that x_{1} is linearly independent. If $\left[\left\{x_{1}\right\}\right]=V$ then we are done.
- If not choose $x_{2} \neq \lambda x_{1}$, for all $\lambda \in \mathbb{R}$. Note that by choice the set $\left\{x_{1}, x_{2}\right\}$ is linearly independent.
- Extending the argument along similar line and progressively increasing U, we may obtain a basis for V in finite steps, in which case we have a basis with finite number of elements.
- Otherwise, we have a chain \mathcal{C} of linearly independent subsets of V under the binary relation \subseteq.

Existence of Hamel basis

Theorem

For every non-zero vector space V there exists a Hamel basis for V.

Proof:

- Since $V \neq\{0\}$, there is a non-zero $x_{1} \in V$.
- Observe that x_{1} is linearly independent. If $\left[\left\{x_{1}\right\}\right]=V$ then we are done.
- If not choose $x_{2} \neq \lambda x_{1}$, for all $\lambda \in \mathbb{R}$. Note that by choice the set $\left\{x_{1}, x_{2}\right\}$ is linearly independent.
- Extending the argument along similar line and progressively increasing U, we may obtain a basis for V in finite steps, in which case we have a basis with finite number of elements.
- Otherwise, we have a chain \mathcal{C} of linearly independent subsets of V under the binary relation \subseteq.
- Thus, \mathcal{C} is a chain in the partially ordered set \mathcal{A} consisting of all linearly independent subsets of V.

Proof Continued...

- Moreover, the union of all elements of \mathcal{C} is an upper bound for \mathcal{C} in \mathcal{A}.

Proof Continued...

- Moreover, the union of all elements of \mathcal{C} is an upper bound for \mathcal{C} in \mathcal{A}.
- Therefore, by Zorn's lemma, there is a maximal element U in \mathcal{A}.

Proof Continued...

- Moreover, the union of all elements of \mathcal{C} is an upper bound for \mathcal{C} in \mathcal{A}.
- Therefore, by Zorn's lemma, there is a maximal element U in \mathcal{A}.
- It now remains to show that $[U]=V$.

Proof Continued...

- Moreover, the union of all elements of \mathcal{C} is an upper bound for \mathcal{C} in \mathcal{A}.
- Therefore, by Zorn's lemma, there is a maximal element U in \mathcal{A}.
- It now remains to show that $[U]=V$.
- Suppose $[U] \neq V$, then there is a $x \in V$ such that $x \notin[U]$.

Proof Continued...

- Moreover, the union of all elements of \mathcal{C} is an upper bound for \mathcal{C} in \mathcal{A}.
- Therefore, by Zorn's lemma, there is a maximal element U in \mathcal{A}.
- It now remains to show that $[U]=V$.
- Suppose $[U] \neq V$, then there is a $x \in V$ such that $x \notin[U]$.
- Then $U \cup\{x\}$ is linearly independent subset of V. Thus, we have an element of \mathcal{A} larger than U which contradicts the maximality of U in \mathcal{A}.

Proof Continued...

- Moreover, the union of all elements of \mathcal{C} is an upper bound for \mathcal{C} in \mathcal{A}.
- Therefore, by Zorn's lemma, there is a maximal element U in \mathcal{A}.
- It now remains to show that $[U]=V$.
- Suppose $[U] \neq V$, then there is a $x \in V$ such that $x \notin[U]$.
- Then $U \cup\{x\}$ is linearly independent subset of V. Thus, we have an element of \mathcal{A} larger than U which contradicts the maximality of U in \mathcal{A}.
- Thus $[U]=V$.

Remark

The linear combination of a vector $x \in V$, in terms of Hamel basis, is unique. For instance, if $x=\sum_{i \in J_{1}} \alpha_{i} e_{i}$ and $x=\sum_{i \in J_{2}} \beta_{i} e_{i}$ then

$$
0=\sum_{i \in J_{1} \cap J_{2}}\left(\alpha_{i}-\beta_{i}\right) e_{i}+\sum_{i \in J_{1} \backslash J_{2}} \alpha_{i} e_{i}+\sum_{i \in J_{2} \backslash J_{1}} \beta_{i} e_{i} .
$$

By the linear independence of $\left\{e_{i}\right\}$, we get $\alpha_{i}=\beta_{i}$ for all $i \in J_{1} \cap J_{2}$, $\alpha_{i}=0$ in $J_{1} \backslash J_{2}$ and $\beta_{i}=0$ in $J_{2} \backslash J_{1}$.

Remark

The linear combination of a vector $x \in V$, in terms of Hamel basis, is unique. For instance, if $x=\sum_{i \in J_{1}} \alpha_{i} e_{i}$ and $x=\sum_{i \in J_{2}} \beta_{i} e_{i}$ then

$$
0=\sum_{i \in J_{1} \cap J_{2}}\left(\alpha_{i}-\beta_{i}\right) e_{i}+\sum_{i \in J_{1} \backslash J_{2}} \alpha_{i} e_{i}+\sum_{i \in J_{2} \backslash J_{1}} \beta_{i} e_{i} .
$$

By the linear independence of $\left\{e_{i}\right\}$, we get $\alpha_{i}=\beta_{i}$ for all $i \in J_{1} \cap J_{2}$, $\alpha_{i}=0$ in $J_{1} \backslash J_{2}$ and $\beta_{i}=0$ in $J_{2} \backslash J_{1}$.

Exercise

If V_{0} is a subspace of V and U_{0} is a basis for V_{0}, then there exists a basis U of V such that $U_{0} \subset U$.

Exercise (Refer N. Jacobson, Basic Algebra for proof)

There is a bijective map between any two bases of a vector space.

Exercise (Refer N. Jacobson, Basic Algebra for proof)

There is a bijective map between any two bases of a vector space.
The above theorem motivates following definition.

Definition

We say V is finite dimensional if its basis set contains finite number of elements and the dimension of V is the cardinality of U. If V is not a finite dimensional, then V is said to be infinite dimensional.

Example

The vector space \mathbb{R} over \mathbb{Q} is infinite dimensional!

Example

The vector space \mathbb{R} over \mathbb{Q} is infinite dimensional!

Proof:

- Let \mathcal{B} be a Hamel basis of \mathbb{R} over \mathbb{Q}. Note that \mathcal{B} is the maximal linearly independent set that spans \mathbb{R}.

Example

The vector space \mathbb{R} over \mathbb{Q} is infinite dimensional!

Proof:

- Let \mathcal{B} be a Hamel basis of \mathbb{R} over \mathbb{Q}. Note that \mathcal{B} is the maximal linearly independent set that spans \mathbb{R}.
- We will show the existence of an infinite linearly independent set over \mathbb{Q} in \mathbb{R} then its span is an infinite dimensional subspace of \mathbb{R} and, hence, \mathbb{R} has to be infinite dimensional.

Example

The vector space \mathbb{R} over \mathbb{Q} is infinite dimensiona!!

Proof:

- Let \mathcal{B} be a Hamel basis of \mathbb{R} over \mathbb{Q}. Note that \mathcal{B} is the maximal linearly independent set that spans \mathbb{R}.
- We will show the existence of an infinite linearly independent set over \mathbb{Q} in \mathbb{R} then its span is an infinite dimensional subspace of \mathbb{R} and, hence, \mathbb{R} has to be infinite dimensional.
- Consider the set $\{\ln p\}$ where p runs over all primes numbers. The set is infinite because there are infinitely many primes.

Example

The vector space \mathbb{R} over \mathbb{Q} is infinite dimensiona!!

Proof:

- Let \mathcal{B} be a Hamel basis of \mathbb{R} over \mathbb{Q}. Note that \mathcal{B} is the maximal linearly independent set that spans \mathbb{R}.
- We will show the existence of an infinite linearly independent set over \mathbb{Q} in \mathbb{R} then its span is an infinite dimensional subspace of \mathbb{R} and, hence, \mathbb{R} has to be infinite dimensional.
- Consider the set $\{\ln p\}$ where p runs over all primes numbers. The set is infinite because there are infinitely many primes.
- For some finite index set I, if $\sum_{i \in I} \alpha_{i} \ln p_{i}=0$ then

$$
0=\sum_{i \in I} \alpha_{i} \ln p_{i}=\ln \left(\prod_{i \in I} p_{i}^{\alpha_{i}}\right)
$$

$$
\text { i.e., } \prod_{i \in I} p_{i}^{\alpha_{i}}=1 \text {. }
$$

Proof Continued...

- Note that some α_{i} could be negative. If $J \subset I$ is the collection such that $\alpha_{i}<0$ then

$$
\prod_{i \in I \backslash J} p_{i}^{\alpha_{i}}=\prod_{i \in J} p_{i}^{-\alpha_{i}}
$$

This is a contradiction by the unique prime factorization theorem. Thus, all $\alpha_{i}=0$ for all $i \in I$.

Proof Continued...

- Note that some α_{i} could be negative. If $J \subset I$ is the collection such that $\alpha_{i}<0$ then

$$
\prod_{i \in \backslash J} p_{i}^{\alpha_{i}}=\prod_{i \in J} p_{i}^{-\alpha_{i}}
$$

This is a contradiction by the unique prime factorization theorem. Thus, all $\alpha_{i}=0$ for all $i \in I$.

- Aliter:

Proof Continued...

- Note that some α_{i} could be negative. If $J \subset I$ is the collection such that $\alpha_{i}<0$ then

$$
\prod_{i \in \backslash J} p_{i}^{\alpha_{i}}=\prod_{i \in J} p_{i}^{-\alpha_{i}}
$$

This is a contradiction by the unique prime factorization theorem. Thus, all $\alpha_{i}=0$ for all $i \in I$.

- Aliter: We know there are transcendental real numbers, viz., e, π etc.

Proof Continued...

- Note that some α_{i} could be negative. If $J \subset I$ is the collection such that $\alpha_{i}<0$ then

$$
\prod_{i \in \backslash J} p_{i}^{\alpha_{i}}=\prod_{i \in J} p_{i}^{-\alpha_{i}}
$$

This is a contradiction by the unique prime factorization theorem. Thus, all $\alpha_{i}=0$ for all $i \in I$.

- Aliter: We know there are transcendental real numbers, viz., e, π etc.
- Take a transcendental real number τ and consider the infinite set

$$
\left\{\tau, \tau^{2}, \ldots, \tau^{k}, \ldots\right\}
$$

Proof Continued...

- Note that some α_{i} could be negative. If $J \subset I$ is the collection such that $\alpha_{i}<0$ then

$$
\prod_{i \in \backslash J} p_{i}^{\alpha_{i}}=\prod_{i \in J} p_{i}^{-\alpha_{i}}
$$

This is a contradiction by the unique prime factorization theorem.
Thus, all $\alpha_{i}=0$ for all $i \in I$.

- Aliter: We know there are transcendental real numbers, viz., e, π etc.
- Take a transcendental real number τ and consider the infinite set

$$
\left\{\tau, \tau^{2}, \ldots, \tau^{k}, \ldots\right\}
$$

- This set is linearly independent over \mathbb{Q}.

Proof Continued...

- Note that some α_{i} could be negative. If $J \subset I$ is the collection such that $\alpha_{i}<0$ then

$$
\prod_{i \in \backslash J} p_{i}^{\alpha_{i}}=\prod_{i \in J} p_{i}^{-\alpha_{i}}
$$

This is a contradiction by the unique prime factorization theorem.
Thus, all $\alpha_{i}=0$ for all $i \in I$.

- Aliter: We know there are transcendental real numbers, viz., e, π etc.
- Take a transcendental real number τ and consider the infinite set

$$
\left\{\tau, \tau^{2}, \ldots, \tau^{k}, \ldots\right\}
$$

- This set is linearly independent over \mathbb{Q}. If not we have finite collection of non-zero $\left\{\alpha_{i}\right\} \subset \mathbb{Q}$ such that $\sum_{i} \alpha_{i} \tau^{i}=0$ implying that τ is solution to a polynomial with rational coefficients contradicting the fact that it is transcendental.
- Recall that every vector space has a Hamel basis (cf. Theorem 43).
- Recall that every vector space has a Hamel basis (cf. Theorem 43).
- Thus, any normed space also has a Hamel basis. If the vector space is finite dimensional there are finite number of basis elements.
- Recall that every vector space has a Hamel basis (cf. Theorem 43).
- Thus, any normed space also has a Hamel basis. If the vector space is finite dimensional there are finite number of basis elements.
- We shall now show that an infinite dimensional Banach space cannot have a countable/denumerable Hamel basis.
- Recall that every vector space has a Hamel basis (cf. Theorem 43).
- Thus, any normed space also has a Hamel basis. If the vector space is finite dimensional there are finite number of basis elements.
- We shall now show that an infinite dimensional Banach space cannot have a countable/denumerable Hamel basis.

Theorem

An infinite dimensional Banach space always has a uncountable Hamel basis.

Non-existence of Countably Infinite Hamel Basis

Proof.

- Suppose that a Banach space X has a countably infinite Hamel basis, say, $\left\{x_{1}, x_{2}, \ldots\right\}$.

Non-existence of Countably Infinite Hamel Basis

Proof.

- Suppose that a Banach space X has a countably infinite Hamel basis, say, $\left\{x_{1}, x_{2}, \ldots\right\}$.
- Let $Y_{m}=\left[\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}\right]$, for each $m=1,2, \ldots$, be a finite dimensional subspace of X. Then, Y_{m} is closed in X (Exercise!). Hence, $Z_{m}=X \backslash Y_{m}$ is open in X.

Non-existence of Countably Infinite Hamel Basis

Proof.

- Suppose that a Banach space X has a countably infinite Hamel basis, say, $\left\{x_{1}, x_{2}, \ldots\right\}$.
- Let $Y_{m}=\left[\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}\right]$, for each $m=1,2, \ldots$, be a finite dimensional subspace of X. Then, Y_{m} is closed in X (Exercise!). Hence, $Z_{m}=X \backslash Y_{m}$ is open in X.
- Moreover, Y_{m} being a subspace has empty interior (Exercise!), therefore, Z_{m} is dense in X.

Non-existence of Countably Infinite Hamel Basis

Proof.

- Suppose that a Banach space X has a countably infinite Hamel basis, say, $\left\{x_{1}, x_{2}, \ldots\right\}$.
- Let $Y_{m}=\left[\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}\right]$, for each $m=1,2, \ldots$, be a finite dimensional subspace of X. Then, Y_{m} is closed in X (Exercise!). Hence, $Z_{m}=X \backslash Y_{m}$ is open in X.
- Moreover, Y_{m} being a subspace has empty interior (Exercise!), therefore, Z_{m} is dense in X.
- Therefore, since X is complete, $\cap_{m=1}^{\infty} Z_{m}$ is dense in X, by Baire's category theorem.

Non-existence of Countably Infinite Hamel Basis

Proof.

- Suppose that a Banach space X has a countably infinite Hamel basis, say, $\left\{x_{1}, x_{2}, \ldots\right\}$.
- Let $Y_{m}=\left[\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}\right]$, for each $m=1,2, \ldots$, be a finite dimensional subspace of X. Then, Y_{m} is closed in X (Exercise!). Hence, $Z_{m}=X \backslash Y_{m}$ is open in X.
- Moreover, Y_{m} being a subspace has empty interior (Exercise!), therefore, Z_{m} is dense in X.
- Therefore, since X is complete, $\cap_{m=1}^{\infty} Z_{m}$ is dense in X, by Baire's category theorem.
- Therefore, $\cup_{m=1}^{\infty} Y_{m}$ has empty interior which contradicts our assumption that $\left[x_{1}, x_{2}, \ldots\right]=X$.

Non-Completeness of Space of Polynomials

- A consequence of above result is that the space of all polynomials $\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ in n-variables cannot be equipped with a norm that makes it complete.

Non-Completeness of Space of Polynomials

- A consequence of above result is that the space of all polynomials $\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ in n-variables cannot be equipped with a norm that makes it complete.
- Because such a norm makes $\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ a Banach space and will contradict above theorem because $\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ has a countable Hamel basis (cf. Exercise 10)

$$
U:=\cup_{k_{i} \in \mathbb{N}^{n}}\left\{x_{1}^{k_{1}}, x_{2}^{k_{2}}, \ldots, x_{n}^{k_{n}}\right\}
$$

Non-Completeness of Space of Polynomials

- A consequence of above result is that the space of all polynomials $\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ in n-variables cannot be equipped with a norm that makes it complete.
- Because such a norm makes $\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ a Banach space and will contradict above theorem because $\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ has a countable Hamel basis (cf. Exercise 10)

$$
U:=\cup_{k_{i} \in \mathbb{N}^{n}}\left\{x_{1}^{k_{1}}, x_{2}^{k_{2}}, \ldots, x_{n}^{k_{n}}\right\}
$$

- Thus, a Banach space is either finite-dimensional or has an uncountable Hamel basis.

Non-Completeness of Space of Polynomials

- A consequence of above result is that the space of all polynomials $\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ in n-variables cannot be equipped with a norm that makes it complete.
- Because such a norm makes $\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ a Banach space and will contradict above theorem because $\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ has a countable Hamel basis (cf. Exercise 10)

$$
U:=\cup_{k_{i} \in \mathbb{N}^{n}}\left\{x_{1}^{k_{1}}, x_{2}^{k_{2}}, \ldots, x_{n}^{k_{n}}\right\}
$$

- Thus, a Banach space is either finite-dimensional or has an uncountable Hamel basis.
- In fact, one can show that a infinite dimensional separable Banach space has a Hamel basis which is in one-to-one correspondence with the set of real numbers.

Non-Completeness of Space of Polynomials

- A consequence of above result is that the space of all polynomials $\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ in n-variables cannot be equipped with a norm that makes it complete.
- Because such a norm makes $\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ a Banach space and will contradict above theorem because $\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ has a countable Hamel basis (cf. Exercise 10)

$$
U:=\cup_{k_{i} \in \mathbb{N}^{n}}\left\{x_{1}^{k_{1}}, x_{2}^{k_{2}}, \ldots, x_{n}^{k_{n}}\right\}
$$

- Thus, a Banach space is either finite-dimensional or has an uncountable Hamel basis.
- In fact, one can show that a infinite dimensional separable Banach space has a Hamel basis which is in one-to-one correspondence with the set of real numbers.
- The concept of Hamel basis has to be relaxed in an infinite dimensional Banach space called the Schauder basis.

k-th Order to System of First Order

- Consider a k-th order ODE of the form $y^{(k)}=f\left(x, y, y^{\prime}, \ldots y^{(k-1)}\right)$

k-th Order to System of First Order

- Consider a k-th order ODE of the form $y^{(k)}=f\left(x, y, y^{\prime}, \ldots y^{(k-1)}\right)$
- For $1 \leq i \leq k$, introduce k unknowns $u_{i}:=y^{(i-1)}$ and the vector $\mathbf{u}:=\left(u_{1}, \ldots, u_{k}\right)$.

k-th Order to System of First Order

- Consider a k-th order ODE of the form $y^{(k)}=f\left(x, y, y^{\prime}, \ldots y^{(k-1)}\right)$
- For $1 \leq i \leq k$, introduce k unknowns $u_{i}:=y^{(i-1)}$ and the vector $\mathbf{u}:=\left(u_{1}, \ldots, u_{k}\right)$.
- We have the system of k first order ODEs $\mathbf{u}^{\prime}=\mathbf{f}(x, \mathbf{u})$ where $f_{i}(x, \mathbf{u})=u_{i+1}$ for $1 \leq i \leq k-1$ and $f_{k}(x, \mathbf{u})=f\left(x, u_{1}, u_{2}, \ldots, u_{(k-1)}\right)$.

k-th Order to System of First Order

- Consider a k-th order ODE of the form $y^{(k)}=f\left(x, y, y^{\prime}, \ldots y^{(k-1)}\right)$
- For $1 \leq i \leq k$, introduce k unknowns $u_{i}:=y^{(i-1)}$ and the vector $\mathbf{u}:=\left(u_{1}, \ldots, u_{k}\right)$.
- We have the system of k first order ODEs $\mathbf{u}^{\prime}=\mathbf{f}(x, \mathbf{u})$ where $f_{i}(x, \mathbf{u})=u_{i+1}$ for $1 \leq i \leq k-1$ and $f_{k}(x, \mathbf{u})=f\left(x, u_{1}, u_{2}, \ldots, u_{(k-1)}\right)$.
- Thus, the existence and uniqueness queries for the above k-th order ODE can be reduced to similar queries for a first order system of ODE.

Interpretation of Solution as a Fixed Point

- If u is a solution of

$$
\left\{\begin{align*}
u^{\prime}(x) & =f(x, u) \quad x \in(a, b) \tag{9.1}\\
u\left(x_{0}\right) & =u_{0},
\end{align*}\right.
$$

where $x_{0} \in(a, b)$, on some interval $I \subset(a, b)$ containing x_{0} then the graph of u lies in the strip $I \times(-\infty, \infty)$ passing through $\left(x_{0}, u_{0}\right)$.

Interpretation of Solution as a Fixed Point

- If u is a solution of

$$
\left\{\begin{align*}
u^{\prime}(x) & =f(x, u) \quad x \in(a, b) \tag{9.1}\\
u\left(x_{0}\right) & =u_{0},
\end{align*}\right.
$$

where $x_{0} \in(a, b)$, on some interval $I \subset(a, b)$ containing x_{0} then the graph of u lies in the strip $I \times(-\infty, \infty)$ passing through $\left(x_{0}, u_{0}\right)$.

- If we assume u is bounded then the graph is, in fact, lying in a rectangle contained in the strip.

Interpretation of Solution as a Fixed Point

- If u is a solution of

$$
\left\{\begin{align*}
u^{\prime}(x) & =f(x, u) \quad x \in(a, b) \tag{9.1}\\
u\left(x_{0}\right) & =u_{0}
\end{align*}\right.
$$

where $x_{0} \in(a, b)$, on some interval $I \subset(a, b)$ containing x_{0} then the graph of u lies in the strip $I \times(-\infty, \infty)$ passing through $\left(x_{0}, u_{0}\right)$.

- If we assume u is bounded then the graph is, in fact, lying in a rectangle contained in the strip.
- Suppose that f is continuous on the closure of this rectangle, then f is Riemann integrable because f is bounded on the closure of the rectangle.

Interpretation of Solution as a Fixed Point

- Now, integrating both sides of (9.1), we get the integral equation

$$
\int_{x_{0}}^{x} u^{\prime}(t) d t=\int_{x_{0}}^{x} f(t, u(t)) d t
$$

Interpretation of Solution as a Fixed Point

- Now, integrating both sides of (9.1), we get the integral equation

$$
\begin{aligned}
\int_{x_{0}}^{x} u^{\prime}(t) d t & =\int_{x_{0}}^{x} f(t, u(t)) d t \\
u(x)-u\left(x_{0}\right) & =\int_{x_{0}}^{x} f(t, u(t)) d t
\end{aligned}
$$

Interpretation of Solution as a Fixed Point

- Now, integrating both sides of (9.1), we get the integral equation

$$
\begin{aligned}
\int_{x_{0}}^{x} u^{\prime}(t) d t & =\int_{x_{0}}^{x} f(t, u(t)) d t \\
u(x)-u\left(x_{0}\right) & =\int_{x_{0}}^{x} f(t, u(t)) d t \\
u(x) & =u_{0}+\int_{x_{0}}^{x} f(t, u(t)) d t .
\end{aligned}
$$

Interpretation of Solution as a Fixed Point

- Now, integrating both sides of (9.1), we get the integral equation

$$
\begin{aligned}
\int_{x_{0}}^{x} u^{\prime}(t) d t & =\int_{x_{0}}^{x} f(t, u(t)) d t \\
u(x)-u\left(x_{0}\right) & =\int_{x_{0}}^{x} f(t, u(t)) d t \\
u(x) & =u_{0}+\int_{x_{0}}^{x} f(t, u(t)) d t .
\end{aligned}
$$

- Thus, we have rewritten our differential equation in an integral equation form.

Interpretation of Solution as a Fixed Point

- Now, integrating both sides of (9.1), we get the integral equation

$$
\begin{aligned}
\int_{x_{0}}^{x} u^{\prime}(t) d t & =\int_{x_{0}}^{x} f(t, u(t)) d t \\
u(x)-u\left(x_{0}\right) & =\int_{x_{0}}^{x} f(t, u(t)) d t \\
u(x) & =u_{0}+\int_{x_{0}}^{x} f(t, u(t)) d t .
\end{aligned}
$$

- Thus, we have rewritten our differential equation in an integral equation form.
- A possible pitfall might be that $(t, u(t))$ may not be in the domain of f and, consequently, the integral in RHS may not be well-defined.

Interpretation of Solution as a Fixed Point

- Now, integrating both sides of (9.1), we get the integral equation

$$
\begin{aligned}
\int_{x_{0}}^{x} u^{\prime}(t) d t & =\int_{x_{0}}^{x} f(t, u(t)) d t \\
u(x)-u\left(x_{0}\right) & =\int_{x_{0}}^{x} f(t, u(t)) d t \\
u(x) & =u_{0}+\int_{x_{0}}^{x} f(t, u(t)) d t
\end{aligned}
$$

- Thus, we have rewritten our differential equation in an integral equation form.
- A possible pitfall might be that $(t, u(t))$ may not be in the domain of f and, consequently, the integral in RHS may not be well-defined.
- We avoid this pitfall by assuming f is defined in the strip $(a, b) \times(-\infty, \infty)$.

Interpretation of Solution as a Fixed Point

- If the integral is well-defined then the solution u of (9.1) is a fixed point for the operator $T: C(I) \rightarrow C(I)$ defined as

$$
\begin{equation*}
T u(x):=u_{0}+\int_{x_{0}}^{x} f(t, u(t)) d t \tag{9.2}
\end{equation*}
$$

where $C(I)$ is the space of continuous functions on I. Note that $T u: I \rightarrow \mathbb{R}$.

Interpretation of Solution as a Fixed Point

- If the integral is well-defined then the solution u of (9.1) is a fixed point for the operator $T: C(I) \rightarrow C(I)$ defined as

$$
\begin{equation*}
T u(x):=u_{0}+\int_{x_{0}}^{x} f(t, u(t)) d t \tag{9.2}
\end{equation*}
$$

where $C(I)$ is the space of continuous functions on I. Note that $T u: I \rightarrow \mathbb{R}$.

- We equip $C(\bar{I})$ as $\|f\|_{\infty}:=\max _{x \in \bar{I}}|f(x)|$ for all $f \in C(\bar{I})$ and, hence, the distance between two functions $f, g \in C(\bar{l})$ is given as $d(f, g):=\|f-g\|_{\infty}$.

Interpretation of Solution as a Fixed Point

- If the integral is well-defined then the solution u of (9.1) is a fixed point for the operator $T: C(I) \rightarrow C(I)$ defined as

$$
\begin{equation*}
T u(x):=u_{0}+\int_{x_{0}}^{x} f(t, u(t)) d t \tag{9.2}
\end{equation*}
$$

where $C(I)$ is the space of continuous functions on I. Note that $T u: I \rightarrow \mathbb{R}$.

- We equip $C(\bar{I})$ as $\|f\|_{\infty}:=\max _{x \in \bar{I}}|f(x)|$ for all $f \in C(\bar{I})$ and, hence, the distance between two functions $f, g \in C(\bar{l})$ is given as $d(f, g):=\|f-g\|_{\infty}$.
- We have observe that $u \in C(I)$ is a fixed point of the operator T, as defined in (9.2), then $u \in C^{1}(I)$ and solves (9.1). Conversely, if $u \in C^{1}(I)$ solves (9.1) then u is a fixed point of T.

Contraction Maps

Definition

Let X be a metric space with metric d. An operator $f: X \rightarrow X$ is said to be a contraction if for some $0 \leq \alpha<1$,

$$
d(f(x), f(y)) \leq \alpha d(x, y), \quad \forall x, y \in X
$$

If $\alpha=1$, the map f is called non-expansive. If $0 \leq \alpha<+\infty$, the map f is called Lipschitz continuous.

Contraction Maps

Definition

Let X be a metric space with metric d. An operator $f: X \rightarrow X$ is said to be a contraction if for some $0 \leq \alpha<1$,

$$
d(f(x), f(y)) \leq \alpha d(x, y), \quad \forall x, y \in X
$$

If $\alpha=1$, the map f is called non-expansive. If $0 \leq \alpha<+\infty$, the map f is called Lipschitz continuous.

Exercise

Every contraction operator is Lipschitz and every Lipschitz map is continuous.

Contraction Mapping Theorem

Theorem (Contraction Mapping)
Let X be a complete metric space and $f: X \rightarrow X$ be a contraction mapping. Then there exists a unique fixed point of f, i.e., there exists a unique $x \in X$ such that $f(x)=x$.

Contraction Mapping Theorem

Theorem (Contraction Mapping)

Let X be a complete metric space and $f: X \rightarrow X$ be a contraction mapping. Then there exists a unique fixed point of f, i.e., there exists a unique $x \in X$ such that $f(x)=x$.

Proof: Choose any $x_{0} \in X$. Set $x_{n+1}=f\left(x_{n}\right)$, for $n=0,1,2, \ldots$. Let us begin by showing $\left\{x_{n}\right\}$ is a Cauchy sequence.

Contraction Mapping Theorem

Theorem (Contraction Mapping)

Let X be a complete metric space and $f: X \rightarrow X$ be a contraction mapping. Then there exists a unique fixed point of f, i.e., there exists a unique $x \in X$ such that $f(x)=x$.

Proof: Choose any $x_{0} \in X$. Set $x_{n+1}=f\left(x_{n}\right)$, for $n=0,1,2, \ldots$. Let us begin by showing $\left\{x_{n}\right\}$ is a Cauchy sequence. Consider,

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right)=d\left(f\left(x_{n-1}\right), f\left(x_{n}\right)\right) & \leq \alpha d\left(x_{n-1}, x_{n}\right) \\
& \leq \alpha^{2} d\left(x_{n-2}, x_{n-1}\right) \\
& \leq \ldots \leq \alpha^{n} d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

Proof Continued...

By triangle inequality, we have

$$
\begin{aligned}
d\left(x_{n}, x_{n+m}\right) & \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+\ldots+d\left(x_{n+m-1}, x_{n+m}\right) \\
& \leq\left(\alpha^{n}+\alpha^{n+1}+\ldots+\alpha^{n+m-1}\right) d\left(x_{0}, x_{1}\right) \\
& =\alpha^{n}\left(1+\alpha+\ldots+\alpha^{m-1}\right) d\left(x_{0}, x_{1}\right) \\
& \leq \alpha^{n} \sum_{i=0}^{\infty} \alpha^{i} d\left(x_{0}, x_{1}\right) \\
& \leq \alpha^{n}(1-\alpha)^{-1} d\left(x_{0}, x_{1}\right) .
\end{aligned}
$$

Proof Continued...

By triangle inequality, we have

$$
\begin{aligned}
d\left(x_{n}, x_{n+m}\right) & \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+\ldots+d\left(x_{n+m-1}, x_{n+m}\right) \\
& \leq\left(\alpha^{n}+\alpha^{n+1}+\ldots+\alpha^{n+m-1}\right) d\left(x_{0}, x_{1}\right) \\
& =\alpha^{n}\left(1+\alpha+\ldots+\alpha^{m-1}\right) d\left(x_{0}, x_{1}\right) \\
& \leq \alpha^{n} \sum_{i=0}^{\infty} \alpha^{i} d\left(x_{0}, x_{1}\right) \\
& \leq \alpha^{n}(1-\alpha)^{-1} d\left(x_{0}, x_{1}\right) .
\end{aligned}
$$

Since $\alpha<1$, for a given $\varepsilon>0$, one can choose a $n_{0} \in \mathbb{N}$ such that

$$
\frac{\alpha^{n}}{1-\alpha} d\left(x_{0}, x_{1}\right)<\varepsilon \quad \forall n \geq n_{0}
$$

Proof Continued...

By triangle inequality, we have

$$
\begin{aligned}
d\left(x_{n}, x_{n+m}\right) & \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+\ldots+d\left(x_{n+m-1}, x_{n+m}\right) \\
& \leq\left(\alpha^{n}+\alpha^{n+1}+\ldots+\alpha^{n+m-1}\right) d\left(x_{0}, x_{1}\right) \\
& =\alpha^{n}\left(1+\alpha+\ldots+\alpha^{m-1}\right) d\left(x_{0}, x_{1}\right) \\
& \leq \alpha^{n} \sum_{i=0}^{\infty} \alpha^{i} d\left(x_{0}, x_{1}\right) \\
& \leq \alpha^{n}(1-\alpha)^{-1} d\left(x_{0}, x_{1}\right) .
\end{aligned}
$$

Since $\alpha<1$, for a given $\varepsilon>0$, one can choose a $n_{0} \in \mathbb{N}$ such that

$$
\frac{\alpha^{n}}{1-\alpha} d\left(x_{0}, x_{1}\right)<\varepsilon \quad \forall n \geq n_{0}
$$

Thus, for all $n \geq n_{0}$

$$
d\left(x_{n}, x_{n+m}\right) \leq \alpha^{n}(1-\alpha)^{-1} d\left(x_{0}, x_{1}\right)<\varepsilon
$$

Proof Continued...

By triangle inequality, we have

$$
\begin{aligned}
d\left(x_{n}, x_{n+m}\right) & \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+\ldots+d\left(x_{n+m-1}, x_{n+m}\right) \\
& \leq\left(\alpha^{n}+\alpha^{n+1}+\ldots+\alpha^{n+m-1}\right) d\left(x_{0}, x_{1}\right) \\
& =\alpha^{n}\left(1+\alpha+\ldots+\alpha^{m-1}\right) d\left(x_{0}, x_{1}\right) \\
& \leq \alpha^{n} \sum_{i=0}^{\infty} \alpha^{i} d\left(x_{0}, x_{1}\right) \\
& \leq \alpha^{n}(1-\alpha)^{-1} d\left(x_{0}, x_{1}\right) .
\end{aligned}
$$

Since $\alpha<1$, for a given $\varepsilon>0$, one can choose a $n_{0} \in \mathbb{N}$ such that

$$
\frac{\alpha^{n}}{1-\alpha} d\left(x_{0}, x_{1}\right)<\varepsilon \quad \forall n \geq n_{0}
$$

Thus, for all $n \geq n_{0}$

$$
d\left(x_{n}, x_{n+m}\right) \leq \alpha^{n}(1-\alpha)^{-1} d\left(x_{0}, x_{1}\right)<\varepsilon
$$

Therefore, the sequence $\left\{x_{n}\right\}$ is Cauchy. Since X is a complete space $x_{n} \rightarrow x$ for some $x \in X$.

Proof Continued...

Since every contraction map is continuous (cf. Exercise 13), $f\left(x_{n}\right) \rightarrow f(x)$ in X.

Proof Continued...

Since every contraction map is continuous (cf. Exercise 13), $f\left(x_{n}\right) \rightarrow f(x)$ in X. Consider,

$$
f(x)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} x_{n+1}=x
$$

Thus, x is a fixed point of f.

Proof Continued...

Since every contraction map is continuous (cf. Exercise 13), $f\left(x_{n}\right) \rightarrow f(x)$ in X. Consider,

$$
f(x)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} x_{n+1}=x
$$

Thus, x is a fixed point of f. It now remains to show the uniqueness of x. Suppose $x=f(x)$ and $y=f(y)$, then $d(x, y)=d(f(x), f(y)) \leq \alpha d(x, y)$. Since, $\alpha<1$, we have $d(x, y)=0$ and thus, $x=y$.

Proof Continued...

Since every contraction map is continuous (cf. Exercise 13), $f\left(x_{n}\right) \rightarrow f(x)$ in X. Consider,

$$
f(x)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} x_{n+1}=x
$$

Thus, x is a fixed point of f. It now remains to show the uniqueness of x. Suppose $x=f(x)$ and $y=f(y)$, then $d(x, y)=d(f(x), f(y)) \leq \alpha d(x, y)$. Since, $\alpha<1$, we have $d(x, y)=0$ and thus, $x=y$.

Remark

The above theorem is generally not true when f is non-expansive. For instance, a translation of a vector space in to itself does not admit a fixed point, i.e., define $f(x)=x+a$ for any fixed vector $a \in X$.

Corollary

Let X be a complete metric space and $f: X \rightarrow X$ be a mapping such that $f^{n}: X \rightarrow X$ is contraction for some positive integer n. Then there exists a unique fixed point of f, i.e., there exists a unique $x \in X$ such that $f(x)=x$.

Corollary

Let X be a complete metric space and $f: X \rightarrow X$ be a mapping such that $f^{n}: X \rightarrow X$ is contraction for some positive integer n. Then there exists a unique fixed point of f, i.e., there exists a unique $x \in X$ such that $f(x)=x$.

Proof: Since f^{n} is a contraction there is a unique $x^{*} \in X$ such that $f^{n}\left(x^{*}\right)=x^{*}$.

Corollary

Let X be a complete metric space and $f: X \rightarrow X$ be a mapping such that $f^{n}: X \rightarrow X$ is contraction for some positive integer n. Then there exists a unique fixed point of f, i.e., there exists a unique $x \in X$ such that $f(x)=x$.

Proof: Since f^{n} is a contraction there is a unique $x^{*} \in X$ such that $f^{n}\left(x^{*}\right)=x^{*}$. Then

$$
f\left(x^{*}\right)=f\left(f^{n}\left(x^{*}\right)\right)=f^{n+1}\left(x^{*}\right)=f^{n}\left(f\left(x^{*}\right)\right)
$$

and, hence, $f\left(x^{*}\right)$ is a fixed point of f^{n}.

Corollary

Let X be a complete metric space and $f: X \rightarrow X$ be a mapping such that $f^{n}: X \rightarrow X$ is contraction for some positive integer n. Then there exists a unique fixed point of f, i.e., there exists a unique $x \in X$ such that $f(x)=x$.

Proof: Since f^{n} is a contraction there is a unique $x^{*} \in X$ such that $f^{n}\left(x^{*}\right)=x^{*}$. Then

$$
f\left(x^{*}\right)=f\left(f^{n}\left(x^{*}\right)\right)=f^{n+1}\left(x^{*}\right)=f^{n}\left(f\left(x^{*}\right)\right)
$$

and, hence, $f\left(x^{*}\right)$ is a fixed point of f^{n}. By uniqueness of fixed point $f\left(x^{*}\right)=x^{*}$. Thus, the fixed point of f^{n} is also a fixed point of f.

Corollary

Let X be a complete metric space and $f: X \rightarrow X$ be a mapping such that $f^{n}: X \rightarrow X$ is contraction for some positive integer n. Then there exists a unique fixed point of f, i.e., there exists a unique $x \in X$ such that $f(x)=x$.

Proof: Since f^{n} is a contraction there is a unique $x^{*} \in X$ such that $f^{n}\left(x^{*}\right)=x^{*}$. Then

$$
f\left(x^{*}\right)=f\left(f^{n}\left(x^{*}\right)\right)=f^{n+1}\left(x^{*}\right)=f^{n}\left(f\left(x^{*}\right)\right)
$$

and, hence, $f\left(x^{*}\right)$ is a fixed point of f^{n}. By uniqueness of fixed point $f\left(x^{*}\right)=x^{*}$. Thus, the fixed point of f^{n} is also a fixed point of f. If y^{*} is any other fixed point of f, then

$$
f^{n}\left(y^{*}\right)=f^{n-1}\left(f\left(y^{*}\right)\right)=f^{n-1}\left(y^{*}\right)
$$

Corollary

Let X be a complete metric space and $f: X \rightarrow X$ be a mapping such that $f^{n}: X \rightarrow X$ is contraction for some positive integer n. Then there exists a unique fixed point of f, i.e., there exists a unique $x \in X$ such that $f(x)=x$.

Proof: Since f^{n} is a contraction there is a unique $x^{*} \in X$ such that $f^{n}\left(x^{*}\right)=x^{*}$. Then

$$
f\left(x^{*}\right)=f\left(f^{n}\left(x^{*}\right)\right)=f^{n+1}\left(x^{*}\right)=f^{n}\left(f\left(x^{*}\right)\right)
$$

and, hence, $f\left(x^{*}\right)$ is a fixed point of f^{n}. By uniqueness of fixed point $f\left(x^{*}\right)=x^{*}$. Thus, the fixed point of f^{n} is also a fixed point of f. If y^{*} is any other fixed point of f, then

$$
f^{n}\left(y^{*}\right)=f^{n-1}\left(f\left(y^{*}\right)\right)=f^{n-1}\left(y^{*}\right)
$$

Similarly, $f^{n-1}\left(y^{*}\right)=f^{n-2}\left(y^{*}\right)$. Thus, $f^{n}\left(y^{*}\right)=f\left(y^{*}\right)$ and $f^{n}\left(y^{*}\right)=y^{*}$. Hence $y^{*}=x^{*}$.

Banach Fixed Point Theorem

Theorem (Banach Fixed Point Theorem)
Let I be any closed interval of \mathbb{R}. Fix a $g \in C(I)$ and $r>0$. Let $B:=\{f \in C(I) \mid\|f-g\| \leq r\}$ and $T: B \rightarrow B$ be an operator which is a contraction on B, i.e., for some $0 \leq \alpha<1$

$$
\|T(f)-T(g)\| \leq \alpha\|f-g\| \quad \forall f, g \in B
$$

Then T has a unique fixed point in B.

Banach Fixed Point Theorem

Theorem (Banach Fixed Point Theorem)

Let I be any closed interval of \mathbb{R}. Fix a $g \in C(I)$ and $r>0$. Let $B:=\{f \in C(I) \mid\|f-g\| \leq r\}$ and $T: B \rightarrow B$ be an operator which is a contraction on B, i.e., for some $0 \leq \alpha<1$

$$
\|T(f)-T(g)\| \leq \alpha\|f-g\| \quad \forall f, g \in B
$$

Then T has a unique fixed point in B.
Since $C(I)$ is a Banach space and B is closed subspace of a complete space, B is complete. This result is a particular case of the more general result called the contraction mapping principle (cf. 45).

Cauchy-Lipschitz or Picard-Lindelöf

Theorem (Cauchy-Lipschitz)

Let $T>0$ and $\mathbf{f} \in\left[C\left([0, T] \times \mathbb{R}^{n}\right)\right]^{n}$ admits a $\alpha>0$ such that

$$
\left|\mathbf{f}\left(t, \xi_{1}\right)-\mathbf{f}\left(t, \xi_{2}\right)\right| \leq \alpha\left|\xi_{1}-\xi_{2}\right| \quad \forall t \in[0, T], \xi_{1}, \xi_{2} \in \mathbb{R}^{n}
$$

Then, for a given vector $\mathbf{u}_{0} \in \mathbb{R}^{n}$, there is a unique solution $\mathbf{u} \in\left(C^{1}[0, T]\right)^{n}$ of the system of $O D E$

$$
\left\{\begin{align*}
\mathbf{u}^{\prime}(t) & =\mathbf{f}(t, \mathbf{u}(t)) \quad t \in[0, T] \tag{10.1}\\
\mathbf{u}(0) & =\mathbf{u}_{0}
\end{align*}\right.
$$

Cauchy-Lipschitz or Picard-Lindelöf

Theorem (Cauchy-Lipschitz)

Let $T>0$ and $\mathbf{f} \in\left[C\left([0, T] \times \mathbb{R}^{n}\right)\right]^{n}$ admits a $\alpha>0$ such that

$$
\left|\mathbf{f}\left(t, \xi_{1}\right)-\mathbf{f}\left(t, \xi_{2}\right)\right| \leq \alpha\left|\xi_{1}-\xi_{2}\right| \quad \forall t \in[0, T], \xi_{1}, \xi_{2} \in \mathbb{R}^{n}
$$

Then, for a given vector $\mathbf{u}_{0} \in \mathbb{R}^{n}$, there is a unique solution $\mathbf{u} \in\left(C^{1}[0, T]\right)^{n}$ of the system of $O D E$

$$
\left\{\begin{align*}
\mathbf{u}^{\prime}(t) & =\mathbf{f}(t, \mathbf{u}(t)) \quad t \in[0, T] \tag{10.1}\\
\mathbf{u}(0) & =\mathbf{u}_{0}
\end{align*}\right.
$$

Proof: We define $T:(C[0, T])^{n} \rightarrow(C[0, T])^{n}$ as

$$
T \mathbf{u}(t):=\mathbf{u}_{0}+\int_{0}^{t} \mathbf{f}(s, \mathbf{u}(s)) d s
$$

Proof Continued...

- If T has a fixed point \mathbf{u} then we have already argued above that $\mathbf{u} \in\left(C^{1}[0, T]\right)^{n}$ and solves (10.1).

Proof Continued...

- If T has a fixed point \mathbf{u} then we have already argued above that $\mathbf{u} \in\left(C^{1}[0, T]\right)^{n}$ and solves (10.1).
- We first show that T is a contraction map.

Proof Continued...

- If T has a fixed point \mathbf{u} then we have already argued above that $\mathbf{u} \in\left(C^{1}[0, T]\right)^{n}$ and solves (10.1).
- We first show that T is a contraction map. It is easier to prove the contraction of T if we endow $(C[0, T])^{n}$ with the norm

$$
\|\mathbf{v}\|_{\alpha}:=\sup _{t \in[0, T]} e^{-\alpha t}|\mathbf{v}(t)| .
$$

Proof Continued...

- If T has a fixed point \mathbf{u} then we have already argued above that $\mathbf{u} \in\left(C^{1}[0, T]\right)^{n}$ and solves (10.1).
- We first show that T is a contraction map. It is easier to prove the contraction of T if we endow $(C[0, T])^{n}$ with the norm

$$
\|\mathbf{v}\|_{\alpha}:=\sup _{t \in[0, T]} e^{-\alpha t}|\mathbf{v}(t)|
$$

- Since $e^{\alpha T}\|\cdot\|_{\infty} \leq\|\cdot\|_{\alpha} \leq\|\cdot\|_{\infty}$, the norm $\|\cdot\|_{\alpha}$ is equivalent to $\|\cdot\|_{\infty}$.

Proof Continued...

- If T has a fixed point \mathbf{u} then we have already argued above that $\mathbf{u} \in\left(C^{1}[0, T]\right)^{n}$ and solves (10.1).
- We first show that T is a contraction map. It is easier to prove the contraction of T if we endow $(C[0, T])^{n}$ with the norm

$$
\|\mathbf{v}\|_{\alpha}:=\sup _{t \in[0, T]} e^{-\alpha t}|\mathbf{v}(t)| .
$$

- Since $e^{\alpha T}\|\cdot\|_{\infty} \leq\|\cdot\|_{\alpha} \leq\|\cdot\|_{\infty}$, the norm $\|\cdot\|_{\alpha}$ is equivalent to $\|\cdot\|_{\infty}$. Thus, $(C[0, T])^{n}$ is Banach space.

Proof Continued...

- If T has a fixed point \mathbf{u} then we have already argued above that $\mathbf{u} \in\left(C^{1}[0, T]\right)^{n}$ and solves (10.1).
- We first show that T is a contraction map. It is easier to prove the contraction of T if we endow $(C[0, T])^{n}$ with the norm

$$
\|\mathbf{v}\|_{\alpha}:=\sup _{t \in[0, T]} e^{-\alpha t}|\mathbf{v}(t)|
$$

- Since $e^{\alpha T}\|\cdot\|_{\infty} \leq\|\cdot\|_{\alpha} \leq\|\cdot\|_{\infty}$, the norm $\|\cdot\|_{\alpha}$ is equivalent to $\|\cdot\|_{\infty}$. Thus, $(C[0, T])^{n}$ is Banach space.
- In the case when one prefers to work with the usual sup norm, then one can prove the contraction of T^{k}, for some very large k, and proceed in a similar manner.

Proof Continued...

- Consider, for $0 \leq t \leq T$,

$$
|(T \mathbf{v}-T \mathbf{w})(t)|=\int_{0}^{t} e^{\alpha s} e^{-\alpha s} \mathbf{f}(s, \mathbf{v}(s))-\mathbf{f}(s, \mathbf{w}(s)) d s
$$

Proof Continued...

- Consider, for $0 \leq t \leq T$,

$$
\begin{aligned}
|(T \mathbf{v}-T \mathbf{w})(t)| & =\int_{0}^{t} e^{\alpha s} e^{-\alpha s} \mathbf{f}(s, \mathbf{v}(s))-\mathbf{f}(s, \mathbf{w}(s)) d s \\
& \leq \sup _{0 \leq s \leq T}\left(e^{-\alpha s}|\mathbf{f}(s, \mathbf{v}(s))-\mathbf{f}(s, \mathbf{w}(s))|\right) \int_{0}^{t} e^{\alpha s} d s
\end{aligned}
$$

Proof Continued...

- Consider, for $0 \leq t \leq T$,

$$
\begin{aligned}
|(T \mathbf{v}-T \mathbf{w})(t)| & =\int_{0}^{t} e^{\alpha s} e^{-\alpha s} \mathbf{f}(s, \mathbf{v}(s))-\mathbf{f}(s, \mathbf{w}(s)) d s \\
& \leq \sup _{0 \leq s \leq T}\left(e^{-\alpha s}|\mathbf{f}(s, \mathbf{v}(s))-\mathbf{f}(s, \mathbf{w}(s))|\right) \int_{0}^{t} e^{\alpha s} d s \\
& \leq \alpha\|w-v\|_{\alpha} \int_{0}^{t} e^{\alpha s} d s
\end{aligned}
$$

Proof Continued...

- Consider, for $0 \leq t \leq T$,

$$
\begin{aligned}
|(T \mathbf{v}-T \mathbf{w})(t)| & =\int_{0}^{t} e^{\alpha s} e^{-\alpha s} \mathbf{f}(s, \mathbf{v}(s))-\mathbf{f}(s, \mathbf{w}(s)) d s \\
& \leq \sup _{0 \leq s \leq T}\left(e^{-\alpha s}|\mathbf{f}(s, \mathbf{v}(s))-\mathbf{f}(s, \mathbf{w}(s))|\right) \int_{0}^{t} e^{\alpha s} d s \\
& \leq \alpha\|w-v\|_{\alpha} \int_{0}^{t} e^{\alpha s} d s
\end{aligned}
$$

- Since $\alpha \int_{0}^{t} e^{\alpha s} d s=e^{\alpha t}-1=e^{\alpha t}\left(1-e^{-\alpha t}\right) \leq e^{\alpha t}\left(1-e^{-\alpha T}\right)$,

Proof Continued...

- Consider, for $0 \leq t \leq T$,

$$
\begin{aligned}
|(T \mathbf{v}-T \mathbf{w})(t)| & =\int_{0}^{t} e^{\alpha s} e^{-\alpha s} \mathbf{f}(s, \mathbf{v}(s))-\mathbf{f}(s, \mathbf{w}(s)) d s \\
& \leq \sup _{0 \leq s \leq T}\left(e^{-\alpha s}|\mathbf{f}(s, \mathbf{v}(s))-\mathbf{f}(s, \mathbf{w}(s))|\right) \int_{0}^{t} e^{\alpha s} d s \\
& \leq \alpha\|w-v\|_{\alpha} \int_{0}^{t} e^{\alpha s} d s
\end{aligned}
$$

- Since $\alpha \int_{0}^{t} e^{\alpha s} d s=e^{\alpha t}-1=e^{\alpha t}\left(1-e^{-\alpha t}\right) \leq e^{\alpha t}\left(1-e^{-\alpha T}\right)$, we have

$$
\|(T \mathbf{v}-T \mathbf{w})\|_{\alpha} \leq\left(1-e^{-\alpha T}\right)\|w-v\|_{\alpha}
$$

Proof Continued...

- Consider, for $0 \leq t \leq T$,

$$
\begin{aligned}
|(T \mathbf{v}-T \mathbf{w})(t)| & =\int_{0}^{t} e^{\alpha s} e^{-\alpha s} \mathbf{f}(s, \mathbf{v}(s))-\mathbf{f}(s, \mathbf{w}(s)) d s \\
& \leq \sup _{0 \leq s \leq T}\left(e^{-\alpha s}|\mathbf{f}(s, \mathbf{v}(s))-\mathbf{f}(s, \mathbf{w}(s))|\right) \int_{0}^{t} e^{\alpha s} d s \\
& \leq \alpha\|w-v\|_{\alpha} \int_{0}^{t} e^{\alpha s} d s
\end{aligned}
$$

- Since $\alpha \int_{0}^{t} e^{\alpha s} d s=e^{\alpha t}-1=e^{\alpha t}\left(1-e^{-\alpha t}\right) \leq e^{\alpha t}\left(1-e^{-\alpha T}\right)$, we have

$$
\|(T \mathbf{v}-T \mathbf{w})\|_{\alpha} \leq\left(1-e^{-\alpha T}\right)\|w-v\|_{\alpha}
$$

- Hence, T is contraction. By Theorem 45, there is a unique fixed point for T which is a solution for (10.1).

Linear System of ODE

Corollary (Linear System of ODE)

Let $T>0, A$ be a $n \times n$ matrix with entries in $C[0, T]$ and $\mathbf{b} \in(C[0, T])^{n}$. Then, for a given vector $\mathbf{u}_{0} \in \mathbb{R}^{n}$, there is a unique solution $\mathbf{u} \in\left(C^{1}[0, T]\right)^{n}$ of the system of linear ODE

$$
\left\{\begin{aligned}
\mathbf{u}^{\prime}(t) & =A(t) \mathbf{u}(t)+b(t) \quad t \in[0, T] \\
\mathbf{u}(0) & =\mathbf{u}_{0} .
\end{aligned}\right.
$$

Linear System of ODE

Corollary (Linear System of ODE)

Let $T>0, A$ be a $n \times n$ matrix with entries in $C[0, T]$ and $\mathbf{b} \in(C[0, T])^{n}$. Then, for a given vector $\mathbf{u}_{0} \in \mathbb{R}^{n}$, there is a unique solution $\mathbf{u} \in\left(C^{1}[0, T]\right)^{n}$ of the system of linear ODE

$$
\left\{\begin{aligned}
\mathbf{u}^{\prime}(t) & =A(t) \mathbf{u}(t)+b(t) \quad t \in[0, T] \\
\mathbf{u}(0) & =\mathbf{u}_{0}
\end{aligned}\right.
$$

Proof.

Set $\mathbf{f}(t, \xi):=A(t) \xi+\mathbf{b}(t)$. Then

$$
\left|\mathbf{f}\left(t, \xi_{1}\right)-\mathbf{f}\left(t, \xi_{2}\right)\right|=|A(t)|\left|\xi_{1}-\xi_{2}\right| \leq \alpha\left|\xi_{1}-\xi_{2}\right|
$$

where $\alpha=\sup _{0 \leq t \leq T}|A(t)|$.

Necessity of Lipschitz Hypothesis

Example

If the Lipschitz condition on f is relaxed and only continuity is assumed then we can expect only a local existence.

Necessity of Lipschitz Hypothesis

Example

If the Lipschitz condition on f is relaxed and only continuity is assumed then we can expect only a local existence. For instance, consider

$$
\left\{\begin{aligned}
u^{\prime}(t) & =u^{2}(t) \quad t \in[0, \infty) \\
u(0) & =u_{0}
\end{aligned}\right.
$$

Necessity of Lipschitz Hypothesis

Example

If the Lipschitz condition on f is relaxed and only continuity is assumed then we can expect only a local existence. For instance, consider

$$
\left\{\begin{aligned}
u^{\prime}(t) & =u^{2}(t) \quad t \in[0, \infty) \\
u(0) & =u_{0}
\end{aligned}\right.
$$

Note that $u(t)=\frac{u_{0}}{1-u_{0} t}$ satisfies the equation except at $t=1 / u_{0}$, where there is a blow-up of solution.

Necessity of Lipschitz Hypothesis

Example

If the Lipschitz condition on f is relaxed and only continuity is assumed then we can expect only a local existence. For instance, consider

$$
\left\{\begin{aligned}
u^{\prime}(t) & =u^{2}(t) \quad t \in[0, \infty) \\
u(0) & =u_{0}
\end{aligned}\right.
$$

Note that $u(t)=\frac{u_{0}}{1-u_{0} t}$ satisfies the equation except at $t=1 / u_{0}$, where there is a blow-up of solution. Thus, if $u_{0}<0$ then the blow-up point $1 / u_{0}<0$ is not in the domain $[0, \infty)$. Hence, the solution is global.

Necessity of Lipschitz Hypothesis

Example

If the Lipschitz condition on f is relaxed and only continuity is assumed then we can expect only a local existence. For instance, consider

$$
\left\{\begin{aligned}
u^{\prime}(t) & =u^{2}(t) \quad t \in[0, \infty) \\
u(0) & =u_{0}
\end{aligned}\right.
$$

Note that $u(t)=\frac{u_{0}}{1-u_{0} t}$ satisfies the equation except at $t=1 / u_{0}$, where there is a blow-up of solution. Thus, if $u_{0}<0$ then the blow-up point $1 / u_{0}<0$ is not in the domain $[0, \infty)$. Hence, the solution is global. However, if $u_{0}>0$ then the domain includes the blow-up point $1 / u_{0}>0$ then the solution is satisfied for $t \in[0, h]$ for $h<1 / u_{0}$.

Necessity of Lipschitz Hypothesis

Example

If the Lipschitz condition on f is relaxed and only continuity is assumed then we can expect only a local existence. For instance, consider

$$
\left\{\begin{aligned}
u^{\prime}(t) & =u^{2}(t) \quad t \in[0, \infty) \\
u(0) & =u_{0}
\end{aligned}\right.
$$

Note that $u(t)=\frac{u_{0}}{1-u_{0} t}$ satisfies the equation except at $t=1 / u_{0}$, where there is a blow-up of solution. Thus, if $u_{0}<0$ then the blow-up point $1 / u_{0}<0$ is not in the domain $[0, \infty)$. Hence, the solution is global. However, if $u_{0}>0$ then the domain includes the blow-up point $1 / u_{0}>0$ then the solution is satisfied for $t \in[0, h]$ for $h<1 / u_{0}$. If u_{0} is very large then h is very small. If $u_{0}=0$ then $u \equiv 0$ is a unique solution.

Relaxing Hypothesis

Example

The relaxation on the assumptions on f may also lead to non-uniqueness of solution. For instance, consider

$$
\left\{\begin{aligned}
u^{\prime}(t) & =3 u^{3 / 2}(t) \quad t \in[0, \infty) \\
u(0) & =u_{0}
\end{aligned}\right.
$$

Relaxing Hypothesis

Example

The relaxation on the assumptions on f may also lead to non-uniqueness of solution. For instance, consider

$$
\left\{\begin{aligned}
u^{\prime}(t) & =3 u^{3 / 2}(t) \quad t \in[0, \infty) \\
u(0) & =u_{0} .
\end{aligned}\right.
$$

The RHS function $v \mapsto v^{3 / 2}$ does not satisfy Lipschitz condition at $v=0$.

Relaxing Hypothesis

Example

The relaxation on the assumptions on f may also lead to non-uniqueness of solution. For instance, consider

$$
\left\{\begin{aligned}
u^{\prime}(t) & =3 u^{3 / 2}(t) \quad t \in[0, \infty) \\
u(0) & =u_{0} .
\end{aligned}\right.
$$

The RHS function $v \mapsto v^{3 / 2}$ does not satisfy Lipschitz condition at $v=0$. If $u_{0} \neq 0$ then $u(t)=\left(t+u_{0}^{3 / 2}\right)^{1 / 3}$ is a unique solution.

Relaxing Hypothesis

Example

The relaxation on the assumptions on f may also lead to non-uniqueness of solution. For instance, consider

$$
\left\{\begin{aligned}
u^{\prime}(t) & =3 u^{3 / 2}(t) \quad t \in[0, \infty) \\
u(0) & =u_{0}
\end{aligned}\right.
$$

The RHS function $v \mapsto v^{3 / 2}$ does not satisfy Lipschitz condition at $v=0$. If $u_{0} \neq 0$ then $u(t)=\left(t+u_{0}^{3 / 2}\right)^{1 / 3}$ is a unique solution. If $u_{0}=0$ then there are infinitely many solutions, viz., $u \equiv 0, u(t)=t^{3}$ and, for arbitrarily chosen $t_{0}>0$,

$$
u(t)= \begin{cases}0 & t \in\left[0, t_{0}\right] \\ \left(t-t_{0}\right)^{3} & t \in\left[t_{0}, \infty\right)\end{cases}
$$

Cauchy-Peano Theorem

Theorem (Cauchy-Peano (Local Existence))
Given $T>0, r>0, \mathbf{u}_{0} \in \mathbb{R}^{n}$ and $\mathbf{f} \in C\left([0, T] \times \overline{B_{r}\left(\mathbf{u}_{0}\right)}\right)^{n}$. Then there exists a $0<h \leq T$ and, at least, one solution $\mathbf{u} \in\left(C^{1}[0, h]\right)^{n}$ of the system of $O D E$

$$
\left\{\begin{align*}
\mathbf{u}^{\prime}(t) & =\mathbf{f}(t, \mathbf{u}(t)) \quad t \in[0, h] \tag{10.2}\\
\mathbf{u}(0) & =\mathbf{u}_{0} .
\end{align*}\right.
$$

Cauchy-Peano Theorem

Theorem (Cauchy-Peano (Local Existence))

Given $T>0, r>0, \mathbf{u}_{0} \in \mathbb{R}^{n}$ and $\mathbf{f} \in C\left([0, T] \times \overline{B_{r}\left(\mathbf{u}_{0}\right)}\right)^{n}$. Then there exists a $0<h \leq T$ and, at least, one solution $\mathbf{u} \in\left(C^{1}[0, h]\right)^{n}$ of the system of ODE

$$
\left\{\begin{align*}
\mathbf{u}^{\prime}(t) & =\mathbf{f}(t, \mathbf{u}(t)) \quad t \in[0, h] \tag{10.2}\\
\mathbf{u}(0) & =\mathbf{u}_{0} .
\end{align*}\right.
$$

Proof: We shall choose h subsequently. We have already argued that, for $t \in[0, h]$, if

$$
T \mathbf{u}(t):=\mathbf{u}_{0}+\int_{0}^{t} \mathbf{f}(s, \mathbf{u}(s)) d s
$$

has a fixed point \mathbf{u} then $\mathbf{u} \in\left(C^{1}[0, h]\right)^{n}$ and solves (10.2).

Cauchy-Peano Theorem

Theorem (Cauchy-Peano (Local Existence))

Given $T>0, r>0, \mathbf{u}_{0} \in \mathbb{R}^{n}$ and $\mathbf{f} \in C\left([0, T] \times \overline{B_{r}\left(\mathbf{u}_{0}\right)}\right)^{n}$. Then there exists a $0<h \leq T$ and, at least, one solution $\mathbf{u} \in\left(C^{1}[0, h]\right)^{n}$ of the system of ODE

$$
\left\{\begin{align*}
\mathbf{u}^{\prime}(t) & =\mathbf{f}(t, \mathbf{u}(t)) \quad t \in[0, h] \tag{10.2}\\
\mathbf{u}(0) & =\mathbf{u}_{0}
\end{align*}\right.
$$

Proof: We shall choose h subsequently. We have already argued that, for $t \in[0, h]$, if

$$
T \mathbf{u}(t):=\mathbf{u}_{0}+\int_{0}^{t} \mathbf{f}(s, \mathbf{u}(s)) d s
$$

has a fixed point \mathbf{u} then $\mathbf{u} \in\left(C^{1}[0, h]\right)^{n}$ and solves (10.2). Let us partition the interval $[0, h]$ in to m intervals of length h / m.

Using a finite difference approximation of the IVP, we define vectors $\mathbf{u}_{i} \in \mathbb{R}^{n}$, for $0 \leq i \leq m-1$, by

$$
\frac{\mathbf{u}_{i+1}-\mathbf{u}_{i}}{\frac{h}{m}}=\mathbf{f}\left(\frac{i h}{m}, \mathbf{u}_{i}\right)
$$

Using a finite difference approximation of the IVP, we define vectors $\mathbf{u}_{i} \in \mathbb{R}^{n}$, for $0 \leq i \leq m-1$, by

$$
\frac{\mathbf{u}_{i+1}-\mathbf{u}_{i}}{\frac{h}{m}}=\mathbf{f}\left(\frac{i h}{m}, \mathbf{u}_{i}\right) .
$$

The above definition is valid only if $\mathbf{u}_{i} \in B_{r}\left(\mathbf{u}_{0}\right)$. Thus, \mathbf{u}_{1} is well-defined.

Using a finite difference approximation of the IVP, we define vectors $\mathbf{u}_{i} \in \mathbb{R}^{n}$, for $0 \leq i \leq m-1$, by

$$
\frac{\mathbf{u}_{i+1}-\mathbf{u}_{i}}{\frac{h}{m}}=\mathbf{f}\left(\frac{i h}{m}, \mathbf{u}_{i}\right)
$$

The above definition is valid only if $\mathbf{u}_{i} \in B_{r}\left(\mathbf{u}_{0}\right)$. Thus, \mathbf{u}_{1} is well-defined. Consider

$$
\left|\mathbf{u}_{1}-\mathbf{u}_{0}\right|=\frac{h}{m}\left|\mathbf{f}\left(0, \mathbf{u}_{0}\right)\right| \leq \frac{h}{m} M \leq h M \leq r
$$

where $M:=\sup _{(t, \xi) \in[0, T] \times \overline{B_{r}\left(\mathbf{u}_{0}\right)}}|\mathbf{f}(t, \xi)|$ and $h:=\min \left\{\frac{r}{M}, T\right\}$.

Using a finite difference approximation of the IVP, we define vectors $\mathbf{u}_{i} \in \mathbb{R}^{n}$, for $0 \leq i \leq m-1$, by

$$
\frac{\mathbf{u}_{i+1}-\mathbf{u}_{i}}{\frac{h}{m}}=\mathbf{f}\left(\frac{i h}{m}, \mathbf{u}_{i}\right) .
$$

The above definition is valid only if $\mathbf{u}_{i} \in B_{r}\left(\mathbf{u}_{0}\right)$. Thus, \mathbf{u}_{1} is well-defined. Consider

$$
\left|\mathbf{u}_{1}-\mathbf{u}_{0}\right|=\frac{h}{m}\left|\mathbf{f}\left(0, \mathbf{u}_{0}\right)\right| \leq \frac{h}{m} M \leq h M \leq r
$$

where $M:=\sup _{(t, \xi) \in[0, T] \times \overline{B_{r}\left(\mathbf{u}_{0}\right)}}|\mathbf{f}(t, \xi)|$ and $h:=\min \left\{\frac{r}{M}, T\right\}$. Similarly,

$$
\left|\mathbf{u}_{2}-\mathbf{u}_{0}\right| \leq\left|\mathbf{u}_{2}-\mathbf{u}_{1}\right|+\left|\mathbf{u}_{1}-\mathbf{u}_{0}\right| \leq \frac{h M}{m}+\frac{h M}{m}=\frac{2 h M}{m} \leq h M \leq r
$$

Using a finite difference approximation of the IVP, we define vectors $\mathbf{u}_{i} \in \mathbb{R}^{n}$, for $0 \leq i \leq m-1$, by

$$
\frac{\mathbf{u}_{i+1}-\mathbf{u}_{i}}{\frac{h}{m}}=\mathbf{f}\left(\frac{i h}{m}, \mathbf{u}_{i}\right)
$$

The above definition is valid only if $\mathbf{u}_{i} \in B_{r}\left(\mathbf{u}_{0}\right)$. Thus, \mathbf{u}_{1} is well-defined. Consider

$$
\left|\mathbf{u}_{1}-\mathbf{u}_{0}\right|=\frac{h}{m}\left|\mathbf{f}\left(0, \mathbf{u}_{0}\right)\right| \leq \frac{h}{m} M \leq h M \leq r
$$

where $M:=\sup _{(t, \xi) \in[0, T] \times \overline{B_{r}\left(\mathbf{u}_{0}\right)}}|\mathbf{f}(t, \xi)|$ and $h:=\min \left\{\frac{r}{M}, T\right\}$. Similarly,

$$
\left|\mathbf{u}_{2}-\mathbf{u}_{0}\right| \leq\left|\mathbf{u}_{2}-\mathbf{u}_{1}\right|+\left|\mathbf{u}_{1}-\mathbf{u}_{0}\right| \leq \frac{h M}{m}+\frac{h M}{m}=\frac{2 h M}{m} \leq h M \leq r
$$

Proceeding inductively, we have \mathbf{u}_{i} well-defined for all $1 \leq i \leq m$ because

$$
\left|\mathbf{u}_{i}-\mathbf{u}_{0}\right| \leq\left|\mathbf{u}_{i}-\mathbf{u}_{i-1}\right|+\left|\mathbf{u}_{i-1}-\mathbf{u}_{0}\right| \leq \frac{h M}{m}+\frac{(i-1) h M}{m}=\frac{i h M}{m} \leq h M \leq r
$$

Note that, for each $m \in \mathbb{N}$, we have $m+1$ distinct equi-distant points $i h / m$ of $[0, h]$ and m distinct vectors \mathbf{u}_{i}, for $0 \leq i \leq m$.

Note that, for each $m \in \mathbb{N}$, we have $m+1$ distinct equi-distant points $i h / m$ of $[0, h]$ and m distinct vectors \mathbf{u}_{i}, for $0 \leq i \leq m$. We shall now define a continuous function $U_{m}:[0, h] \rightarrow \mathbb{R}^{n}$ such that $U_{m}(i h / m)=\mathbf{u}_{i}$ for $0 \leq i \leq m$. This is done by piecewise joining the line (ih/m, \mathbf{u}_{i}) and $\left((i+1) h / m, \mathbf{u}_{i+1}\right)$.

Note that, for each $m \in \mathbb{N}$, we have $m+1$ distinct equi-distant points $i h / m$ of $[0, h]$ and m distinct vectors \mathbf{u}_{i}, for $0 \leq i \leq m$. We shall now define a continuous function $U_{m}:[0, h] \rightarrow \mathbb{R}^{n}$ such that $U_{m}(i h / m)=\mathbf{u}_{i}$ for $0 \leq i \leq m$. This is done by piecewise joining the line (ih/m, \mathbf{u}_{i}) and $\left((i+1) h / m, \mathbf{u}_{i+1}\right)$. Hence, for each $t \in[0, h]$ and all $0 \leq i \leq m-1$,

$$
U_{m}(t):=\mathbf{u}_{i}+\frac{m}{h}\left(t-\frac{i h}{m}\right)\left(\mathbf{u}_{i+1}-\mathbf{u}_{i}\right) \text { when } \frac{i h}{m} \leq t \leq \frac{(i+1) h}{m}
$$

Note that, for each $m \in \mathbb{N}$, we have $m+1$ distinct equi-distant points $i h / m$ of $[0, h]$ and m distinct vectors \mathbf{u}_{i}, for $0 \leq i \leq m$. We shall now define a continuous function $U_{m}:[0, h] \rightarrow \mathbb{R}^{n}$ such that $U_{m}(i h / m)=\mathbf{u}_{i}$ for $0 \leq i \leq m$. This is done by piecewise joining the line (ih/m, \mathbf{u}_{i}) and $\left((i+1) h / m, \mathbf{u}_{i+1}\right)$. Hence, for each $t \in[0, h]$ and all $0 \leq i \leq m-1$,

$$
U_{m}(t):=\mathbf{u}_{i}+\frac{m}{h}\left(t-\frac{i h}{m}\right)\left(\mathbf{u}_{i+1}-\mathbf{u}_{i}\right) \text { when } \frac{i h}{m} \leq t \leq \frac{(i+1) h}{m}
$$

Note that $U_{m} \in(C[0, h])^{n}$, for all $m \in \mathbb{N}$. Now,

$$
\left\|U_{m}\right\|_{\infty}=\sup _{t \in[0, h]}\left|U_{m}(t)\right|=\sup _{0 \leq i \leq m}\left|\mathbf{u}_{i}\right| .
$$

The last equality is clear by the piecewise linear construction of U_{m}.

Note that, for each $m \in \mathbb{N}$, we have $m+1$ distinct equi-distant points $i h / m$ of $[0, h]$ and m distinct vectors \mathbf{u}_{i}, for $0 \leq i \leq m$. We shall now define a continuous function $U_{m}:[0, h] \rightarrow \mathbb{R}^{n}$ such that $U_{m}(i h / m)=\mathbf{u}_{i}$ for $0 \leq i \leq m$. This is done by piecewise joining the line $\left(i h / m, \mathbf{u}_{i}\right)$ and $\left((i+1) h / m, \mathbf{u}_{i+1}\right)$. Hence, for each $t \in[0, h]$ and all $0 \leq i \leq m-1$,

$$
U_{m}(t):=\mathbf{u}_{i}+\frac{m}{h}\left(t-\frac{i h}{m}\right)\left(\mathbf{u}_{i+1}-\mathbf{u}_{i}\right) \text { when } \frac{i h}{m} \leq t \leq \frac{(i+1) h}{m}
$$

Note that $U_{m} \in(C[0, h])^{n}$, for all $m \in \mathbb{N}$. Now,

$$
\left\|U_{m}\right\|_{\infty}=\sup _{t \in[0, h]}\left|U_{m}(t)\right|=\sup _{0 \leq i \leq m}\left|\mathbf{u}_{i}\right| .
$$

The last equality is clear by the piecewise linear construction of U_{m}. Also, $\left|\mathbf{u}_{i}\right| \leq\left|\mathbf{u}_{0}\right|+\left|\mathbf{u}_{i}-\mathbf{u}_{0}\right| \leq\left|\mathbf{u}_{0}\right|+r$.

Note that, for each $m \in \mathbb{N}$, we have $m+1$ distinct equi-distant points $i h / m$ of $[0, h]$ and m distinct vectors \mathbf{u}_{i}, for $0 \leq i \leq m$. We shall now define a continuous function $U_{m}:[0, h] \rightarrow \mathbb{R}^{n}$ such that $U_{m}(i h / m)=\mathbf{u}_{i}$ for $0 \leq i \leq m$. This is done by piecewise joining the line $\left(i h / m, \mathbf{u}_{i}\right)$ and $\left((i+1) h / m, \mathbf{u}_{i+1}\right)$. Hence, for each $t \in[0, h]$ and all $0 \leq i \leq m-1$,

$$
U_{m}(t):=\mathbf{u}_{i}+\frac{m}{h}\left(t-\frac{i h}{m}\right)\left(\mathbf{u}_{i+1}-\mathbf{u}_{i}\right) \text { when } \frac{i h}{m} \leq t \leq \frac{(i+1) h}{m}
$$

Note that $U_{m} \in(C[0, h])^{n}$, for all $m \in \mathbb{N}$. Now,

$$
\left\|U_{m}\right\|_{\infty}=\sup _{t \in[0, h]}\left|U_{m}(t)\right|=\sup _{0 \leq i \leq m}\left|\mathbf{u}_{i}\right| .
$$

The last equality is clear by the piecewise linear construction of U_{m}. Also, $\left|\mathbf{u}_{i}\right| \leq\left|\mathbf{u}_{0}\right|+\left|\mathbf{u}_{i}-\mathbf{u}_{0}\right| \leq\left|\mathbf{u}_{0}\right|+r$. Thus, the sequence is uniformly bounded in $(C[0, h])^{n}$.

The sequence $\left\{U_{m}\right\}$ is also equicontinuous because, for each $0 \leq i \leq m-1$ and $i h / m \leq t \leq(i+1) h / m$,

$$
\left|U_{m}(t)-U_{m}(i h / m)\right|=\left|U_{m}-\mathbf{u}_{i}\right| \leq(t-i h / m)\left|\mathbf{f}\left(i h / m, \mathbf{u}_{i}\right)\right| \leq(t-i h / m) M
$$

implies, for all $s, t \in[0, h]$,

$$
\left|U_{m}(t)-U_{m}(s)\right| \leq|t-s| M
$$

The sequence $\left\{U_{m}\right\}$ is also equicontinuous because, for each $0 \leq i \leq m-1$ and $i h / m \leq t \leq(i+1) h / m$,

$$
\left|U_{m}(t)-U_{m}(i h / m)\right|=\left|U_{m}-\mathbf{u}_{i}\right| \leq(t-i h / m)\left|\mathbf{f}\left(i h / m, \mathbf{u}_{i}\right)\right| \leq(t-i h / m) M
$$

implies, for all $s, t \in[0, h]$,

$$
\left|U_{m}(t)-U_{m}(s)\right| \leq|t-s| M .
$$

Therefore, by Ascoli-Arzela result, the sequence is compact and admits a convergent subsequence $\left\{U_{k}\right\}$ uniformly converging to $\mathbf{u} \in(C[0, h])^{n}$.

The sequence $\left\{U_{m}\right\}$ is also equicontinuous because, for each $0 \leq i \leq m-1$ and $i h / m \leq t \leq(i+1) h / m$,

$$
\left|U_{m}(t)-U_{m}(i h / m)\right|=\left|U_{m}-\mathbf{u}_{i}\right| \leq(t-i h / m)\left|\mathbf{f}\left(i h / m, \mathbf{u}_{i}\right)\right| \leq(t-i h / m) M
$$

implies, for all $s, t \in[0, h]$,

$$
\left|U_{m}(t)-U_{m}(s)\right| \leq|t-s| M .
$$

Therefore, by Ascoli-Arzela result, the sequence is compact and admits a convergent subsequence $\left\{U_{k}\right\}$ uniformly converging to $\mathbf{u} \in(C[0, h])^{n}$. We will show that the \mathbf{u} obtained is a fixed point of T.

The sequence $\left\{U_{m}\right\}$ is also equicontinuous because, for each $0 \leq i \leq m-1$ and $i h / m \leq t \leq(i+1) h / m$,

$$
\left|U_{m}(t)-U_{m}(i h / m)\right|=\left|U_{m}-\mathbf{u}_{i}\right| \leq(t-i h / m)\left|\mathbf{f}\left(i h / m, \mathbf{u}_{i}\right)\right| \leq(t-i h / m) M
$$

implies, for all $s, t \in[0, h]$,

$$
\left|U_{m}(t)-U_{m}(s)\right| \leq|t-s| M .
$$

Therefore, by Ascoli-Arzela result, the sequence is compact and admits a convergent subsequence $\left\{U_{k}\right\}$ uniformly converging to $\mathbf{u} \in(C[0, h])^{n}$. We will show that the \mathbf{u} obtained is a fixed point of T. Observe that

$$
U_{m}(t):=\mathbf{u}_{0}+\int_{0}^{t} U_{m}^{\prime}(s) d s
$$

because U_{m} is continuous.

The sequence $\left\{U_{m}\right\}$ is also equicontinuous because, for each $0 \leq i \leq m-1$ and $i h / m \leq t \leq(i+1) h / m$,

$$
\left|U_{m}(t)-U_{m}(i h / m)\right|=\left|U_{m}-\mathbf{u}_{i}\right| \leq(t-i h / m)\left|\mathbf{f}\left(i h / m, \mathbf{u}_{i}\right)\right| \leq(t-i h / m) M
$$

implies, for all $s, t \in[0, h]$,

$$
\left|U_{m}(t)-U_{m}(s)\right| \leq|t-s| M .
$$

Therefore, by Ascoli-Arzela result, the sequence is compact and admits a convergent subsequence $\left\{U_{k}\right\}$ uniformly converging to $\mathbf{u} \in(C[0, h])^{n}$. We will show that the \mathbf{u} obtained is a fixed point of T. Observe that

$$
U_{m}(t):=\mathbf{u}_{0}+\int_{0}^{t} U_{m}^{\prime}(s) d s
$$

because U_{m} is continuous. Because U_{m}, by definition, piecewise linear U_{m}^{\prime} must be piecewise constant.

Using the recursive relation of u_{i}, we get

$$
\mathbf{u}_{i+1}=\mathbf{u}_{0}+\frac{h}{m}\left(\sum_{j=0}^{i} \mathbf{f}\left(j h / m, \mathbf{u}_{j}\right)\right)=\mathbf{u}_{0}+\int_{0}^{i h / m} f_{m}(s) d s
$$

where $f_{m}(s):=\mathbf{f}\left(i h / m, \mathbf{u}_{i}\right)$, for $i h / m \leq s \leq(i+1) h / m$ and $0 \leq i \leq n-1$, is piecewise constant.

Using the recursive relation of u_{i}, we get

$$
\mathbf{u}_{i+1}=\mathbf{u}_{0}+\frac{h}{m}\left(\sum_{j=0}^{i} \mathbf{f}\left(j h / m, \mathbf{u}_{j}\right)\right)=\mathbf{u}_{0}+\int_{0}^{i h / m} f_{m}(s) d s
$$

where $f_{m}(s):=\mathbf{f}\left(i h / m, \mathbf{u}_{i}\right)$, for $i h / m \leq s \leq(i+1) h / m$ and $0 \leq i \leq n-1$, is piecewise constant. Thus, for $0 \leq t \leq h$,

$$
U_{m}(t)=\mathbf{u}_{0}+\int_{0}^{t} f_{m}(s) d s
$$

Using the recursive relation of u_{i}, we get

$$
\mathbf{u}_{i+1}=\mathbf{u}_{0}+\frac{h}{m}\left(\sum_{j=0}^{i} \mathbf{f}\left(j h / m, \mathbf{u}_{j}\right)\right)=\mathbf{u}_{0}+\int_{0}^{i h / m} f_{m}(s) d s
$$

where $f_{m}(s):=\mathbf{f}\left(i h / m, \mathbf{u}_{i}\right)$, for $i h / m \leq s \leq(i+1) h / m$ and $0 \leq i \leq n-1$, is piecewise constant. Thus, for $0 \leq t \leq h$,

$$
U_{m}(t)=\mathbf{u}_{0}+\int_{0}^{t} f_{m}(s) d s
$$

Consider

$$
\lim _{m \rightarrow \infty}\left\|T \mathbf{u}-U_{m}\right\|=\lim _{m} \sup _{t} \int_{0}^{t}\left|\mathbf{f}(s, u(s))-f_{m}(s)\right| d s
$$

Using the recursive relation of u_{i}, we get

$$
\mathbf{u}_{i+1}=\mathbf{u}_{0}+\frac{h}{m}\left(\sum_{j=0}^{i} \mathbf{f}\left(j h / m, \mathbf{u}_{j}\right)\right)=\mathbf{u}_{0}+\int_{0}^{i h / m} f_{m}(s) d s
$$

where $f_{m}(s):=\mathbf{f}\left(i h / m, \mathbf{u}_{i}\right)$, for $i h / m \leq s \leq(i+1) h / m$ and $0 \leq i \leq n-1$, is piecewise constant. Thus, for $0 \leq t \leq h$,

$$
U_{m}(t)=\mathbf{u}_{0}+\int_{0}^{t} f_{m}(s) d s
$$

Consider

$$
\lim _{m \rightarrow \infty}\left\|T \mathbf{u}-U_{m}\right\|=\lim _{m} \sup _{t} \int_{0}^{t}\left|\mathbf{f}(s, u(s))-f_{m}(s)\right| d s
$$

Note that \mathbf{f} is uniformly continuous in both variables because it is a continuous function on a compact set and the uniform convergence of U_{m} to \mathbf{u} implies that the above limit in RHS is zero. Thus $T \mathbf{u}=\mathbf{u}$.

Two Point Boundary Value Problem

Let $f \in C([0,1] \times \mathbb{R})$. For any two given constants $u_{0}, u_{1} \in \mathbb{R}$, consider the second order nonlinear boundary value problem

$$
\left\{\begin{align*}
-u^{\prime \prime}(x) & =f(x, u(x)) \quad x \in(0,1) \tag{10.3}\\
u(0) & =u_{0} \\
u(1) & =u_{1}
\end{align*}\right.
$$

Two Point Boundary Value Problem

Let $f \in C([0,1] \times \mathbb{R})$. For any two given constants $u_{0}, u_{1} \in \mathbb{R}$, consider the second order nonlinear boundary value problem

$$
\left\{\begin{align*}
-u^{\prime \prime}(x) & =f(x, u(x)) \quad x \in(0,1) \tag{10.3}\\
u(0) & =u_{0} \\
u(1) & =u_{1}
\end{align*}\right.
$$

Lemma

If $u \in C[0,1] \cap C^{2}(0,1)$ solves (10.3) then $u \in C^{2}[0,1]$.

Two Point Boundary Value Problem

Let $f \in C([0,1] \times \mathbb{R})$. For any two given constants $u_{0}, u_{1} \in \mathbb{R}$, consider the second order nonlinear boundary value problem

$$
\left\{\begin{align*}
-u^{\prime \prime}(x) & =f(x, u(x)) \quad x \in(0,1) \tag{10.3}\\
u(0) & =u_{0} \\
u(1) & =u_{1}
\end{align*}\right.
$$

Lemma

If $u \in C[0,1] \cap C^{2}(0,1)$ solves (10.3) then $u \in C^{2}[0,1]$.
Proof: For any $x \in(0,1)$ and fixed $x_{0} \in(0,1)$, integrate both sides of (10.3) in the range x_{0} and x, then

$$
-\int_{x_{0}}^{x} u^{\prime \prime}(t) d t=\int_{x_{0}}^{x} f(t, u(t)) d t
$$

Proof Continued

- or, equivalently,

$$
u^{\prime}(x)=u^{\prime}\left(x_{0}\right)-\int_{x_{0}}^{x} f(t, u(t)) d t .
$$

Proof Continued

- or, equivalently,

$$
u^{\prime}(x)=u^{\prime}\left(x_{0}\right)-\int_{x_{0}}^{x} f(t, u(t)) d t .
$$

- Since $f \in C([0,1] \times \mathbb{R})$ and $u \in C[0,1]$, by above equality, $u^{\prime} \in C(0,1)$ can be continuously extended to $[0,1]$.

Proof Continued

- or, equivalently,

$$
u^{\prime}(x)=u^{\prime}\left(x_{0}\right)-\int_{x_{0}}^{x} f(t, u(t)) d t
$$

- Since $f \in C([0,1] \times \mathbb{R})$ and $u \in C[0,1]$, by above equality, $u^{\prime} \in C(0,1)$ can be continuously extended to $[0,1]$.
- By Mean value theorem, for each $0<x<1$, there exists a $c \in(0, x)$ such that

$$
\frac{u(x)-u(0)}{x}=u^{\prime}(c) .
$$

Proof Continued

- or, equivalently,

$$
u^{\prime}(x)=u^{\prime}\left(x_{0}\right)-\int_{x_{0}}^{x} f(t, u(t)) d t
$$

- Since $f \in C([0,1] \times \mathbb{R})$ and $u \in C[0,1]$, by above equality, $u^{\prime} \in C(0,1)$ can be continuously extended to $[0,1]$.
- By Mean value theorem, for each $0<x<1$, there exists a $c \in(0, x)$ such that

$$
\frac{u(x)-u(0)}{x}=u^{\prime}(c)
$$

- Thus, u is differentiable at 0 and, by continuity at boundary, $u^{\prime}(0)=\lim _{c \rightarrow 0} u^{\prime}(c)$.

Proof Continued

- or, equivalently,

$$
u^{\prime}(x)=u^{\prime}\left(x_{0}\right)-\int_{x_{0}}^{x} f(t, u(t)) d t
$$

- Since $f \in C([0,1] \times \mathbb{R})$ and $u \in C[0,1]$, by above equality, $u^{\prime} \in C(0,1)$ can be continuously extended to $[0,1]$.
- By Mean value theorem, for each $0<x<1$, there exists a $c \in(0, x)$ such that

$$
\frac{u(x)-u(0)}{x}=u^{\prime}(c)
$$

- Thus, u is differentiable at 0 and, by continuity at boundary, $u^{\prime}(0)=\lim _{c \rightarrow 0} u^{\prime}(c)$.
- Arguing similarly, one can show that u is differentiable at 1 and $u^{\prime}(1)=\lim _{c \rightarrow 1} u^{\prime}(c)$. Hence $u \in C^{1}[0,1]$.

Proof Continued

- or, equivalently,

$$
u^{\prime}(x)=u^{\prime}\left(x_{0}\right)-\int_{x_{0}}^{x} f(t, u(t)) d t
$$

- Since $f \in C([0,1] \times \mathbb{R})$ and $u \in C[0,1]$, by above equality, $u^{\prime} \in C(0,1)$ can be continuously extended to $[0,1]$.
- By Mean value theorem, for each $0<x<1$, there exists a $c \in(0, x)$ such that

$$
\frac{u(x)-u(0)}{x}=u^{\prime}(c)
$$

- Thus, u is differentiable at 0 and, by continuity at boundary, $u^{\prime}(0)=\lim _{c \rightarrow 0} u^{\prime}(c)$.
- Arguing similarly, one can show that u is differentiable at 1 and $u^{\prime}(1)=\lim _{c \rightarrow 1} u^{\prime}(c)$. Hence $u \in C^{1}[0,1]$.
- It follows from the ODE that $u \in C^{2}[0,1]$ because the RHS f and u can be continuously extended to boundary.

Lemma

$u \in C^{2}[0,1]$ is a solution of (10.3) iff $u \in C[0,1]$ solves the integral equation

$$
\begin{equation*}
u(x)=u_{0}(1-x)+u_{1} x+\int_{0}^{1} G(x, s) f(s, u(s)) d s \quad x \in[0,1] \tag{10.4}
\end{equation*}
$$

where the Green's function $G \in C([0,1] \times[0,1])$ is defined as

$$
G(x, s):= \begin{cases}s(1-x) & 0 \leq s \leq x \leq 1 \\ x(1-s) & 0 \leq x<s \leq 1\end{cases}
$$

Lemma

$u \in C^{2}[0,1]$ is a solution of (10.3) iff $u \in C[0,1]$ solves the integral equation

$$
\begin{equation*}
u(x)=u_{0}(1-x)+u_{1} x+\int_{0}^{1} G(x, s) f(s, u(s)) d s \quad x \in[0,1] \tag{10.4}
\end{equation*}
$$

where the Green's function $G \in C([0,1] \times[0,1])$ is defined as

$$
G(x, s):= \begin{cases}s(1-x) & 0 \leq s \leq x \leq 1 \\ x(1-s) & 0 \leq x<s \leq 1\end{cases}
$$

Proof: If $u \in C^{2}[0,1]$ is a solution of (10.3) then, for any fixed $x \in[0,1]$,

$$
\begin{aligned}
\int_{0}^{1} G(x, s) f(s, u(s)) d s & =-(1-x) \int_{0}^{x} s u^{\prime \prime}(s) d s-x \int_{x}^{1}(1-s) u^{\prime \prime}(s) d s \\
& =u(x)-u_{0}(1-x)-u_{1} x
\end{aligned}
$$

Proof Continued...

- Conversely, let $u \in C[0,1]$ and solve (10.4).

Proof Continued...

- Conversely, let $u \in C[0,1]$ and solve (10.4).
- From (10.4), we easily see that $u(0)=u_{0}$ and $u(1)=u_{1}$.

Proof Continued...

- Conversely, let $u \in C[0,1]$ and solve (10.4).
- From (10.4), we easily see that $u(0)=u_{0}$ and $u(1)=u_{1}$.
- Since the RHS of (10.4) is differentiable we get, for $x \in[0,1]$,

$$
u^{\prime}(x)=-u_{0}+u_{1}-\int_{0}^{x} s f(s, u(s)) d s+\int_{x}^{1}(1-s) f(s, u(s)) d s
$$

Proof Continued...

- Conversely, let $u \in C[0,1]$ and solve (10.4).
- From (10.4), we easily see that $u(0)=u_{0}$ and $u(1)=u_{1}$.
- Since the RHS of (10.4) is differentiable we get, for $x \in[0,1]$,

$$
u^{\prime}(x)=-u_{0}+u_{1}-\int_{0}^{x} s f(s, u(s)) d s+\int_{x}^{1}(1-s) f(s, u(s)) d s
$$

- and

$$
-u^{\prime \prime}(x)=x f(x, u(x))+(1-x) f(x, u(x))=f(x, u(x))
$$

Thus, u is a solution to (10.3).

Existence of Solution

Theorem
Let $f \in C([0,1] \times \mathbb{R})$ admit a $0 \leq \alpha<8$ such that, for all $x \in[0,1]$,

$$
|f(x, r)-f(x, s)| \leq \alpha|r-s| .
$$

For any two given constants $u_{0}, u_{1} \in \mathbb{R}$ there is a unique solution $u \in C[0,1] \cap C^{2}(0,1)$ of (10.3).

Existence of Solution

Theorem
Let $f \in C([0,1] \times \mathbb{R})$ admit a $0 \leq \alpha<8$ such that, for all $x \in[0,1]$,

$$
|f(x, r)-f(x, s)| \leq \alpha|r-s| .
$$

For any two given constants $u_{0}, u_{1} \in \mathbb{R}$ there is a unique solution $u \in C[0,1] \cap C^{2}(0,1)$ of (10.3).

Proof: Note that $C[0,1]$ is a Banach space.

Existence of Solution

Theorem

Let $f \in C([0,1] \times \mathbb{R})$ admit a $0 \leq \alpha<8$ such that, for all $x \in[0,1]$,

$$
|f(x, r)-f(x, s)| \leq \alpha|r-s| .
$$

For any two given constants $u_{0}, u_{1} \in \mathbb{R}$ there is a unique solution $u \in C[0,1] \cap C^{2}(0,1)$ of (10.3).

Proof: Note that $C[0,1]$ is a Banach space. We define $T: C[0,1] \rightarrow C[0,1]$ as the RHS of (10.4).

Existence of Solution

Theorem
Let $f \in C([0,1] \times \mathbb{R})$ admit a $0 \leq \alpha<8$ such that, for all $x \in[0,1]$,

$$
|f(x, r)-f(x, s)| \leq \alpha|r-s| .
$$

For any two given constants $u_{0}, u_{1} \in \mathbb{R}$ there is a unique solution $u \in C[0,1] \cap C^{2}(0,1)$ of (10.3).

Proof: Note that $C[0,1]$ is a Banach space. We define $T: C[0,1] \rightarrow C[0,1]$ as the RHS of (10.4). We claim that T is a contraction and, hence, admits a unique fixed point which is the required solution.

Existence of Solution

Theorem

Let $f \in C([0,1] \times \mathbb{R})$ admit a $0 \leq \alpha<8$ such that, for all $x \in[0,1]$,

$$
|f(x, r)-f(x, s)| \leq \alpha|r-s| .
$$

For any two given constants $u_{0}, u_{1} \in \mathbb{R}$ there is a unique solution $u \in C[0,1] \cap C^{2}(0,1)$ of (10.3).

Proof: Note that $C[0,1]$ is a Banach space. We define $T: C[0,1] \rightarrow C[0,1]$ as the RHS of (10.4). We claim that T is a contraction and, hence, admits a unique fixed point which is the required solution. Note that, by definition, $G(x, s) \geq 0$ for all $x, s \in[0,1]$.

Proof Continued...

Consider

$$
|(T v-T w)(x)| \leq \int_{0}^{1} G(x, s)|f(s, v(s))-f(s, w(s))| d s
$$

Proof Continued...

Consider

$$
\begin{aligned}
|(T v-T w)(x)| & \leq \int_{0}^{1} G(x, s)|f(s, v(s))-f(s, w(s))| d s \\
& \leq \sup _{s \in[0,1]}|f(s, v(s))-f(s, w(s))|\left(\int_{0}^{1} G(x, s) d s\right)
\end{aligned}
$$

Proof Continued...

Consider

$$
\begin{aligned}
|(T v-T w)(x)| & \leq \int_{0}^{1} G(x, s)|f(s, v(s))-f(s, w(s))| d s \\
& \leq \sup _{s \in[0,1]}|f(s, v(s))-f(s, w(s))|\left(\int_{0}^{1} G(x, s) d s\right) \\
& \leq \alpha \sup _{s \in[0,1]}|v(s)-w(s)|\left(\frac{x-x^{2}}{2}\right)
\end{aligned}
$$

Proof Continued...

Consider

$$
\begin{aligned}
|(T v-T w)(x)| & \leq \int_{0}^{1} G(x, s)|f(s, v(s))-f(s, w(s))| d s \\
& \leq \sup _{s \in[0,1]}|f(s, v(s))-f(s, w(s))|\left(\int_{0}^{1} G(x, s) d s\right) \\
& \leq \alpha \sup _{s \in[0,1]}|v(s)-w(s)|\left(\frac{x-x^{2}}{2}\right) \\
& \leq \frac{\alpha}{8}\|v-w\|_{\infty}
\end{aligned}
$$

Note that $1 / 4$ is the maximum of $x-x^{2}$.

Proof Continued...

Consider

$$
\begin{aligned}
|(T v-T w)(x)| & \leq \int_{0}^{1} G(x, s)|f(s, v(s))-f(s, w(s))| d s \\
& \leq \sup _{s \in[0,1]}|f(s, v(s))-f(s, w(s))|\left(\int_{0}^{1} G(x, s) d s\right) \\
& \leq \alpha \sup _{s \in[0,1]}|v(s)-w(s)|\left(\frac{x-x^{2}}{2}\right) \\
& \leq \frac{\alpha}{8}\|v-w\|_{\infty}
\end{aligned}
$$

Note that $1 / 4$ is the maximum of $x-x^{2}$. Since $\alpha<8, T$ is a contraction.

Proof Continued...

Consider

$$
\begin{aligned}
|(T v-T w)(x)| & \leq \int_{0}^{1} G(x, s)|f(s, v(s))-f(s, w(s))| d s \\
& \leq \sup _{s \in[0,1]}|f(s, v(s))-f(s, w(s))|\left(\int_{0}^{1} G(x, s) d s\right) \\
& \leq \alpha \sup _{s \in[0,1]}|v(s)-w(s)|\left(\frac{x-x^{2}}{2}\right) \\
& \leq \frac{\alpha}{8}\|v-w\|_{\infty}
\end{aligned}
$$

Note that $1 / 4$ is the maximum of $x-x^{2}$. Since $\alpha<8, T$ is a contraction. Thus, by Lemma 17, the fixed point u of T is in $C^{2}[0,1]$ and solves (10.3).

Open Map

Definition

Let X and Y be topological spaces. We say a map $T: X \rightarrow Y$ is an open map if the image of every open subset of X under T is an open subset of Y.

Open Map

Definition

Let X and Y be topological spaces. We say a map $T: X \rightarrow Y$ is an open map if the image of every open subset of X under T is an open subset of Y.

Lemma

Let X be a Banach space and Y be a normed space. Let $T \in \mathcal{B}(X, Y)$ be such that $\bar{T}\left(B_{r}^{X}(0)\right) \supset B_{s}^{Y}(0)$, then $T\left(B_{r}^{X}(0)\right) \supset B_{s}^{Y}(0)$.

Open Map

Definition

Let X and Y be topological spaces. We say a map $T: X \rightarrow Y$ is an open map if the image of every open subset of X under T is an open subset of Y.

Lemma

Let X be a Banach space and Y be a normed space. Let $T \in \mathcal{B}(X, Y)$ be such that $\overline{T\left(B_{r}^{X}(0)\right)} \supset B_{s}^{Y}(0)$, then $T\left(B_{r}^{X}(0)\right) \supset B_{s}^{Y}(0)$.

Proof: Note that it is enough to prove the result for $r=s=1$.

Open Map

Definition

Let X and Y be topological spaces. We say a map $T: X \rightarrow Y$ is an open map if the image of every open subset of X under T is an open subset of Y.

Lemma

Let X be a Banach space and Y be a normed space. Let $T \in \mathcal{B}(X, Y)$ be such that $\bar{T}\left(B_{r}^{X}(0)\right) \supset B_{s}^{Y}(0)$, then $T\left(B_{r}^{X}(0)\right) \supset B_{s}^{Y}(0)$.

Proof: Note that it is enough to prove the result for $r=s=1$. Let $y \in B_{1}^{Y}(0)$. We claim that $y \in T\left(B_{1}^{X}(0)\right)$.

Open Map

Definition

Let X and Y be topological spaces. We say a map $T: X \rightarrow Y$ is an open map if the image of every open subset of X under T is an open subset of Y.

Lemma

Let X be a Banach space and Y be a normed space. Let $T \in \mathcal{B}(X, Y)$ be such that $\bar{T}\left(B_{r}^{X}(0)\right) \supset B_{s}^{Y}(0)$, then $T\left(B_{r}^{X}(0)\right) \supset B_{s}^{Y}(0)$.

Proof: Note that it is enough to prove the result for $r=s=1$. Let $y \in B_{1}^{Y}(0)$. We claim that $y \in T\left(B_{1}^{X}(0)\right)$. Choose $\varepsilon>0$ such that $\|y\|<1-\varepsilon<1$ and set $z=(1-\varepsilon)^{-1} y$.

Open Map

Definition

Let X and Y be topological spaces. We say a map $T: X \rightarrow Y$ is an open map if the image of every open subset of X under T is an open subset of Y.

Lemma

Let X be a Banach space and Y be a normed space. Let $T \in \mathcal{B}(X, Y)$ be such that $\overline{T\left(B_{r}^{X}(0)\right)} \supset B_{s}^{Y}(0)$, then $T\left(B_{r}^{X}(0)\right) \supset B_{s}^{Y}(0)$.

Proof: Note that it is enough to prove the result for $r=s=1$. Let $y \in B_{1}^{Y}(0)$. We claim that $y \in T\left(B_{1}^{X}(0)\right)$. Choose $\varepsilon>0$ such that $\|y\|<1-\varepsilon<1$ and set $z=(1-\varepsilon)^{-1} y$. Set

$$
E:=T\left(B_{1}^{X}(0)\right) \cap B_{1}^{Y}(0)
$$

which is non-empty because $0 \in E$.

Proof Continued...

Moreover $\bar{E}=\bar{B}_{1}^{Y}(0)$ using the hypothesis.

Proof Continued...

Moreover $\bar{E}=\bar{B}_{1}^{Y}(0)$ using the hypothesis. Set $z_{0}=0$.

Proof Continued...

Moreover $\bar{E}=\bar{B}_{1}^{Y}(0)$ using the hypothesis. Set $z_{0}=0$. Since $z \in B_{1}^{Y}(0)$ and E is dense in $B_{1}^{Y}(0)$, we can choose a $z_{1} \in E$ such that $\left\|z_{1}-z\right\|<\varepsilon$.

Proof Continued...

Moreover $\bar{E}=\bar{B}_{1}^{Y}(0)$ using the hypothesis. Set $z_{0}=0$. Since $z \in B_{1}^{Y}(0)$ and E is dense in $B_{1}^{Y}(0)$, we can choose a $z_{1} \in E$ such that $\left\|z_{1}-z\right\|<\varepsilon$. Note that $z \in B_{\varepsilon}^{Y}(0)+z_{1}$ and $\varepsilon E+z_{1}$ is dense in $B_{\varepsilon}^{Y}(0)+z_{1}$.

Proof Continued...

Moreover $\bar{E}=\bar{B}_{1}^{Y}(0)$ using the hypothesis. Set $z_{0}=0$. Since $z \in B_{1}^{Y}(0)$ and E is dense in $B_{1}^{Y}(0)$, we can choose a $z_{1} \in E$ such that $\left\|z_{1}-z\right\|<\varepsilon$. Note that $z \in B_{\varepsilon}^{Y}(0)+z_{1}$ and $\varepsilon E+z_{1}$ is dense in $B_{\varepsilon}^{Y}(0)+z_{1}$. Thus, we choose a $z_{2} \in Y$ such that $z_{2}-z_{1} \in \varepsilon E$ and $\left\|z_{2}-z\right\|<\varepsilon^{2}$.

Proof Continued...

Moreover $\bar{E}=\bar{B}_{1}^{Y}(0)$ using the hypothesis. Set $z_{0}=0$. Since $z \in B_{1}^{Y}(0)$ and E is dense in $B_{1}^{Y}(0)$, we can choose a $z_{1} \in E$ such that $\left\|z_{1}-z\right\|<\varepsilon$. Note that $z \in B_{\varepsilon}^{Y}(0)+z_{1}$ and $\varepsilon E+z_{1}$ is dense in $B_{\varepsilon}^{Y}(0)+z_{1}$. Thus, we choose a $z_{2} \in Y$ such that $z_{2}-z_{1} \in \varepsilon E$ and $\left\|z_{2}-z\right\|<\varepsilon^{2}$. Inductively, we can choose a sequence $\left\{z_{n}\right\} \subset Y$ such that $z_{n}-z_{n-1} \in \varepsilon^{n-1} E$ and $\left\|z_{n}-z\right\|<\varepsilon^{n}$ because $z \in B_{\varepsilon^{n-1}}^{Y}(0)+z_{n-1}$ and $\varepsilon^{n-1} E$ is dense in $B_{\varepsilon^{n-1}}^{Y}(0)$.

Proof Continued...

Moreover $\bar{E}=\bar{B}_{1}^{Y}(0)$ using the hypothesis. Set $z_{0}=0$. Since $z \in B_{1}^{Y}(0)$ and E is dense in $B_{1}^{Y}(0)$, we can choose a $z_{1} \in E$ such that $\left\|z_{1}-z\right\|<\varepsilon$. Note that $z \in B_{\varepsilon}^{Y}(0)+z_{1}$ and $\varepsilon E+z_{1}$ is dense in $B_{\varepsilon}^{Y}(0)+z_{1}$. Thus, we choose a $z_{2} \in Y$ such that $z_{2}-z_{1} \in \varepsilon E$ and $\left\|z_{2}-z\right\|<\varepsilon^{2}$. Inductively, we can choose a sequence $\left\{z_{n}\right\} \subset Y$ such that $z_{n}-z_{n-1} \in \varepsilon^{n-1} E$ and $\left\|z_{n}-z\right\|<\varepsilon^{n}$ because $z \in B_{\varepsilon^{n-1}}^{Y}(0)+z_{n-1}$ and $\varepsilon^{n-1} E$ is dense in $B_{\varepsilon^{n-1}}^{Y}(0)$. By definition of E, there are sequence $\left\{x_{n}\right\} \subset B_{1}^{X}(0)$ such that

$$
T x_{n}=\frac{1}{\varepsilon^{n-1}}\left(z_{n}-z_{n-1}\right)
$$

Proof Continued...

Moreover $\bar{E}=\bar{B}_{1}^{Y}(0)$ using the hypothesis. Set $z_{0}=0$. Since $z \in B_{1}^{Y}(0)$ and E is dense in $B_{1}^{Y}(0)$, we can choose a $z_{1} \in E$ such that $\left\|z_{1}-z\right\|<\varepsilon$. Note that $z \in B_{\varepsilon}^{Y}(0)+z_{1}$ and $\varepsilon E+z_{1}$ is dense in $B_{\varepsilon}^{Y}(0)+z_{1}$. Thus, we choose a $z_{2} \in Y$ such that $z_{2}-z_{1} \in \varepsilon E$ and $\left\|z_{2}-z\right\|<\varepsilon^{2}$. Inductively, we can choose a sequence $\left\{z_{n}\right\} \subset Y$ such that $z_{n}-z_{n-1} \in \varepsilon^{n-1} E$ and $\left\|z_{n}-z\right\|<\varepsilon^{n}$ because $z \in B_{\varepsilon^{n-1}}^{Y}(0)+z_{n-1}$ and $\varepsilon^{n-1} E$ is dense in $B_{\varepsilon^{n-1}}^{Y}(0)$. By definition of E, there are sequence $\left\{x_{n}\right\} \subset B_{1}^{X}(0)$ such that

$$
T x_{n}=\frac{1}{\varepsilon^{n-1}}\left(z_{n}-z_{n-1}\right)
$$

Now, set $x=\sum_{n=1}^{\infty} \varepsilon^{n-1} x_{n}$ and, hence,

$$
\|x\| \leq \sum_{n=1}^{\infty} \varepsilon^{n-1}\left\|x_{n}\right\|<\sum_{n=1}^{\infty} \varepsilon^{n-1}=(1-\varepsilon)^{-1}
$$

Proof Continued...

Moreover $\bar{E}=\bar{B}_{1}^{Y}(0)$ using the hypothesis. Set $z_{0}=0$. Since $z \in B_{1}^{Y}(0)$ and E is dense in $B_{1}^{Y}(0)$, we can choose a $z_{1} \in E$ such that $\left\|z_{1}-z\right\|<\varepsilon$. Note that $z \in B_{\varepsilon}^{Y}(0)+z_{1}$ and $\varepsilon E+z_{1}$ is dense in $B_{\varepsilon}^{Y}(0)+z_{1}$. Thus, we choose a $z_{2} \in Y$ such that $z_{2}-z_{1} \in \varepsilon E$ and $\left\|z_{2}-z\right\|<\varepsilon^{2}$. Inductively, we can choose a sequence $\left\{z_{n}\right\} \subset Y$ such that $z_{n}-z_{n-1} \in \varepsilon^{n-1} E$ and $\left\|z_{n}-z\right\|<\varepsilon^{n}$ because $z \in B_{\varepsilon^{n-1}}^{Y}(0)+z_{n-1}$ and $\varepsilon^{n-1} E$ is dense in $B_{\varepsilon^{n-1}}^{Y}(0)$. By definition of E, there are sequence $\left\{x_{n}\right\} \subset B_{1}^{X}(0)$ such that

$$
T x_{n}=\frac{1}{\varepsilon^{n-1}}\left(z_{n}-z_{n-1}\right)
$$

Now, set $x=\sum_{n=1}^{\infty} \varepsilon^{n-1} x_{n}$ and, hence,

$$
\|x\| \leq \sum_{n=1}^{\infty} \varepsilon^{n-1}\left\|x_{n}\right\|<\sum_{n=1}^{\infty} \varepsilon^{n-1}=(1-\varepsilon)^{-1}
$$

Further, $T x=\sum_{n=1}^{\infty} \varepsilon^{n-1} T x_{n}=\sum_{n}\left(z_{n}-z_{n-1}\right)=z$.

Proof Continued...

Moreover $\bar{E}=\bar{B}_{1}^{Y}(0)$ using the hypothesis. Set $z_{0}=0$. Since $z \in B_{1}^{Y}(0)$ and E is dense in $B_{1}^{Y}(0)$, we can choose a $z_{1} \in E$ such that $\left\|z_{1}-z\right\|<\varepsilon$. Note that $z \in B_{\varepsilon}^{Y}(0)+z_{1}$ and $\varepsilon E+z_{1}$ is dense in $B_{\varepsilon}^{Y}(0)+z_{1}$. Thus, we choose a $z_{2} \in Y$ such that $z_{2}-z_{1} \in \varepsilon E$ and $\left\|z_{2}-z\right\|<\varepsilon^{2}$. Inductively, we can choose a sequence $\left\{z_{n}\right\} \subset Y$ such that $z_{n}-z_{n-1} \in \varepsilon^{n-1} E$ and $\left\|z_{n}-z\right\|<\varepsilon^{n}$ because $z \in B_{\varepsilon^{n-1}}^{Y}(0)+z_{n-1}$ and $\varepsilon^{n-1} E$ is dense in $B_{\varepsilon^{n-1}}^{Y}(0)$. By definition of E, there are sequence $\left\{x_{n}\right\} \subset B_{1}^{X}(0)$ such that

$$
T x_{n}=\frac{1}{\varepsilon^{n-1}}\left(z_{n}-z_{n-1}\right)
$$

Now, set $x=\sum_{n=1}^{\infty} \varepsilon^{n-1} x_{n}$ and, hence,

$$
\|x\| \leq \sum_{n=1}^{\infty} \varepsilon^{n-1}\left\|x_{n}\right\|<\sum_{n=1}^{\infty} \varepsilon^{n-1}=(1-\varepsilon)^{-1}
$$

Further, $T x=\sum_{n=1}^{\infty} \varepsilon^{n-1} T x_{n}=\sum_{n}\left(z_{n}-z_{n-1}\right)=z$. Therefore, $z \in(1-\varepsilon)^{-1} T\left(B_{1}^{\bar{X}}(0)\right)$ and $y \in T\left(B_{1}^{X}(0)\right)$. Thus, $B_{1}^{Y}(0) \subset T\left(B_{1}^{X}(0)\right)$.

Theorem (Open Mapping)
Let X and Y be Banach spaces and let $T \in \mathcal{B}(X, Y)$ be a surjective map, i.e., $T(X)=Y$. Then T is an open map.

Theorem (Open Mapping)
Let X and Y be Banach spaces and let $T \in \mathcal{B}(X, Y)$ be a surjective map, i.e., $T(X)=Y$. Then T is an open map.

Proof.

Let $\Omega:=T\left(B_{1}^{X}(0)\right)$. We claim that Ω is open in Y.

Theorem (Open Mapping)
Let X and Y be Banach spaces and let $T \in \mathcal{B}(X, Y)$ be a surjective map, i.e., $T(X)=Y$. Then T is an open map.

Proof.

Let $\Omega:=T\left(B_{1}^{X}(0)\right)$. We claim that Ω is open in Y. Due to linearity of T, it is enough to show that Ω contains open ball around 0 .

Theorem (Open Mapping)
Let X and Y be Banach spaces and let $T \in \mathcal{B}(X, Y)$ be a surjective map, i.e., $T(X)=Y$. Then T is an open map.

Proof.

Let $\Omega:=T\left(B_{1}^{X}(0)\right)$. We claim that Ω is open in Y. Due to linearity of T, it is enough to show that Ω contains open ball around 0 . We first observe that Ω is convex and symmetric about 0 because $B_{1}^{X}(0)$ is convex and symmetric about 0 .

Theorem (Open Mapping)

Let X and Y be Banach spaces and let $T \in \mathcal{B}(X, Y)$ be a surjective map, i.e., $T(X)=Y$. Then T is an open map.

Proof.

Let $\Omega:=T\left(B_{1}^{X}(0)\right)$. We claim that Ω is open in Y. Due to linearity of T, it is enough to show that Ω contains open ball around 0 . We first observe that Ω is convex and symmetric about 0 because $B_{1}^{X}(0)$ is convex and symmetric about 0 . Note that $T\left(B_{n}^{X}(0)\right)=n \Omega$ and $\overline{n \Omega}=n \bar{\Omega}$.

Theorem (Open Mapping)

Let X and Y be Banach spaces and let $T \in \mathcal{B}(X, Y)$ be a surjective map, i.e., $T(X)=Y$. Then T is an open map.

Proof.

Let $\Omega:=T\left(B_{1}^{X}(0)\right)$. We claim that Ω is open in Y. Due to linearity of T, it is enough to show that Ω contains open ball around 0 . We first observe that Ω is convex and symmetric about 0 because $B_{1}^{X}(0)$ is convex and symmetric about 0 . Note that $T\left(B_{n}^{X}(0)\right)=n \Omega$ and $\overline{n \Omega}=n \bar{\Omega}$. Since T is surjective, for every $y \in Y$ there is a $x \in X$ such that $T x=y$.

Theorem (Open Mapping)

Let X and Y be Banach spaces and let $T \in \mathcal{B}(X, Y)$ be a surjective map, i.e., $T(X)=Y$. Then T is an open map.

Proof.

Let $\Omega:=T\left(B_{1}^{X}(0)\right)$. We claim that Ω is open in Y. Due to linearity of T, it is enough to show that Ω contains open ball around 0 . We first observe that Ω is convex and symmetric about 0 because $B_{1}^{X}(0)$ is convex and symmetric about 0 . Note that $T\left(B_{n}^{X}(0)\right)=n \Omega$ and $\overline{n \Omega}=n \bar{\Omega}$. Since T is surjective, for every $y \in Y$ there is a $x \in X$ such that $T x=y$. Since $x \in n B_{1}^{X}(0)$, for some n, we have $y \in n \Omega$.

Theorem (Open Mapping)

Let X and Y be Banach spaces and let $T \in \mathcal{B}(X, Y)$ be a surjective map, i.e., $T(X)=Y$. Then T is an open map.

Proof.

Let $\Omega:=T\left(B_{1}^{X}(0)\right)$. We claim that Ω is open in Y. Due to linearity of T, it is enough to show that Ω contains open ball around 0 . We first observe that Ω is convex and symmetric about 0 because $B_{1}^{X}(0)$ is convex and symmetric about 0 . Note that $T\left(B_{n}^{X}(0)\right)=n \Omega$ and $\overline{n \Omega}=n \bar{\Omega}$. Since T is surjective, for every $y \in Y$ there is a $x \in X$ such that $T x=y$. Since $x \in n B_{1}^{X}(0)$, for some n, we have $y \in n \Omega$. Thus, $Y=\cup_{n} n \bar{\Omega}$ and, by Baire's category theorem, there is a n such that $n \bar{\Omega}$ has non-empty interior. Hence $\bar{\Omega}$ has non-empty interior.

Theorem (Open Mapping)

Let X and Y be Banach spaces and let $T \in \mathcal{B}(X, Y)$ be a surjective map, i.e., $T(X)=Y$. Then T is an open map.

Proof.

Let $\Omega:=T\left(B_{1}^{X}(0)\right)$. We claim that Ω is open in Y. Due to linearity of T, it is enough to show that Ω contains open ball around 0 . We first observe that Ω is convex and symmetric about 0 because $B_{1}^{X}(0)$ is convex and symmetric about 0 . Note that $T\left(B_{n}^{X}(0)\right)=n \Omega$ and $\overline{n \Omega}=n \bar{\Omega}$. Since T is surjective, for every $y \in Y$ there is a $x \in X$ such that $T x=y$. Since $x \in n B_{1}^{X}(0)$, for some n, we have $y \in n \Omega$. Thus, $Y=\cup_{n} n \bar{\Omega}$ and, by Baire's category theorem, there is a n such that $n \bar{\Omega}$ has non-empty interior. Hence $\bar{\Omega}$ has non-empty interior. Thus, there is a point $y_{0} \in \bar{\Omega}$ and $r>0$ such that $B_{r}^{Y}\left(y_{0}\right) \subset \bar{\Omega}$.

Theorem (Open Mapping)

Let X and Y be Banach spaces and let $T \in \mathcal{B}(X, Y)$ be a surjective map, i.e., $T(X)=Y$. Then T is an open map.

Proof.

Let $\Omega:=T\left(B_{1}^{X}(0)\right)$. We claim that Ω is open in Y. Due to linearity of T, it is enough to show that Ω contains open ball around 0 . We first observe that Ω is convex and symmetric about 0 because $B_{1}^{X}(0)$ is convex and symmetric about 0 . Note that $T\left(B_{n}^{X}(0)\right)=n \Omega$ and $\overline{n \Omega}=n \bar{\Omega}$. Since T is surjective, for every $y \in Y$ there is a $x \in X$ such that $T x=y$. Since $x \in n B_{1}^{X}(0)$, for some n, we have $y \in n \Omega$. Thus, $Y=\cup_{n} n \bar{\Omega}$ and, by Baire's category theorem, there is a n such that $n \bar{\Omega}$ has non-empty interior. Hence $\bar{\Omega}$ has non-empty interior. Thus, there is a point $y_{0} \in \bar{\Omega}$ and $r>0$ such that $B_{r}^{Y}\left(y_{0}\right) \subset \bar{\Omega}$. By symmetricity of $\bar{\Omega}, B_{r}^{Y}\left(-y_{0}\right) \subset \bar{\Omega}$.

Theorem (Open Mapping)

Let X and Y be Banach spaces and let $T \in \mathcal{B}(X, Y)$ be a surjective map, i.e., $T(X)=Y$. Then T is an open map.

Proof.

Let $\Omega:=T\left(B_{1}^{X}(0)\right)$. We claim that Ω is open in Y. Due to linearity of T, it is enough to show that Ω contains open ball around 0 . We first observe that Ω is convex and symmetric about 0 because $B_{1}^{X}(0)$ is convex and symmetric about 0 . Note that $T\left(B_{n}^{X}(0)\right)=n \Omega$ and $\overline{n \Omega}=n \bar{\Omega}$. Since T is surjective, for every $y \in Y$ there is a $x \in X$ such that $T_{x}=y$. Since $x \in n B_{1}^{X}(0)$, for some n, we have $y \in n \Omega$. Thus, $Y=\cup_{n} n \bar{\Omega}$ and, by Baire's category theorem, there is a n such that $n \bar{\Omega}$ has non-empty interior. Hence $\bar{\Omega}$ has non-empty interior. Thus, there is a point $y_{0} \in \bar{\Omega}$ and $r>0$ such that $B_{r}^{Y}\left(y_{0}\right) \subset \bar{\Omega}$. By symmetricity of $\bar{\Omega}, B_{r}^{Y}\left(-y_{0}\right) \subset \bar{\Omega}$. Similarly, by convexity of $\bar{\Omega}, B_{r}^{Y}(0) \subset \bar{\Omega}$. Then, by Lemma 18 , we get $B_{r}^{Y}(0) \subset \Omega$ and Ω is open.

Corollary (Inverse Mapping)

Let X and Y be Banach spaces and let $T \in \mathcal{B}(X, Y)$ be a bijective map. Then $T^{-1} \in \mathcal{B}(Y, X)$.

Corollary (Inverse Mapping)

Let X and Y be Banach spaces and let $T \in \mathcal{B}(X, Y)$ be a bijective map. Then $T^{-1} \in \mathcal{B}(Y, X)$.

Proof.

Since T is bijection, T^{-1} exists and is in $\mathcal{L}(X, Y)$.

Corollary (Inverse Mapping)

Let X and Y be Banach spaces and let $T \in \mathcal{B}(X, Y)$ be a bijective map. Then $T^{-1} \in \mathcal{B}(Y, X)$.

Proof.

Since T is bijection, T^{-1} exists and is in $\mathcal{L}(X, Y)$. By open mapping theorem, T^{-1} is continuous and, hence, $T^{-1} \in \mathcal{B}(X, Y)$.

Corollary (Inverse Mapping)

Let X and Y be Banach spaces and let $T \in \mathcal{B}(X, Y)$ be a bijective map. Then $T^{-1} \in \mathcal{B}(Y, X)$.

Proof.

Since T is bijection, T^{-1} exists and is in $\mathcal{L}(X, Y)$. By open mapping theorem, T^{-1} is continuous and, hence, $T^{-1} \in \mathcal{B}(X, Y)$. Further, there is a $r>0$ such that $B_{r}^{Y}(0) \subset T\left(B_{1}^{X}(0)\right)$.

Corollary (Inverse Mapping)

Let X and Y be Banach spaces and let $T \in \mathcal{B}(X, Y)$ be a bijective map. Then $T^{-1} \in \mathcal{B}(Y, X)$.

Proof.

Since T is bijection, T^{-1} exists and is in $\mathcal{L}(X, Y)$. By open mapping theorem, T^{-1} is continuous and, hence, $T^{-1} \in \mathcal{B}(X, Y)$. Further, there is a $r>0$ such that $B_{r}^{Y}(0) \subset T\left(B_{1}^{X}(0)\right)$. Therefore, for all $y \in B_{1}^{Y}(0)$, we have $\left\|T^{-1}(r y)\right\| \leq 1$ and, hence, $\left\|T^{-1}\right\| \leq 1 / r$.

Equivalent Norms

Theorem

Let X be a vector space with two different norms $\|\cdot\|$ and $|||\cdot|||$ such that it is complete with respect to both the norms. If there exists a constant $C>0$ such that $\|\|x\| \mid \leq C\| x \|$, for all $x \in X$, then the two norms are equivalent.

Proof.

To observe this note that the identity map from $(X,\|\cdot\|)$ to $(X,\| \| \cdot\| \|)$, which is linear and bijective, is continuous, by the assumption.

Equivalent Norms

Theorem

Let X be a vector space with two different norms $\|\cdot\|$ and $|||\cdot|||$ such that it is complete with respect to both the norms. If there exists a constant $C>0$ such that $\|\|x\| \mid \leq C\| x \|$, for all $x \in X$, then the two norms are equivalent.

Proof.

To observe this note that the identity map from $(X,\|\cdot\|)$ to $(X,\| \| \cdot\| \|)$, which is linear and bijective, is continuous, by the assumption. Thus, inverse map is continuous by open mapping theorem,

Equivalent Norms

Theorem

Let X be a vector space with two different norms $\|\cdot\|$ and $|||\cdot|||$ such that it is complete with respect to both the norms. If there exists a constant $C>0$ such that $\|\|x\| \mid \leq C\| x \|$, for all $x \in X$, then the two norms are equivalent.

Proof.

To observe this note that the identity map from $(X,\|\cdot\|)$ to $(X,\| \| \cdot\| \|)$, which is linear and bijective, is continuous, by the assumption. Thus, inverse map is continuous by open mapping theorem, i.e., there is a constant $C_{1}>0$ such that $\|x\| \leq C_{1}\|x \mid\|$, for all $x \in X$. Thus, the two norms are equivalent.

Stability of two-point Boundary Value Problem

Theorem

For given functions $a, b, c \in C[0,1]$, let the boundary value problem

$$
\left\{\begin{aligned}
a(x) u^{\prime \prime}(x)+b(x) u^{\prime}(x)+c(x) u(x) & =f(x) \text { in }(0,1) \\
u(0)=u(1) & =0
\end{aligned}\right.
$$

admit a unique solution $u \in C^{2}[0,1]$ for every given $f \in C[0,1]$. Then there exists a constant $C>0$ such that

$$
\|u\|_{\infty}+\left\|u^{\prime}\right\|_{\infty}+\left\|u^{\prime \prime}\right\|_{\infty} \leq C\|f\|_{\infty} \quad \forall f \in C[0,1] .
$$

Stability of two-point Boundary Value Problem

Theorem

For given functions $a, b, c \in C[0,1]$, let the boundary value problem

$$
\left\{\begin{aligned}
a(x) u^{\prime \prime}(x)+b(x) u^{\prime}(x)+c(x) u(x) & =f(x) \text { in }(0,1) \\
u(0)=u(1) & =0
\end{aligned}\right.
$$

admit a unique solution $u \in C^{2}[0,1]$ for every given $f \in C[0,1]$. Then there exists a constant $C>0$ such that

$$
\|u\|_{\infty}+\left\|u^{\prime}\right\|_{\infty}+\left\|u^{\prime \prime}\right\|_{\infty} \leq C\|f\|_{\infty} \quad \forall f \in C[0,1] .
$$

Proof: To see this consider $X:=\left\{v \in C^{2}[0,1] \mid v(0)=v(1)=0\right\}$ endowed with the norm $\|\mid v\|\|:=\| v\left\|_{\infty}+\right\| v^{\prime}\left\|_{\infty}+\right\| v^{\prime \prime} \|_{\infty}$.

Stability of two-point Boundary Value Problem

Theorem

For given functions $a, b, c \in C[0,1]$, let the boundary value problem

$$
\left\{\begin{aligned}
a(x) u^{\prime \prime}(x)+b(x) u^{\prime}(x)+c(x) u(x) & =f(x) \text { in }(0,1) \\
u(0)=u(1) & =0
\end{aligned}\right.
$$

admit a unique solution $u \in C^{2}[0,1]$ for every given $f \in C[0,1]$. Then there exists a constant $C>0$ such that

$$
\|u\|_{\infty}+\left\|u^{\prime}\right\|_{\infty}+\left\|u^{\prime \prime}\right\|_{\infty} \leq C\|f\|_{\infty} \quad \forall f \in C[0,1] .
$$

Proof: To see this consider $X:=\left\{v \in C^{2}[0,1] \mid v(0)=v(1)=0\right\}$ endowed with the norm $\|\|v\|\|:=\|v\|_{\infty}+\left\|v^{\prime}\right\|_{\infty}+\left\|v^{\prime \prime}\right\|_{\infty}$. Thus, $(X,|||\cdot|||)$ is a Banach space.

Stability of two-point Boundary Value Problem

Theorem

For given functions $a, b, c \in C[0,1]$, let the boundary value problem

$$
\left\{\begin{aligned}
a(x) u^{\prime \prime}(x)+b(x) u^{\prime}(x)+c(x) u(x) & =f(x) \text { in }(0,1) \\
u(0)=u(1) & =0
\end{aligned}\right.
$$

admit a unique solution $u \in C^{2}[0,1]$ for every given $f \in C[0,1]$. Then there exists a constant $C>0$ such that

$$
\|u\|_{\infty}+\left\|u^{\prime}\right\|_{\infty}+\left\|u^{\prime \prime}\right\|_{\infty} \leq C\|f\|_{\infty} \quad \forall f \in C[0,1] .
$$

Proof: To see this consider $X:=\left\{v \in C^{2}[0,1] \mid v(0)=v(1)=0\right\}$ endowed with the norm $\|\|v\|\|:=\|v\|_{\infty}+\left\|v^{\prime}\right\|_{\infty}+\left\|v^{\prime \prime}\right\|_{\infty}$. Thus, $(X,|\|\cdot \mid\|)$ is a Banach space. Define $T: X \rightarrow C[0,1]$ as

$$
T v(x):=a(x) v^{\prime \prime}(x)+b(x) v^{\prime}(x)+c(x) v(x)
$$

Proof Continued...

Note that T is continuous (or bounded) because

$$
\|T\| \leq \max \left\{\|a\|_{\infty},\|b\|_{\infty},\|c\|_{\infty}\right\}
$$

Proof Continued...

Note that T is continuous (or bounded) because

$$
\|T\| \leq \max \left\{\|a\|_{\infty},\|b\|_{\infty},\|c\|_{\infty}\right\}
$$

By hypothesis T is surjective because there is a unique solution for every $f \in C[0,1]$.

Proof Continued...

Note that T is continuous (or bounded) because

$$
\|T\| \leq \max \left\{\|a\|_{\infty},\|b\|_{\infty},\|c\|_{\infty}\right\}
$$

By hypothesis T is surjective because there is a unique solution for every $f \in C[0,1]$. The uniqueness of solution also implies injectivity.

Proof Continued...

Note that T is continuous (or bounded) because

$$
\|T\| \leq \max \left\{\|a\|_{\infty},\|b\|_{\infty},\|c\|_{\infty}\right\}
$$

By hypothesis T is surjective because there is a unique solution for every $f \in C[0,1]$. The uniqueness of solution also implies injectivity. Thus, T^{-1} exists and is continuous (cf. Corollary 12) because T is an open map.

Proof Continued...

Note that T is continuous (or bounded) because

$$
\|T\| \leq \max \left\{\|a\|_{\infty},\|b\|_{\infty},\|c\|_{\infty}\right\}
$$

By hypothesis T is surjective because there is a unique solution for every $f \in C[0,1]$. The uniqueness of solution also implies injectivity. Thus, T^{-1} exists and is continuous (cf. Corollary 12) because T is an open map. The continuity of T is, precisely, the stability estimate we seek.

Solutions in Finite Dimensions

- Every mathematical modelling reduces to the question of seeking solutions to equation of the form $f(x)=p$.

Solutions in Finite Dimensions

- Every mathematical modelling reduces to the question of seeking solutions to equation of the form $f(x)=p$.
- If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and is linear then solving $f(x)=p$ is same as solving the associated matrix equation $A x=p$. It has a unique solution if A is a invertible square matrix.

Solutions in Finite Dimensions

- Every mathematical modelling reduces to the question of seeking solutions to equation of the form $f(x)=p$.
- If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and is linear then solving $f(x)=p$ is same as solving the associated matrix equation $A x=p$. It has a unique solution if A is a invertible square matrix.
- Since $f_{i}(x)=\sum_{j=1}^{n} a_{i j} x_{j}$, if f admits first order partial derivatives then invertibility of A is same as the invertibility of the Jacobian of f, $D_{j} f_{i}:=\frac{\partial f_{i}}{\partial x_{j}}=a_{i j}$.

Solutions in Finite Dimensions

- Every mathematical modelling reduces to the question of seeking solutions to equation of the form $f(x)=p$.
- If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and is linear then solving $f(x)=p$ is same as solving the associated matrix equation $A x=p$. It has a unique solution if A is a invertible square matrix.
- Since $f_{i}(x)=\sum_{j=1}^{n} a_{i j} x_{j}$, if f admits first order partial derivatives then invertibility of A is same as the invertibility of the Jacobian of f, $D_{j} f_{i}:=\frac{\partial f_{i}}{\partial x_{j}}=a_{i j}$.
- To solve $f(x)=p$ when f is nonlinear, it is significant to note that f has a linear approximation as follows: $f(x) \approx f(a)+D f(a) \cdot(x-a)$.

Solutions in Finite Dimensions

- Every mathematical modelling reduces to the question of seeking solutions to equation of the form $f(x)=p$.
- If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and is linear then solving $f(x)=p$ is same as solving the associated matrix equation $A x=p$. It has a unique solution if A is a invertible square matrix.
- Since $f_{i}(x)=\sum_{j=1}^{n} a_{i j} x_{j}$, if f admits first order partial derivatives then invertibility of A is same as the invertibility of the Jacobian of f, $D_{j} f_{i}:=\frac{\partial f_{i}}{\partial x_{j}}=a_{i j}$.
- To solve $f(x)=p$ when f is nonlinear, it is significant to note that f has a linear approximation as follows: $f(x) \approx f(a)+D f(a) \cdot(x-a)$.
- Thus, we expect f to admit a 'local' inverse if the linear aprroximation is invertible, i.e. $\operatorname{Df}(a)$ is invertible. This is the Inverse Function Theorem.

Solutions in Finite Dimensions

- Every mathematical modelling reduces to the question of seeking solutions to equation of the form $f(x)=p$.
- If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and is linear then solving $f(x)=p$ is same as solving the associated matrix equation $A x=p$. It has a unique solution if A is a invertible square matrix.
- Since $f_{i}(x)=\sum_{j=1}^{n} a_{i j} x_{j}$, if f admits first order partial derivatives then invertibility of A is same as the invertibility of the Jacobian of f, $D_{j} f_{i}:=\frac{\partial f_{i}}{\partial x_{j}}=a_{i j}$.
- To solve $f(x)=p$ when f is nonlinear, it is significant to note that f has a linear approximation as follows: $f(x) \approx f(a)+D f(a) \cdot(x-a)$.
- Thus, we expect f to admit a 'local' inverse if the linear aprroximation is invertible, i.e. $\operatorname{Df}(a)$ is invertible. This is the Inverse Function Theorem.
- The inverse function theorem gives the necessary condition for solving $f(x)=p$, locally, for a system of n nonlinear equations in n unknowns.

Properties of Non-zero Jacobian Matrix

Theorem (For Open Ball)

Let $B:=B_{r}(a) \subset \mathbb{R}^{n}$ be an open ball of radius r centred at a $\in \mathbb{R}^{n}, \partial B$ denotes the boundary of B, i.e., $\partial B:=\left\{x \in \mathbb{R}^{n}| | x-a \mid=r\right\}$ and \bar{B} be the closure of B in \mathbb{R}^{n}. Let
(1) $f: \bar{B} \rightarrow \mathbb{R}^{n}$ be continuous,
(1) all partial derivatives $D_{j} f_{i}(x)$ of f exists, for all $x \in B$,
(1) $f(x) \neq f(a)$ for all $x \in \partial B$,
(0) $J_{f}(x) \neq 0$ for all $x \in B$.

Then $f(B)$ contains an open ball centred at $f(a)$.

Properties of Non-zero Jacobian Matrix

Theorem (For Open Ball)

Let $B:=B_{r}(a) \subset \mathbb{R}^{n}$ be an open ball of radius r centred at $a \in \mathbb{R}^{n}, \partial B$ denotes the boundary of B, i.e., $\partial B:=\left\{x \in \mathbb{R}^{n}| | x-a \mid=r\right\}$ and \bar{B} be the closure of B in \mathbb{R}^{n}. Let
(1) $f: \bar{B} \rightarrow \mathbb{R}^{n}$ be continuous,
(1) all partial derivatives $D_{j} f_{i}(x)$ of f exists, for all $x \in B$,
(1) $f(x) \neq f(a)$ for all $x \in \partial B$,
(0) $J_{f}(x) \neq 0$ for all $x \in B$.

Then $f(B)$ contains an open ball centred at $f(a)$.
Proof: Define $g: \partial B \rightarrow(0, \infty)$ as $g(x):=|f(x)-f(a)|$.

Properties of Non-zero Jacobian Matrix

Theorem (For Open Ball)

Let $B:=B_{r}(a) \subset \mathbb{R}^{n}$ be an open ball of radius r centred at $a \in \mathbb{R}^{n}, \partial B$ denotes the boundary of B, i.e., $\partial B:=\left\{x \in \mathbb{R}^{n}| | x-a \mid=r\right\}$ and \bar{B} be the closure of B in \mathbb{R}^{n}. Let
(1) $f: \bar{B} \rightarrow \mathbb{R}^{n}$ be continuous,
(1) all partial derivatives $D_{j} f_{i}(x)$ of f exists, for all $x \in B$,
(1) $f(x) \neq f(a)$ for all $x \in \partial B$,
(0) $J_{f}(x) \neq 0$ for all $x \in B$.

Then $f(B)$ contains an open ball centred at $f(a)$.
Proof: Define $g: \partial B \rightarrow(0, \infty)$ as $g(x):=|f(x)-f(a)|$. Hence $g>0$, since $f(x) \neq f(a)$, and g is continuous on ∂B (being composition of two functions).

Properties of Non-zero Jacobian Matrix

Theorem (For Open Ball)

Let $B:=B_{r}(a) \subset \mathbb{R}^{n}$ be an open ball of radius r centred at $a \in \mathbb{R}^{n}, \partial B$ denotes the boundary of B, i.e., $\partial B:=\left\{x \in \mathbb{R}^{n}| | x-a \mid=r\right\}$ and \bar{B} be the closure of B in \mathbb{R}^{n}. Let
(1) $f: \bar{B} \rightarrow \mathbb{R}^{n}$ be continuous,
(1) all partial derivatives $D_{j} f_{i}(x)$ of f exists, for all $x \in B$,
(1) $f(x) \neq f(a)$ for all $x \in \partial B$,
(0) $J_{f}(x) \neq 0$ for all $x \in B$.

Then $f(B)$ contains an open ball centred at $f(a)$.
Proof: Define $g: \partial B \rightarrow(0, \infty)$ as $g(x):=|f(x)-f(a)|$. Hence $g>0$, since $f(x) \neq f(a)$, and g is continuous on ∂B (being composition of two functions). Therefore, g will achieve its minimum $m>0$ on ∂B.

Properties of Non-zero Jacobian Matrix

Theorem (For Open Ball)

Let $B:=B_{r}(a) \subset \mathbb{R}^{n}$ be an open ball of radius r centred at $a \in \mathbb{R}^{n}, \partial B$ denotes the boundary of B, i.e., $\partial B:=\left\{x \in \mathbb{R}^{n}| | x-a \mid=r\right\}$ and \bar{B} be the closure of B in \mathbb{R}^{n}. Let
(1) $f: \bar{B} \rightarrow \mathbb{R}^{n}$ be continuous,
(1) all partial derivatives $D_{j} f_{i}(x)$ of f exists, for all $x \in B$,
(10) $f(x) \neq f(a)$ for all $x \in \partial B$,
(0) $J_{f}(x) \neq 0$ for all $x \in B$.

Then $f(B)$ contains an open ball centred at $f(a)$.
Proof: Define $g: \partial B \rightarrow(0, \infty)$ as $g(x):=|f(x)-f(a)|$. Hence $g>0$, since $f(x) \neq f(a)$, and g is continuous on ∂B (being composition of two functions). Therefore, g will achieve its minimum $m>0$ on ∂B. We will show that the open ball $U:=B_{m / 2}(f(a))$ is contained $f(B)$.

Proof Continued...

Let $y \in U$. We will show $y \in f(B)$, i.e., there is a point $c \in B$ such that $f(c)=y$.

Proof Continued...

Let $y \in U$. We will show $y \in f(B)$, i.e., there is a point $c \in B$ such that $f(c)=y$. To do so, we define a function $h: \bar{B} \rightarrow[0, \infty)$ as $h(x):=|f(x)-y|$.

Proof Continued...

Let $y \in U$. We will show $y \in f(B)$, i.e., there is a point $c \in B$ such that $f(c)=y$. To do so, we define a function $h: \bar{B} \rightarrow[0, \infty)$ as $h(x):=|f(x)-y|$. Note that, as argued above, h is continuous on \bar{B} and hence attains its minimum at some point $c \in \bar{B}$.

Proof Continued...

Let $y \in U$. We will show $y \in f(B)$, i.e., there is a point $c \in B$ such that $f(c)=y$. To do so, we define a function $h: \bar{B} \rightarrow[0, \infty)$ as $h(x):=|f(x)-y|$. Note that, as argued above, h is continuous on \bar{B} and hence attains its minimum at some point $c \in \bar{B}$. Moreover, $h(a)=|f(a)-y|<m / 2$ and hence $h(c)<m / 2$.

Proof Continued...

Let $y \in U$. We will show $y \in f(B)$, i.e., there is a point $c \in B$ such that $f(c)=y$. To do so, we define a function $h: \bar{B} \rightarrow[0, \infty)$ as $h(x):=|f(x)-y|$. Note that, as argued above, h is continuous on \bar{B} and hence attains its minimum at some point $c \in \bar{B}$. Moreover, $h(a)=|f(a)-y|<m / 2$ and hence $h(c)<m / 2$. For each $x \in \partial B$,

$$
h(x)=|f(x)-y| \geq|f(x)-f(a)|-|f(a)-y|>g(x)-\frac{m}{2} \geq \frac{m}{2}
$$

Proof Continued...

Let $y \in U$. We will show $y \in f(B)$, i.e., there is a point $c \in B$ such that $f(c)=y$. To do so, we define a function $h: \bar{B} \rightarrow[0, \infty)$ as $h(x):=|f(x)-y|$. Note that, as argued above, h is continuous on \bar{B} and hence attains its minimum at some point $c \in \bar{B}$. Moreover, $h(a)=|f(a)-y|<m / 2$ and hence $h(c)<m / 2$. For each $x \in \partial B$,

$$
h(x)=|f(x)-y| \geq|f(x)-f(a)|-|f(a)-y|>g(x)-\frac{m}{2} \geq \frac{m}{2}
$$

Thus, $h(x) \geq m / 2$, for all $x \in \partial B$, and hence $c \in B$ and not in ∂B.

Proof Continued...

Let $y \in U$. We will show $y \in f(B)$, i.e., there is a point $c \in B$ such that $f(c)=y$. To do so, we define a function $h: \bar{B} \rightarrow[0, \infty)$ as $h(x):=|f(x)-y|$. Note that, as argued above, h is continuous on \bar{B} and hence attains its minimum at some point $c \in \bar{B}$. Moreover, $h(a)=|f(a)-y|<m / 2$ and hence $h(c)<m / 2$. For each $x \in \partial B$,

$$
h(x)=|f(x)-y| \geq|f(x)-f(a)|-|f(a)-y|>g(x)-\frac{m}{2} \geq \frac{m}{2}
$$

Thus, $h(x) \geq m / 2$, for all $x \in \partial B$, and hence $c \in B$ and not in ∂B. Note that $c \in B$ is also a minimum of $h^{2}: \bar{B} \rightarrow[0, \infty)$, where $h^{2}(x)=\sum_{i=1}^{n}\left(f_{i}(x)-y_{i}\right)^{2}$.

Proof Continued...

Let $y \in U$. We will show $y \in f(B)$, i.e., there is a point $c \in B$ such that $f(c)=y$. To do so, we define a function $h: \bar{B} \rightarrow[0, \infty)$ as $h(x):=|f(x)-y|$. Note that, as argued above, h is continuous on \bar{B} and hence attains its minimum at some point $c \in \bar{B}$. Moreover, $h(a)=|f(a)-y|<m / 2$ and hence $h(c)<m / 2$. For each $x \in \partial B$,

$$
h(x)=|f(x)-y| \geq|f(x)-f(a)|-|f(a)-y|>g(x)-\frac{m}{2} \geq \frac{m}{2}
$$

Thus, $h(x) \geq m / 2$, for all $x \in \partial B$, and hence $c \in B$ and not in ∂B. Note that $c \in B$ is also a minimum of $h^{2}: \bar{B} \rightarrow[0, \infty)$, where $h^{2}(x)=\sum_{i=1}^{n}\left(f_{i}(x)-y_{i}\right)^{2}$. Therefore, each partial derivative $D_{j} h^{2}(c)$ is zero at $c \in B$.

Proof Continued...

Let $y \in U$. We will show $y \in f(B)$, i.e., there is a point $c \in B$ such that $f(c)=y$. To do so, we define a function $h: \bar{B} \rightarrow[0, \infty)$ as $h(x):=|f(x)-y|$. Note that, as argued above, h is continuous on \bar{B} and hence attains its minimum at some point $c \in \bar{B}$. Moreover, $h(a)=|f(a)-y|<m / 2$ and hence $h(c)<m / 2$. For each $x \in \partial B$,

$$
h(x)=|f(x)-y| \geq|f(x)-f(a)|-|f(a)-y|>g(x)-\frac{m}{2} \geq \frac{m}{2}
$$

Thus, $h(x) \geq m / 2$, for all $x \in \partial B$, and hence $c \in B$ and not in ∂B. Note that $c \in B$ is also a minimum of $h^{2}: \bar{B} \rightarrow[0, \infty)$, where $h^{2}(x)=\sum_{i=1}^{n}\left(f_{i}(x)-y_{i}\right)^{2}$. Therefore, each partial derivative $D_{j} h^{2}(c)$ is zero at $c \in B$. Thus, for each $j=1,2, \ldots, n$,

$$
\sum_{i=1}^{n}\left(f_{i}(c)-y_{i}\right) D_{j} f_{i}(c)=0
$$

This is same as $[\operatorname{Df}(c)](f(c)-y)=0$.

Proof Continued...

Let $y \in U$. We will show $y \in f(B)$, i.e., there is a point $c \in B$ such that $f(c)=y$. To do so, we define a function $h: \bar{B} \rightarrow[0, \infty)$ as $h(x):=|f(x)-y|$. Note that, as argued above, h is continuous on \bar{B} and hence attains its minimum at some point $c \in \bar{B}$. Moreover, $h(a)=|f(a)-y|<m / 2$ and hence $h(c)<m / 2$. For each $x \in \partial B$,

$$
h(x)=|f(x)-y| \geq|f(x)-f(a)|-|f(a)-y|>g(x)-\frac{m}{2} \geq \frac{m}{2}
$$

Thus, $h(x) \geq m / 2$, for all $x \in \partial B$, and hence $c \in B$ and not in ∂B. Note that $c \in B$ is also a minimum of $h^{2}: \bar{B} \rightarrow[0, \infty)$, where $h^{2}(x)=\sum_{i=1}^{n}\left(f_{i}(x)-y_{i}\right)^{2}$. Therefore, each partial derivative $D_{j} h^{2}(c)$ is zero at $c \in B$. Thus, for each $j=1,2, \ldots, n$,

$$
\sum_{i=1}^{n}\left(f_{i}(c)-y_{i}\right) D_{j} f_{i}(c)=0
$$

This is same as $[D f(c)](f(c)-y)=0$. Since $c \in B$, we have $J_{f}(c) \neq 0$. Therefore, $f(c)=y$ and $y \in f(B)$. Thus, $U \subseteq f(B)$.

Properties of Non-zero Jacobian Matrix

Theorem (For Open Set)

Let U be an open subset of \mathbb{R}^{n} and
(1) $f: U \rightarrow \mathbb{R}^{n}$ be continuous,
(1) all partial derivatives $D_{j} f_{i}(x)$ of f exists, for all $x \in U$,

- f is injective on U,
(-) $J_{f}(x) \neq 0$ for all $x \in U$.
Then $f(U)$ is open subset of \mathbb{R}^{n}.

Properties of Non-zero Jacobian Matrix

Theorem (For Open Set)

Let U be an open subset of \mathbb{R}^{n} and
(1) $f: U \rightarrow \mathbb{R}^{n}$ be continuous,
(1) all partial derivatives $D_{j} f_{i}(x)$ of f exists, for all $x \in U$,

- f is injective on U,
(-) $J_{f}(x) \neq 0$ for all $x \in U$.
Then $f(U)$ is open subset of \mathbb{R}^{n}.
Proof: Let $y \in f(U)$, then $y=f(a)$ for some $a \in U$.

Properties of Non-zero Jacobian Matrix

Theorem (For Open Set)

Let U be an open subset of \mathbb{R}^{n} and
(1) $f: U \rightarrow \mathbb{R}^{n}$ be continuous,
(1) all partial derivatives $D_{j} f_{i}(x)$ of f exists, for all $x \in U$,

- f is injective on U,
(-) $J_{f}(x) \neq 0$ for all $x \in U$.
Then $f(U)$ is open subset of \mathbb{R}^{n}.
Proof: Let $y \in f(U)$, then $y=f(a)$ for some $a \in U$. Since U is open there is an open ball $B:=B_{r}(a) \subseteq U$.

Properties of Non-zero Jacobian Matrix

Theorem (For Open Set)

Let U be an open subset of \mathbb{R}^{n} and
(1) $f: U \rightarrow \mathbb{R}^{n}$ be continuous,
(1) all partial derivatives $D_{j} f_{i}(x)$ of f exists, for all $x \in U$,
(T) f is injective on U,
(0) $J_{f}(x) \neq 0$ for all $x \in U$.

Then $f(U)$ is open subset of \mathbb{R}^{n}.
Proof: Let $y \in f(U)$, then $y=f(a)$ for some $a \in U$. Since U is open there is an open ball $B:=B_{r}(a) \subseteq U$. Now, f restricted to B satisfies the hypothesis of Theorem 53. The condition $f(x) \neq f(a)$ on the boundary of B is due to the injective property of f.

Properties of Non-zero Jacobian Matrix

Theorem (For Open Set)

Let U be an open subset of \mathbb{R}^{n} and
(1) $f: U \rightarrow \mathbb{R}^{n}$ be continuous,
(1) all partial derivatives $D_{j} f_{i}(x)$ of f exists, for all $x \in U$,
(1) f is injective on U,
(0) $J_{f}(x) \neq 0$ for all $x \in U$.

Then $f(U)$ is open subset of \mathbb{R}^{n}.
Proof: Let $y \in f(U)$, then $y=f(a)$ for some $a \in U$. Since U is open there is an open ball $B:=B_{r}(a) \subseteq U$. Now, f restricted to B satisfies the hypothesis of Theorem 53. The condition $f(x) \neq f(a)$ on the boundary of B is due to the injective property of f. Thus, $f(B)$ contains an open ball centered at $f(a)=y$. Hence $f(U)$ is open.

Properties of Non-zero Jacobian Matrix

Theorem

Let U be an open subset of \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}^{n}$ has continuous partial derivatives $D_{j} f_{i}$ on U. Also, $J_{f}(a) \neq 0$ for some $a \in U$. Then there exists an open ball B centred at a on which f is injective.

Properties of Non-zero Jacobian Matrix

Theorem

Let U be an open subset of \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}^{n}$ has continuous partial derivatives $D_{j} f_{i}$ on U. Also, $J_{f}(a) \neq 0$ for some $a \in U$. Then there exists an open ball B centred at a on which f is injective.

Proof: For any choice of n points, $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ in U one can associate a point $z \in \mathbb{R}^{n^{2}}$, where $z:=\left\{x_{1} ; x_{2} ; x_{3} ; \ldots ; x_{n}\right\}$ such that the first n components of z is same as that of x_{1}, the next n components are that of x_{2} and so on.

Properties of Non-zero Jacobian Matrix

Theorem

Let U be an open subset of \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}^{n}$ has continuous partial derivatives $D_{j} f_{i}$ on U. Also, $J_{f}(a) \neq 0$ for some $a \in U$. Then there exists an open ball B centred at a on which f is injective.

Proof: For any choice of n points, $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ in U one can associate a point $z \in \mathbb{R}^{n^{2}}$, where $z:=\left\{x_{1} ; x_{2} ; x_{3} ; \ldots ; x_{n}\right\}$ such that the first n components of z is same as that of x_{1}, the next n components are that of x_{2} and so on. We define a real valued function h on a subset of $\mathbb{R}^{n^{2}}$ (wherever defined) as $h(z)=\operatorname{det}\left(D_{j} f_{i}\left(x_{i}\right)\right)$.

Properties of Non-zero Jacobian Matrix

Theorem

Let U be an open subset of \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}^{n}$ has continuous partial derivatives $D_{j} f_{i}$ on U. Also, $J_{f}(a) \neq 0$ for some $a \in U$. Then there exists an open ball B centred at a on which f is injective.

Proof: For any choice of n points, $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ in U one can associate a point $z \in \mathbb{R}^{n^{2}}$, where $z:=\left\{x_{1} ; x_{2} ; x_{3} ; \ldots ; x_{n}\right\}$ such that the first n components of z is same as that of x_{1}, the next n components are that of x_{2} and so on. We define a real valued function h on a subset of $\mathbb{R}^{n^{2}}$ (wherever defined) as $h(z)=\operatorname{det}\left(D_{j} f_{i}\left(x_{i}\right)\right)$. Note that the matrix involved in the definition is not the Jacobian. The evaluating point of the matrix changes in each row.

Properties of Non-zero Jacobian Matrix

Theorem

Let U be an open subset of \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}^{n}$ has continuous partial derivatives $D_{j} f_{i}$ on U. Also, $J_{f}(a) \neq 0$ for some $a \in U$. Then there exists an open ball B centred at a on which f is injective.

Proof: For any choice of n points, $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ in U one can associate a point $z \in \mathbb{R}^{n^{2}}$, where $z:=\left\{x_{1} ; x_{2} ; x_{3} ; \ldots ; x_{n}\right\}$ such that the first n components of z is same as that of x_{1}, the next n components are that of x_{2} and so on. We define a real valued function h on a subset of $\mathbb{R}^{n^{2}}$ (wherever defined) as $h(z)=\operatorname{det}\left(D_{j} f_{i}\left(x_{i}\right)\right)$. Note that the matrix involved in the definition is not the Jacobian. The evaluating point of the matrix changes in each row. The function h is continuous because determinant is a polynomial and each $D_{j} f_{i}$ is continuous on U.

Properties of Non-zero Jacobian Matrix

Theorem

Let U be an open subset of \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}^{n}$ has continuous partial derivatives $D_{j} f_{i}$ on U. Also, $J_{f}(a) \neq 0$ for some $a \in U$. Then there exists an open ball B centred at a on which f is injective.

Proof: For any choice of n points, $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ in U one can associate a point $z \in \mathbb{R}^{n^{2}}$, where $z:=\left\{x_{1} ; x_{2} ; x_{3} ; \ldots ; x_{n}\right\}$ such that the first n components of z is same as that of x_{1}, the next n components are that of x_{2} and so on. We define a real valued function h on a subset of $\mathbb{R}^{n^{2}}$ (wherever defined) as $h(z)=\operatorname{det}\left(D_{j} f_{i}\left(x_{i}\right)\right)$. Note that the matrix involved in the definition is not the Jacobian. The evaluating point of the matrix changes in each row. The function h is continuous because determinant is a polynomial and each $D_{j} f_{i}$ is continuous on U. Let us choose $A \in \mathbb{R}^{n^{2}}$ such that $x_{i}=a$ for all $i=1,2, \ldots, n$. Then $h(A)=J_{f}(a) \neq 0$.

Proof Continued...

Thus, by continuity of h, there is an open ball Ω centered at $A \in \mathbb{R}^{n^{2}}$ such that $h(z) \neq 0$ for all $z \in \Omega$.

Proof Continued...

Thus, by continuity of h, there is an open ball Ω centered at $A \in \mathbb{R}^{n^{2}}$ such that $h(z) \neq 0$ for all $z \in \Omega$. Therefore, $\operatorname{det}\left(D_{j} f_{i}\left(x_{i}\right)\right) \neq 0$ for all $x_{i} \in B$, where B is an open ball centred at a.

Proof Continued...

Thus, by continuity of h, there is an open ball Ω centered at $A \in \mathbb{R}^{n^{2}}$ such that $h(z) \neq 0$ for all $z \in \Omega$. Therefore, $\operatorname{det}\left(D_{j} f_{i}\left(x_{i}\right)\right) \neq 0$ for all $x_{i} \in B$, where B is an open ball centred at a. We claim that f is injective on B.

Proof Continued...

Thus, by continuity of h, there is an open ball Ω centered at $A \in \mathbb{R}^{n^{2}}$ such that $h(z) \neq 0$ for all $z \in \Omega$. Therefore, $\operatorname{det}\left(D_{j} f_{i}\left(x_{i}\right)\right) \neq 0$ for all $x_{i} \in B$, where B is an open ball centred at a. We claim that f is injective on B. Suppose f is not injective on B, then for some $x, y \in B$ such that $x \neq y$ we have $f(x)=f(y)$.

Proof Continued...

Thus, by continuity of h, there is an open ball Ω centered at $A \in \mathbb{R}^{n^{2}}$ such that $h(z) \neq 0$ for all $z \in \Omega$. Therefore, $\operatorname{det}\left(D_{j} f_{i}\left(x_{i}\right)\right) \neq 0$ for all $x_{i} \in B$, where B is an open ball centred at a. We claim that f is injective on B. Suppose f is not injective on B, then for some $x, y \in B$ such that $x \neq y$ we have $f(x)=f(y)$. Let $[x, y]$ denote all the points on the line joining x and y.

Proof Continued...

Thus, by continuity of h, there is an open ball Ω centered at $A \in \mathbb{R}^{n^{2}}$ such that $h(z) \neq 0$ for all $z \in \Omega$. Therefore, $\operatorname{det}\left(D_{j} f_{i}\left(x_{i}\right)\right) \neq 0$ for all $x_{i} \in B$, where B is an open ball centred at a. We claim that f is injective on B. Suppose f is not injective on B, then for some $x, y \in B$ such that $x \neq y$ we have $f(x)=f(y)$. Let $[x, y]$ denote all the points on the line joining x and y. Now since f is differentiable on U, by Mean Value theorem, for each $i=1,2, \ldots, n$, there is a $x_{i} \in[x, y]$ such that

$$
f_{i}(y)-f_{i}(x)=\nabla f_{i}\left(x_{i}\right) \cdot(y-x)
$$

Proof Continued..

Thus, by continuity of h, there is an open ball Ω centered at $A \in \mathbb{R}^{n^{2}}$ such that $h(z) \neq 0$ for all $z \in \Omega$. Therefore, $\operatorname{det}\left(D_{j} f_{i}\left(x_{i}\right)\right) \neq 0$ for all $x_{i} \in B$, where B is an open ball centred at a. We claim that f is injective on B. Suppose f is not injective on B, then for some $x, y \in B$ such that $x \neq y$ we have $f(x)=f(y)$. Let $[x, y]$ denote all the points on the line joining x and y. Now since f is differentiable on U, by Mean Value theorem, for each $i=1,2, \ldots, n$, there is a $x_{i} \in[x, y]$ such that

$$
f_{i}(y)-f_{i}(x)=\nabla f_{i}\left(x_{i}\right) \cdot(y-x)
$$

Since B is convex (an open ball), we have $[x, y] \in B$ and hence $x_{i} \in B$ for all $i=1,2, \ldots, n$.

Proof Continued...

Thus, by continuity of h, there is an open ball Ω centered at $A \in \mathbb{R}^{n^{2}}$ such that $h(z) \neq 0$ for all $z \in \Omega$. Therefore, $\operatorname{det}\left(D_{j} f_{i}\left(x_{i}\right)\right) \neq 0$ for all $x_{i} \in B$, where B is an open ball centred at a. We claim that f is injective on B. Suppose f is not injective on B, then for some $x, y \in B$ such that $x \neq y$ we have $f(x)=f(y)$. Let $[x, y]$ denote all the points on the line joining x and y. Now since f is differentiable on U, by Mean Value theorem, for each $i=1,2, \ldots, n$, there is a $x_{i} \in[x, y]$ such that

$$
f_{i}(y)-f_{i}(x)=\nabla f_{i}\left(x_{i}\right) \cdot(y-x)
$$

Since B is convex (an open ball), we have $[x, y] \in B$ and hence $x_{i} \in B$ for all $i=1,2, \ldots, n$. By the choice of x and y, LHS is zero and hence we have the system of linear equations

$$
\sum_{j=1}^{n} D_{j} f_{i}\left(x_{i}\right)\left(y_{j}-x_{j}\right)=0
$$

Proof Continued..

Thus, by continuity of h, there is an open ball Ω centered at $A \in \mathbb{R}^{n^{2}}$ such that $h(z) \neq 0$ for all $z \in \Omega$. Therefore, $\operatorname{det}\left(D_{j} f_{i}\left(x_{i}\right)\right) \neq 0$ for all $x_{i} \in B$, where B is an open ball centred at a. We claim that f is injective on B. Suppose f is not injective on B, then for some $x, y \in B$ such that $x \neq y$ we have $f(x)=f(y)$. Let $[x, y]$ denote all the points on the line joining x and y. Now since f is differentiable on U, by Mean Value theorem, for each $i=1,2, \ldots, n$, there is a $x_{i} \in[x, y]$ such that

$$
f_{i}(y)-f_{i}(x)=\nabla f_{i}\left(x_{i}\right) \cdot(y-x)
$$

Since B is convex (an open ball), we have $[x, y] \in B$ and hence $x_{i} \in B$ for all $i=1,2, \ldots, n$. By the choice of x and y, LHS is zero and hence we have the system of linear equations

$$
\sum_{j=1}^{n} D_{j} f_{i}\left(x_{i}\right)\left(y_{j}-x_{j}\right)=0
$$

But $\operatorname{det}\left(D_{j} f_{i}\left(x_{i}\right)\right) \neq 0$, hence $y=x$, a contradiction. Hence f is injective on B.

Not a Global Property

- If, in the above result, we replace $J_{f}(a) \neq 0$ for some $a \in U$ with $J_{f}(x) \neq 0$ for all $x \in U$ then we cannot conclude that f is injective on U.

Not a Global Property

- If, in the above result, we replace $J_{f}(a) \neq 0$ for some $a \in U$ with $J_{f}(x) \neq 0$ for all $x \in U$ then we cannot conclude that f is injective on U.
- The injective property is local.

Not a Global Property

- If, in the above result, we replace $J_{f}(a) \neq 0$ for some $a \in U$ with $J_{f}(x) \neq 0$ for all $x \in U$ then we cannot conclude that f is injective on U.
- The injective property is local.
- For instance $f(z)=\exp (z)$ is not injective on \mathbb{C}.

Not a Global Property

- If, in the above result, we replace $J_{f}(a) \neq 0$ for some $a \in U$ with $J_{f}(x) \neq 0$ for all $x \in U$ then we cannot conclude that f is injective on U.
- The injective property is local.
- For instance $f(z)=\exp (z)$ is not injective on \mathbb{C}. It is periodic with periodicity 2π.

Not a Global Property

- If, in the above result, we replace $J_{f}(a) \neq 0$ for some $a \in U$ with $J_{f}(x) \neq 0$ for all $x \in U$ then we cannot conclude that f is injective on U.
- The injective property is local.
- For instance $f(z)=\exp (z)$ is not injective on \mathbb{C}. It is periodic with periodicity 2π. However, $J_{f}(z)=\left|f^{\prime}(z)\right|^{2}=\left|e^{z}\right|^{2}=e^{2 x} \neq 0$ for all $z \in \mathbb{C}$. The identification $J_{f}(z)=\left|f^{\prime}(z)\right|^{2}$ is typical of holomorphic function due to Cauchy-Riemann equations.

Open Mapping Theorem

The following result gives the global property of functions with non-zero Jacobian determinant.

Open Mapping Theorem

The following result gives the global property of functions with non-zero Jacobian determinant.

Theorem (Open Mapping Theorem)

Let U be an open subset of \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}^{n}$ has continuous partial derivatives $D_{j} f_{i}$ on U. If $J_{f}(x) \neq 0$ for all $x \in U$, then f is an open mapping, i.e., for every open subset $\Omega \subset U, f(\Omega)$ is open in \mathbb{R}^{n}.

Open Mapping Theorem

The following result gives the global property of functions with non-zero Jacobian determinant.

Theorem (Open Mapping Theorem)

Let U be an open subset of \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}^{n}$ has continuous partial derivatives $D_{j} f_{i}$ on U. If $J_{f}(x) \neq 0$ for all $x \in U$, then f is an open mapping, i.e., for every open subset $\Omega \subset U, f(\Omega)$ is open in \mathbb{R}^{n}.

Proof.

Let Ω be any open subset of U. We claim $f(\Omega)$ is open.

Open Mapping Theorem

The following result gives the global property of functions with non-zero Jacobian determinant.

Theorem (Open Mapping Theorem)

Let U be an open subset of \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}^{n}$ has continuous partial derivatives $D_{j} f_{i}$ on U. If $J_{f}(x) \neq 0$ for all $x \in U$, then f is an open mapping, i.e., for every open subset $\Omega \subset U, f(\Omega)$ is open in \mathbb{R}^{n}.

Proof.

Let Ω be any open subset of U. We claim $f(\Omega)$ is open. Let $y \in f(\Omega)$ then there is a $x \in \Omega \subset U$ such that $f(x)=y$.

Open Mapping Theorem

The following result gives the global property of functions with non-zero Jacobian determinant.

Theorem (Open Mapping Theorem)

Let U be an open subset of \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}^{n}$ has continuous partial derivatives $D_{j} f_{i}$ on U. If $J_{f}(x) \neq 0$ for all $x \in U$, then f is an open mapping, i.e., for every open subset $\Omega \subset U, f(\Omega)$ is open in \mathbb{R}^{n}.

Proof.

Let Ω be any open subset of U. We claim $f(\Omega)$ is open. Let $y \in f(\Omega)$ then there is a $x \in \Omega \subset U$ such that $f(x)=y$. Since $J_{f}(x) \neq 0$, by Theorem 55 , there is an open ball $B^{y}(x) \subset \Omega$ centred at x on which f is injective.

Open Mapping Theorem

The following result gives the global property of functions with non-zero Jacobian determinant.

Theorem (Open Mapping Theorem)

Let U be an open subset of \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}^{n}$ has continuous partial derivatives $D_{j} f_{i}$ on U. If $J_{f}(x) \neq 0$ for all $x \in U$, then f is an open mapping, i.e., for every open subset $\Omega \subset U, f(\Omega)$ is open in \mathbb{R}^{n}.

Proof.

Let Ω be any open subset of U. We claim $f(\Omega)$ is open. Let $y \in f(\Omega)$ then there is a $x \in \Omega \subset U$ such that $f(x)=y$. Since $J_{f}(x) \neq 0$, by Theorem 55, there is an open ball $B^{y}(x) \subset \Omega$ centred at x on which f is injective. Therefore, by Theorem 54, $f\left(B^{y}(x)\right) \subset f(\Omega)$ is open containing the point y.

Open Mapping Theorem

The following result gives the global property of functions with non-zero Jacobian determinant.

Theorem (Open Mapping Theorem)

Let U be an open subset of \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}^{n}$ has continuous partial derivatives $D_{j} f_{i}$ on U. If $J_{f}(x) \neq 0$ for all $x \in U$, then f is an open mapping, i.e., for every open subset $\Omega \subset U, f(\Omega)$ is open in \mathbb{R}^{n}.

Proof.

Let Ω be any open subset of U. We claim $f(\Omega)$ is open. Let $y \in f(\Omega)$ then there is a $x \in \Omega \subset U$ such that $f(x)=y$. Since $J_{f}(x) \neq 0$, by Theorem 55, there is an open ball $B^{y}(x) \subset \Omega$ centred at x on which f is injective. Therefore, by Theorem 54, $f\left(B^{y}(x)\right) \subset f(\Omega)$ is open containing the point y. Note that $f(\Omega)=\cup_{y \in f(\Omega)} f\left(B^{y}(x)\right)$ is arbitrary union of open sets and hence is open.

Inverse Function Theorem

Theorem (Inverse Function Theorem)

Let $\Omega \subset \mathbb{R}^{n}$ be an open subset and $f: \Omega \rightarrow \mathbb{R}^{n}$ such that f has continuous partial derivatives in Ω. If, for some point $a \in \Omega, J_{f}(a) \neq 0$, then there are neighbourhoods U and V of a and $f(a)$, respectively, such that $f: U \rightarrow V$ is bijective, i.e., for all $p \in V$ the equation $f(x)=p$ has a unique solution in U. Further, the inverse of $f^{-1}: V \rightarrow U$ is in C^{1}.

Inverse Function Theorem

Theorem (Inverse Function Theorem)

Let $\Omega \subset \mathbb{R}^{n}$ be an open subset and $f: \Omega \rightarrow \mathbb{R}^{n}$ such that f has continuous partial derivatives in Ω. If, for some point $a \in \Omega, J_{f}(a) \neq 0$, then there are neighbourhoods U and V of a and $f(a)$, respectively, such that $f: U \rightarrow V$ is bijective, i.e., for all $p \in V$ the equation $f(x)=p$ has a unique solution in U. Further, the inverse of $f^{-1}: V \rightarrow U$ is in C^{1}.

Proof: Since J_{f} is continuous (determinant map) on Ω and $J_{f}(a) \neq 0$, there is an open ball B_{1} centred at a such that $J_{f}(x) \neq 0$ for all $x \in B_{1}$.

Inverse Function Theorem

Theorem (Inverse Function Theorem)

Let $\Omega \subset \mathbb{R}^{n}$ be an open subset and $f: \Omega \rightarrow \mathbb{R}^{n}$ such that f has continuous partial derivatives in Ω. If, for some point $a \in \Omega, J_{f}(a) \neq 0$, then there are neighbourhoods U and V of a and $f(a)$, respectively, such that $f: U \rightarrow V$ is bijective, i.e., for all $p \in V$ the equation $f(x)=p$ has a unique solution in U. Further, the inverse of $f^{-1}: V \rightarrow U$ is in C^{1}.

Proof: Since J_{f} is continuous (determinant map) on Ω and $J_{f}(a) \neq 0$, there is an open ball B_{1} centred at a such that $J_{f}(x) \neq 0$ for all $x \in B_{1}$. Now, by Theorem 55, choose an open ball $B_{2} \subset B_{1}$ with centre at a such that f is injective on B_{2}.

Inverse Function Theorem

Theorem (Inverse Function Theorem)

Let $\Omega \subset \mathbb{R}^{n}$ be an open subset and $f: \Omega \rightarrow \mathbb{R}^{n}$ such that f has continuous partial derivatives in Ω. If, for some point $a \in \Omega, J_{f}(a) \neq 0$, then there are neighbourhoods U and V of a and $f(a)$, respectively, such that $f: U \rightarrow V$ is bijective, i.e., for all $p \in V$ the equation $f(x)=p$ has a unique solution in U. Further, the inverse of $f^{-1}: V \rightarrow U$ is in C^{1}.

Proof: Since J_{f} is continuous (determinant map) on Ω and $J_{f}(a) \neq 0$, there is an open ball B_{1} centred at a such that $J_{f}(x) \neq 0$ for all $x \in B_{1}$. Now, by Theorem 55, choose an open ball $B_{2} \subset B_{1}$ with centre at a such that f is injective on B_{2}. Then, on B_{2}, f satisfies the hypothesis of Theorem 54 and hence $f\left(B_{2}\right)$ is an open ball containing $f(a)$.

Inverse Function Theorem

Theorem (Inverse Function Theorem)

Let $\Omega \subset \mathbb{R}^{n}$ be an open subset and $f: \Omega \rightarrow \mathbb{R}^{n}$ such that f has continuous partial derivatives in Ω. If, for some point $a \in \Omega, J_{f}(a) \neq 0$, then there are neighbourhoods U and V of a and $f(a)$, respectively, such that $f: U \rightarrow V$ is bijective, i.e., for all $p \in V$ the equation $f(x)=p$ has a unique solution in U. Further, the inverse of $f^{-1}: V \rightarrow U$ is in C^{1}.

Proof: Since J_{f} is continuous (determinant map) on Ω and $J_{f}(a) \neq 0$, there is an open ball B_{1} centred at a such that $J_{f}(x) \neq 0$ for all $x \in B_{1}$. Now, by Theorem 55, choose an open ball $B_{2} \subset B_{1}$ with centre at a such that f is injective on B_{2}. Then, on B_{2}, f satisfies the hypothesis of Theorem 54 and hence $f\left(B_{2}\right)$ is an open ball containing $f(a)$. Set $U:=B_{2}$ and $V:=f\left(B_{2}\right)$. Thus, by our construction $f: U \rightarrow V$ is bijective.

Inverse Function Theorem

Theorem (Inverse Function Theorem)

Let $\Omega \subset \mathbb{R}^{n}$ be an open subset and $f: \Omega \rightarrow \mathbb{R}^{n}$ such that f has continuous partial derivatives in Ω. If, for some point $a \in \Omega, J_{f}(a) \neq 0$, then there are neighbourhoods U and V of a and $f(a)$, respectively, such that $f: U \rightarrow V$ is bijective, i.e., for all $p \in V$ the equation $f(x)=p$ has a unique solution in U. Further, the inverse of $f^{-1}: V \rightarrow U$ is in C^{1}.

Proof: Since J_{f} is continuous (determinant map) on Ω and $J_{f}(a) \neq 0$, there is an open ball B_{1} centred at a such that $J_{f}(x) \neq 0$ for all $x \in B_{1}$. Now, by Theorem 55, choose an open ball $B_{2} \subset B_{1}$ with centre at a such that f is injective on B_{2}. Then, on B_{2}, f satisfies the hypothesis of Theorem 54 and hence $f\left(B_{2}\right)$ is an open ball containing $f(a)$. Set $U:=B_{2}$ and $V:=f\left(B_{2}\right)$. Thus, by our construction $f: U \rightarrow V$ is bijective. It remains to show that $f^{-1}: V \rightarrow U$ is continuously differentiable. We first show f^{-1} is continuous on V.

Proof Continued...

By Theorem 56, f is an open map on U and hence f^{-1} is continuous on V. By construction f^{-1} is unique.

Proof Continued...

By Theorem 56, f is an open map on U and hence f^{-1} is continuous on V. By construction f^{-1} is unique.
It now only remains to show that f^{-1} is C^{1} on V.

Proof Continued...

By Theorem 56, f is an open map on U and hence f^{-1} is continuous on V. By construction f^{-1} is unique.
It now only remains to show that f^{-1} is C^{1} on V. As done in Theorem 55, for any choice of n points, $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ in Ω one can associate a point $z \in \mathbb{R}^{n^{2}}$, where $z:=\left\{x_{1} ; x_{2} ; x_{3} ; \ldots ; x_{n}\right\}$ such that the first n components of z is same as that of x_{1}, the next n components are that of x_{2} and so on.

Proof Continued...

By Theorem 56, f is an open map on U and hence f^{-1} is continuous on V. By construction f^{-1} is unique.
It now only remains to show that f^{-1} is C^{1} on V. As done in Theorem 55, for any choice of n points, $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ in Ω one can associate a point $z \in \mathbb{R}^{n^{2}}$, where $z:=\left\{x_{1} ; x_{2} ; x_{3} ; \ldots ; x_{n}\right\}$ such that the first n components of z is same as that of x_{1}, the next n components are that of x_{2} and so on. We define a real valued function h on a subset of $\mathbb{R}^{n^{2}}$ (wherever defined) as $h(z)=\operatorname{det}\left(D_{j} f_{i}\left(x_{i}\right)\right)$. The function h is continuous because determinant is a polynomial and each $D_{j} f_{i}$ is continuous on Ω.

Proof Continued..

By Theorem 56, f is an open map on U and hence f^{-1} is continuous on V. By construction f^{-1} is unique.
It now only remains to show that f^{-1} is C^{1} on V. As done in Theorem 55, for any choice of n points, $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ in Ω one can associate a point $z \in \mathbb{R}^{n^{2}}$, where $z:=\left\{x_{1} ; x_{2} ; x_{3} ; \ldots ; x_{n}\right\}$ such that the first n components of z is same as that of x_{1}, the next n components are that of x_{2} and so on. We define a real valued function h on a subset of $\mathbb{R}^{n^{2}}$ (wherever defined) as $h(z)=\operatorname{det}\left(D_{j} f_{i}\left(x_{i}\right)\right)$. The function h is continuous because determinant is a polynomial and each $D_{j} f_{i}$ is continuous on Ω. Let us choose $A \in \mathbb{R}^{n^{2}}$ such that $x_{i}=a$ for all $i=1,2, \ldots, n$. Then $h(A)=J_{f}(a) \neq 0$. Thus, by continuity of h, there is an open ball O centered at $A \in \mathbb{R}^{n^{2}}$ such that $h(z) \neq 0$ for all $z \in O$.

Proof Continued..

By Theorem 56, f is an open map on U and hence f^{-1} is continuous on V. By construction f^{-1} is unique.
It now only remains to show that f^{-1} is C^{1} on V. As done in Theorem 55, for any choice of n points, $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ in Ω one can associate a point $z \in \mathbb{R}^{n^{2}}$, where $z:=\left\{x_{1} ; x_{2} ; x_{3} ; \ldots ; x_{n}\right\}$ such that the first n components of z is same as that of x_{1}, the next n components are that of x_{2} and so on. We define a real valued function h on a subset of $\mathbb{R}^{n^{2}}$ (wherever defined) as $h(z)=\operatorname{det}\left(D_{j} f_{i}\left(x_{i}\right)\right)$. The function h is continuous because determinant is a polynomial and each $D_{j} f_{i}$ is continuous on Ω. Let us choose $A \in \mathbb{R}^{n^{2}}$ such that $x_{i}=a$ for all $i=1,2, \ldots, n$. Then $h(A)=J_{f}(a) \neq 0$. Thus, by continuity of h, there is an open ball O centered at $A \in \mathbb{R}^{n^{2}}$ such that $h(z) \neq 0$ for all $z \in O$. Therefore, $D_{j} f_{i}\left(x_{i}\right) \neq 0$ for all $x_{i} \in B$, where B is some open ball centred at a.

Proof Continued...

By Theorem 56, f is an open map on U and hence f^{-1} is continuous on V. By construction f^{-1} is unique.
It now only remains to show that f^{-1} is C^{1} on V. As done in Theorem 55, for any choice of n points, $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ in Ω one can associate a point $z \in \mathbb{R}^{n^{2}}$, where $z:=\left\{x_{1} ; x_{2} ; x_{3} ; \ldots ; x_{n}\right\}$ such that the first n components of z is same as that of x_{1}, the next n components are that of x_{2} and so on. We define a real valued function h on a subset of $\mathbb{R}^{n^{2}}$ (wherever defined) as $h(z)=\operatorname{det}\left(D_{j} f_{i}\left(x_{i}\right)\right)$. The function h is continuous because determinant is a polynomial and each $D_{j} f_{i}$ is continuous on Ω. Let us choose $A \in \mathbb{R}^{n^{2}}$ such that $x_{i}=a$ for all $i=1,2, \ldots, n$. Then $h(A)=J_{f}(a) \neq 0$. Thus, by continuity of h, there is an open ball O centered at $A \in \mathbb{R}^{n^{2}}$ such that $h(z) \neq 0$ for all $z \in O$. Therefore, $D_{j} f_{i}\left(x_{i}\right) \neq 0$ for all $x_{i} \in B$, where B is some open ball centred at a. We could have chosen B_{2} above (on which f was injective) to be contained in B, then $\bar{B}_{2} \subseteq B$ and hence $D_{j} f_{i}\left(x_{i}\right) \neq 0$ for all $x_{i} \in \bar{B}_{2}$.

Proof Continued...

For simplicity let us denote $g:=f^{-1}$ on V.

Proof Continued...

For simplicity let us denote $g:=f^{-1}$ on V. Since V is open, for any $v \in V$ and very small $t, v+t e_{j} \in V$.

Proof Continued...

For simplicity let us denote $g:=f^{-1}$ on V. Since V is open, for any $v \in V$ and very small $t, v+t e_{j} \in V$. Let $u=g(v) \in U$ and $u^{\prime}=g\left(v+t e_{j}\right) \in U$. Thus, $f\left(u^{\prime}\right)-f(u)=t e_{j}$.

Proof Continued...

For simplicity let us denote $g:=f^{-1}$ on V. Since V is open, for any $v \in V$ and very small $t, v+t e_{j} \in V$. Let $u=g(v) \in U$ and $u^{\prime}=g\left(v+t e_{j}\right) \in U$. Thus, $f\left(u^{\prime}\right)-f(u)=t e_{j}$. Therefore, for each $i=1,2, \ldots, n$,

$$
\frac{f_{i}\left(u^{\prime}\right)-f_{i}(u)}{t}= \begin{cases}0 & i \neq j \\ 1 & i=j\end{cases}
$$

Proof Continued...

For simplicity let us denote $g:=f^{-1}$ on V. Since V is open, for any $v \in V$ and very small $t, v+t e_{j} \in V$. Let $u=g(v) \in U$ and $u^{\prime}=g\left(v+t e_{j}\right) \in U$. Thus, $f\left(u^{\prime}\right)-f(u)=t e_{j}$. Therefore, for each $i=1,2, \ldots, n$,

$$
\frac{f_{i}\left(u^{\prime}\right)-f_{i}(u)}{t}= \begin{cases}0 & i \neq j \\ 1 & i=j\end{cases}
$$

By mean value theorem, for each $i=1,2, \ldots, n$, there is a $x_{i} \in\left[u, u^{\prime}\right]$, line joining u and u^{\prime},

$$
\frac{f_{i}\left(u^{\prime}\right)-f_{i}(u)}{t}=\nabla f_{i}\left(x_{i}\right) \cdot \frac{u^{\prime}-u}{t}
$$

Proof Continued...

For simplicity let us denote $g:=f^{-1}$ on V. Since V is open, for any $v \in V$ and very small $t, v+t e_{j} \in V$. Let $u=g(v) \in U$ and $u^{\prime}=g\left(v+t e_{j}\right) \in U$. Thus, $f\left(u^{\prime}\right)-f(u)=t e_{j}$. Therefore, for each $i=1,2, \ldots, n$,

$$
\frac{f_{i}\left(u^{\prime}\right)-f_{i}(u)}{t}= \begin{cases}0 & i \neq j \\ 1 & i=j\end{cases}
$$

By mean value theorem, for each $i=1,2, \ldots, n$, there is a $x_{i} \in\left[u, u^{\prime}\right]$, line joining u and u^{\prime},

$$
\frac{f_{i}\left(u^{\prime}\right)-f_{i}(u)}{t}=\nabla f_{i}\left(x_{i}\right) \cdot \frac{u^{\prime}-u}{t}
$$

Thus, we have the system of equations

$$
\left[D_{k} f_{i}\left(x_{i}\right)\right]\left[\frac{u^{\prime}-u}{t}\right]=e_{j} .
$$

Proof Continued...

The above system of equations is solvable because $D_{k} f_{i}\left(x_{i}\right)=h(z) \neq 0$.

Proof Continued...

The above system of equations is solvable because $D_{k} f_{i}\left(x_{i}\right)=h(z) \neq 0$. By Cramer's rule, solving for the ℓ-th unknown, we get

$$
\frac{g_{\ell}\left(v+t e_{j}\right)-g_{\ell}(v)}{t}=\frac{u_{\ell}^{\prime}-u_{\ell}}{t}=\frac{\operatorname{det}\left(A_{\ell}\right)}{\operatorname{det}\left(D_{k} f_{i}\left(x_{i}\right)\right)}
$$

where A_{ℓ} is the matrix $\left[D_{j} f_{i}\left(x_{i}\right)\right]$ where the ℓ-th column is replaced by e_{j}.

Proof Continued...

The above system of equations is solvable because $D_{k} f_{i}\left(x_{i}\right)=h(z) \neq 0$. By Cramer's rule, solving for the ℓ-th unknown, we get

$$
\frac{g_{\ell}\left(v+t e_{j}\right)-g_{\ell}(v)}{t}=\frac{u_{\ell}^{\prime}-u_{\ell}}{t}=\frac{\operatorname{det}\left(A_{\ell}\right)}{\operatorname{det}\left(D_{k} f_{i}\left(x_{i}\right)\right)}
$$

where A_{ℓ} is the matrix $\left[D_{j} f_{i}\left(x_{i}\right)\right]$ where the ℓ-th column is replaced by e_{j}. Taking limits, as $t \rightarrow 0$, we get

$$
D_{j} g_{\ell}(v)=\frac{\operatorname{det}\left(A_{\ell}(u)\right)}{J_{f}(u)}
$$

where $A_{\ell}(u)$ is the matrix $\left[D_{j} f_{i}(u)\right]$ where the ℓ-th column is replaced by e_{j}.

Proof Continued...

The above system of equations is solvable because $D_{k} f_{i}\left(x_{i}\right)=h(z) \neq 0$. By Cramer's rule, solving for the ℓ-th unknown, we get

$$
\frac{g_{\ell}\left(v+t e_{j}\right)-g_{\ell}(v)}{t}=\frac{u_{\ell}^{\prime}-u_{\ell}}{t}=\frac{\operatorname{det}\left(A_{\ell}\right)}{\operatorname{det}\left(D_{k} f_{i}\left(x_{i}\right)\right)}
$$

where A_{ℓ} is the matrix $\left[D_{j} f_{i}\left(x_{i}\right)\right]$ where the ℓ-th column is replaced by e_{j}. Taking limits, as $t \rightarrow 0$, we get

$$
D_{j} g_{\ell}(v)=\frac{\operatorname{det}\left(A_{\ell}(u)\right)}{J_{f}(u)}
$$

where $A_{\ell}(u)$ is the matrix $\left[D_{j} f_{i}(u)\right.$] where the ℓ-th column is replaced by e_{j}. Therefore, partial derivatives of g exists and is continuous because it is quotient of continuous functions.

Functions Locally as Graph

Recall that a curve in a plane is not always the graph of some function. For instance, the unit circle S^{1} in a plane has the equation $x^{2}+y^{2}=1$ and the form $y= \pm \sqrt{1-x^{2}}$ is multi-valued.

Functions Locally as Graph

Recall that a curve in a plane is not always the graph of some function. For instance, the unit circle S^{1} in a plane has the equation $x^{2}+y^{2}=1$ and the form $y= \pm \sqrt{1-x^{2}}$ is multi-valued.

Example

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined as $f(x, y)=x^{2}+y^{2}-1$.

Functions Locally as Graph

Recall that a curve in a plane is not always the graph of some function. For instance, the unit circle S^{1} in a plane has the equation $x^{2}+y^{2}=1$ and the form $y= \pm \sqrt{1-x^{2}}$ is multi-valued.

Example

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined as $f(x, y)=x^{2}+y^{2}-1$. Then $f(x, y)=0$ is an equation of S^{1} in \mathbb{R}^{2}.

Functions Locally as Graph

Recall that a curve in a plane is not always the graph of some function. For instance, the unit circle S^{1} in a plane has the equation $x^{2}+y^{2}=1$ and the form $y= \pm \sqrt{1-x^{2}}$ is multi-valued.

Example

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined as $f(x, y)=x^{2}+y^{2}-1$. Then $f(x, y)=0$ is an equation of S^{1} in \mathbb{R}^{2}. Consider any point $\left(x_{0}, y_{0}\right) \in S^{1}$ such that $y_{0}>0$.

Functions Locally as Graph

Recall that a curve in a plane is not always the graph of some function. For instance, the unit circle S^{1} in a plane has the equation $x^{2}+y^{2}=1$ and the form $y= \pm \sqrt{1-x^{2}}$ is multi-valued.

Example

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined as $f(x, y)=x^{2}+y^{2}-1$. Then $f(x, y)=0$ is an equation of S^{1} in \mathbb{R}^{2}. Consider any point $\left(x_{0}, y_{0}\right) \in S^{1}$ such that $y_{0}>0$. Set $g(x)=\sqrt{1-x^{2}}$ and $y_{0}=g\left(x_{0}\right)$ for all $y_{0}>0$. Thus, this expression is valid for very small neighbourhoods U and V of x_{0} and y_{0}, respectively.

Functions Locally as Graph

Recall that a curve in a plane is not always the graph of some function. For instance, the unit circle S^{1} in a plane has the equation $x^{2}+y^{2}=1$ and the form $y= \pm \sqrt{1-x^{2}}$ is multi-valued.

Example

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined as $f(x, y)=x^{2}+y^{2}-1$. Then $f(x, y)=0$ is an equation of S^{1} in \mathbb{R}^{2}. Consider any point $\left(x_{0}, y_{0}\right) \in S^{1}$ such that $y_{0}>0$. Set $g(x)=\sqrt{1-x^{2}}$ and $y_{0}=g\left(x_{0}\right)$ for all $y_{0}>0$. Thus, this expression is valid for very small neighbourhoods U and V of x_{0} and y_{0}, respectively. Similar argument holds true for $y_{0}<0$ with $g(x)=-\sqrt{1-x^{2}}$.

Functions Locally as Graph

Recall that a curve in a plane is not always the graph of some function. For instance, the unit circle S^{1} in a plane has the equation $x^{2}+y^{2}=1$ and the form $y= \pm \sqrt{1-x^{2}}$ is multi-valued.

Example

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined as $f(x, y)=x^{2}+y^{2}-1$. Then $f(x, y)=0$ is an equation of S^{1} in \mathbb{R}^{2}. Consider any point $\left(x_{0}, y_{0}\right) \in S^{1}$ such that $y_{0}>0$. Set $g(x)=\sqrt{1-x^{2}}$ and $y_{0}=g\left(x_{0}\right)$ for all $y_{0}>0$. Thus, this expression is valid for very small neighbourhoods U and V of x_{0} and y_{0}, respectively. Similar argument holds true for $y_{0}<0$ with $g(x)=-\sqrt{1-x^{2}}$. Note that in both these cases $f_{y}\left(x_{0}, y_{0}\right)=2 y_{0} \neq 0$.

Functions Locally as Graph

Recall that a curve in a plane is not always the graph of some function. For instance, the unit circle S^{1} in a plane has the equation $x^{2}+y^{2}=1$ and the form $y= \pm \sqrt{1-x^{2}}$ is multi-valued.

Example

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined as $f(x, y)=x^{2}+y^{2}-1$. Then $f(x, y)=0$ is an equation of S^{1} in \mathbb{R}^{2}. Consider any point $\left(x_{0}, y_{0}\right) \in S^{1}$ such that $y_{0}>0$. Set $g(x)=\sqrt{1-x^{2}}$ and $y_{0}=g\left(x_{0}\right)$ for all $y_{0}>0$. Thus, this expression is valid for very small neighbourhoods U and V of x_{0} and y_{0}, respectively. Similar argument holds true for $y_{0}<0$ with $g(x)=-\sqrt{1-x^{2}}$. Note that in both these cases $f_{y}\left(x_{0}, y_{0}\right)=2 y_{0} \neq 0$. Consider the case when $y_{0}=0$, i.e., $\left(x_{0}, y_{0}\right)$ is either $(-1,0)$ or $(1,0)$.

Functions Locally as Graph

Recall that a curve in a plane is not always the graph of some function. For instance, the unit circle S^{1} in a plane has the equation $x^{2}+y^{2}=1$ and the form $y= \pm \sqrt{1-x^{2}}$ is multi-valued.

Example

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined as $f(x, y)=x^{2}+y^{2}-1$. Then $f(x, y)=0$ is an equation of S^{1} in \mathbb{R}^{2}. Consider any point $\left(x_{0}, y_{0}\right) \in S^{1}$ such that $y_{0}>0$. Set $g(x)=\sqrt{1-x^{2}}$ and $y_{0}=g\left(x_{0}\right)$ for all $y_{0}>0$. Thus, this expression is valid for very small neighbourhoods U and V of x_{0} and y_{0}, respectively. Similar argument holds true for $y_{0}<0$ with $g(x)=-\sqrt{1-x^{2}}$. Note that in both these cases $f_{y}\left(x_{0}, y_{0}\right)=2 y_{0} \neq 0$. Consider the case when $y_{0}=0$, i.e., $\left(x_{0}, y_{0}\right)$ is either $(-1,0)$ or $(1,0)$. Observe that $f_{y}\left(x_{0}, y_{0}\right)=0$ and there is no function g in any neighbourhood of x_{0} such that $y_{0}=g\left(x_{0}\right)$.

Zero Case is Inconclusive

The previous example suggests that one may have local explicit form at a point $\left(x_{0}, y_{0}\right)$ provided $f_{y}\left(x_{0}, y_{0}\right) \neq 0$, a fact we shall prove in more generality in the implicit function theorem.

Zero Case is Inconclusive

The previous example suggests that one may have local explicit form at a point $\left(x_{0}, y_{0}\right)$ provided $f_{y}\left(x_{0}, y_{0}\right) \neq 0$, a fact we shall prove in more generality in the implicit function theorem. However, the situation $f_{y}\left(x_{0}, y_{0}\right)=0$ is usually inconclusive as seen in examples below.

Zero Case is Inconclusive

The previous example suggests that one may have local explicit form at a point $\left(x_{0}, y_{0}\right)$ provided $f_{y}\left(x_{0}, y_{0}\right) \neq 0$, a fact we shall prove in more generality in the implicit function theorem. However, the situation $f_{y}\left(x_{0}, y_{0}\right)=0$ is usually inconclusive as seen in examples below.

Example

- Consider the curve $f(x, y)=0$ in \mathbb{R}^{2} where $f(x, y)=x-y^{3}$.

Zero Case is Inconclusive

The previous example suggests that one may have local explicit form at a point $\left(x_{0}, y_{0}\right)$ provided $f_{y}\left(x_{0}, y_{0}\right) \neq 0$, a fact we shall prove in more generality in the implicit function theorem. However, the situation $f_{y}\left(x_{0}, y_{0}\right)=0$ is usually inconclusive as seen in examples below.

Example

- Consider the curve $f(x, y)=0$ in \mathbb{R}^{2} where $f(x, y)=x-y^{3}$.Consider the point $(0,0)$ in the curve. Note that $f_{y}(x, y)=-3 y^{2}$ and $f_{y}(0,0)=0$.

Zero Case is Inconclusive

The previous example suggests that one may have local explicit form at a point $\left(x_{0}, y_{0}\right)$ provided $f_{y}\left(x_{0}, y_{0}\right) \neq 0$, a fact we shall prove in more generality in the implicit function theorem. However, the situation $f_{y}\left(x_{0}, y_{0}\right)=0$ is usually inconclusive as seen in examples below.

Example

- Consider the curve $f(x, y)=0$ in \mathbb{R}^{2} where $f(x, y)=x-y^{3}$.Consider the point $(0,0)$ in the curve. Note that $f_{y}(x, y)=-3 y^{2}$ and $f_{y}(0,0)=0$. But $g(x)=x^{1 / 3}$ is an explicit form for any neighbourhood of $(0,0)$.

Zero Case is Inconclusive

The previous example suggests that one may have local explicit form at a point $\left(x_{0}, y_{0}\right)$ provided $f_{y}\left(x_{0}, y_{0}\right) \neq 0$, a fact we shall prove in more generality in the implicit function theorem. However, the situation $f_{y}\left(x_{0}, y_{0}\right)=0$ is usually inconclusive as seen in examples below.

Example

- Consider the curve $f(x, y)=0$ in \mathbb{R}^{2} where $f(x, y)=x-y^{3}$.Consider the point $(0,0)$ in the curve. Note that $f_{y}(x, y)=-3 y^{2}$ and $f_{y}(0,0)=0$. But $g(x)=x^{1 / 3}$ is an explicit form for any neighbourhood of $(0,0)$.
- Consider the union of the axes in \mathbb{R}^{2} given by the equation $f(x, y)=0$ where $f(x, y)=x y$.

Zero Case is Inconclusive

The previous example suggests that one may have local explicit form at a point $\left(x_{0}, y_{0}\right)$ provided $f_{y}\left(x_{0}, y_{0}\right) \neq 0$, a fact we shall prove in more generality in the implicit function theorem. However, the situation $f_{y}\left(x_{0}, y_{0}\right)=0$ is usually inconclusive as seen in examples below.

Example

- Consider the curve $f(x, y)=0$ in \mathbb{R}^{2} where $f(x, y)=x-y^{3}$.Consider the point $(0,0)$ in the curve. Note that $f_{y}(x, y)=-3 y^{2}$ and $f_{y}(0,0)=0$. But $g(x)=x^{1 / 3}$ is an explicit form for any neighbourhood of $(0,0)$.
- Consider the union of the axes in \mathbb{R}^{2} given by the equation $f(x, y)=0$ where $f(x, y)=x y$. Note that $f_{y}(x, y)=x$ and is non-zero for $x \neq 0$. Thus, for $x_{0} \neq 0$, in a neighbourhood U of x_{0} not containing 0 , we may define $g(x)=0$ mapping to any neighbourhood V of $y_{0}=0$. However, for $x_{0}=0$, there is no g, in any neighbourhood of x_{0}, such that $y_{0}=g\left(x_{0}\right)$.

Implicit Function Theorem

Theorem (Implicit Function Theorem)

Let $\Omega \subset \mathbb{R}^{m} \times \mathbb{R}^{n}$ be an open subset and $f: \Omega \rightarrow \mathbb{R}^{n}$ such that f is continuously differentiable in Ω. Let $\left(x_{0}, y_{0}\right) \in \Omega$ be such that $f\left(x_{0}, y_{0}\right)=0$ and the $n \times n$ matrix

$$
D_{y} f\left(x_{0}, y_{0}\right):=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial y_{1}}\left(x_{0}, y_{0}\right) & \cdots & \frac{\partial f_{1}}{\partial y_{n}}\left(x_{0}, y_{0}\right) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial y_{1}}\left(x_{0}, y_{0}\right) & \cdots & \frac{\partial f_{n}}{\partial y_{n}}\left(x_{0}, y_{0}\right)
\end{array}\right)
$$

is non-singular, then there is a neighbourhood $U \subset \mathbb{R}^{m}$ of x_{0} and a unique function $g: U \rightarrow \mathbb{R}^{n}$ such that $g\left(x_{0}\right)=y_{0}$ and, for all $x \in U$, $f(x, g(x))=0$. Further g is continuously differentiable in U.

Proof

Let us define a function $F: \Omega \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{n}$ as $F(x ; y):=(\mid x ; f(x, y))$, where $I: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is the identity map.

Proof

Let us define a function $F: \Omega \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{n}$ as $F(x ; y):=(I x ; f(x, y))$, where $I: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is the identity map. Note that the determinant of the $(m+n) \times(m+n)$ Jacobian of $F, J_{F}(x ; y)$ at $\left(x_{0} ; y_{0}\right)$,

$$
J_{F}\left(x_{0}, y_{0}\right)=\left\lvert\, \begin{array}{cc}
I & 0 \\
D_{x} f\left(x_{0}, y_{0}\right) & D_{y} f\left(x_{0}, y_{0}\right)
\end{array}\right.
$$

is same as the determinant of the $n \times n$ matrix $D_{y} f(a)$.

Proof

Let us define a function $F: \Omega \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{n}$ as $F(x ; y):=(I x ; f(x, y))$, where $I: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is the identity map. Note that the determinant of the $(m+n) \times(m+n)$ Jacobian of $F, J_{F}(x ; y)$ at $\left(x_{0} ; y_{0}\right)$,

$$
J_{F}\left(x_{0}, y_{0}\right)=\left|\begin{array}{cc}
I & 0 \\
D_{x} f\left(x_{0}, y_{0}\right) & D_{y} f\left(x_{0}, y_{0}\right)
\end{array}\right|
$$

is same as the determinant of the $n \times n$ matrix $D_{y} f(a)$. Hence, $J_{F}\left(x_{0} ; y_{0}\right) \neq 0$.

Proof

Let us define a function $F: \Omega \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{n}$ as $F(x ; y):=(I x ; f(x, y))$, where $I: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is the identity map. Note that the determinant of the $(m+n) \times(m+n)$ Jacobian of $F, J_{F}(x ; y)$ at $\left(x_{0} ; y_{0}\right)$,

$$
J_{F}\left(x_{0}, y_{0}\right)=\left|\begin{array}{cc}
I & 0 \\
D_{x} f\left(x_{0}, y_{0}\right) & D_{y} f\left(x_{0}, y_{0}\right)
\end{array}\right|
$$

is same as the determinant of the $n \times n$ matrix $D_{y} f(a)$. Hence, $J_{F}\left(x_{0} ; y_{0}\right) \neq 0$. Further $F\left(x_{0} ; y_{0}\right)=\left(x_{0} ; 0\right)$, since $f\left(x_{0}, y_{0}\right)=0$.

Proof

Let us define a function $F: \Omega \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{n}$ as $F(x ; y):=(I x ; f(x, y))$, where $I: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is the identity map. Note that the determinant of the $(m+n) \times(m+n)$ Jacobian of $F, J_{F}(x ; y)$ at $\left(x_{0} ; y_{0}\right)$,

$$
J_{F}\left(x_{0}, y_{0}\right)=\left\lvert\, \begin{array}{cc}
I & 0 \\
D_{x} f\left(x_{0}, y_{0}\right) & D_{y} f\left(x_{0}, y_{0}\right)
\end{array}\right.
$$

is same as the determinant of the $n \times n$ matrix $D_{y} f(a)$. Hence, $J_{F}\left(x_{0} ; y_{0}\right) \neq 0$. Further $F\left(x_{0} ; y_{0}\right)=\left(x_{0} ; 0\right)$, since $f\left(x_{0}, y_{0}\right)=0$. Therefore, by inverse function theorem, there exists open sets W and V containing $\left(x_{0} ; y_{0}\right)$ and $\left(x_{0} ; 0\right)$, respectively, such that the inverse of F in W, $G: V \rightarrow W$, is in C^{1} and $G(F(x ; y))=(x ; y)$.

Proof

Let us define a function $F: \Omega \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{n}$ as $F(x ; y):=(I x ; f(x, y))$, where $I: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is the identity map. Note that the determinant of the $(m+n) \times(m+n)$ Jacobian of $F, J_{F}(x ; y)$ at $\left(x_{0} ; y_{0}\right)$,

$$
J_{F}\left(x_{0}, y_{0}\right)=\left\lvert\, \begin{array}{cc}
l & 0 \\
D_{x} f\left(x_{0}, y_{0}\right) & D_{y} f\left(x_{0}, y_{0}\right)
\end{array}\right.
$$

is same as the determinant of the $n \times n$ matrix $D_{y} f(a)$. Hence, $J_{F}\left(x_{0} ; y_{0}\right) \neq 0$. Further $F\left(x_{0} ; y_{0}\right)=\left(x_{0} ; 0\right)$, since $f\left(x_{0}, y_{0}\right)=0$. Therefore, by inverse function theorem, there exists open sets W and V containing $\left(x_{0} ; y_{0}\right)$ and $\left(x_{0} ; 0\right)$, respectively, such that the inverse of F in W, $G: V \rightarrow W$, is in C^{1} and $G(F(x ; y))=(x ; y)$. Let $G:=\left(G_{1}, G_{2}\right)$ be components of G such that $G_{1}: \mathbb{R}^{m} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $G_{2}: \mathbb{R}^{m} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Therefore, $G_{1}(F(x ; y))=x$ and $G_{2}(F(x ; y))=y$.

Proof Continued...

Let $U:=\left\{x \in \mathbb{R}^{m} \mid(x, 0) \in V\right\}$ and is an open set containing x_{0} and define $g: U \rightarrow \mathbb{R}^{n}$ as $g(x):=G_{2}(x ; 0)$.

Proof Continued...

Let $U:=\left\{x \in \mathbb{R}^{m} \mid(x, 0) \in V\right\}$ and is an open set containing x_{0} and define $g: U \rightarrow \mathbb{R}^{n}$ as $g(x):=G_{2}(x ; 0)$. Thus, by definition, g is C^{1} on U. Further, $g\left(x_{0}\right)=G_{2}\left(x_{0} ; 0\right)=G_{2}\left(F\left(x_{0} ; y_{0}\right)\right)=y_{0}$.

Proof Continued...

Let $U:=\left\{x \in \mathbb{R}^{m} \mid(x, 0) \in V\right\}$ and is an open set containing x_{0} and define $g: U \rightarrow \mathbb{R}^{n}$ as $g(x):=G_{2}(x ; 0)$. Thus, by definition, g is C^{1} on U. Further, $g\left(x_{0}\right)=G_{2}\left(x_{0} ; 0\right)=G_{2}\left(F\left(x_{0} ; y_{0}\right)\right)=y_{0}$.
For every $\left(v_{1} ; v_{2}\right) \in V$ there is a unique $\left(w_{1} ; w_{2}\right) \in W$ such that $F\left(w_{1} ; w_{2}\right)=\left(v_{1} ; v_{2}\right)$ because F is bijective from W to V.

Proof Continued...

Let $U:=\left\{x \in \mathbb{R}^{m} \mid(x, 0) \in V\right\}$ and is an open set containing x_{0} and define $g: U \rightarrow \mathbb{R}^{n}$ as $g(x):=G_{2}(x ; 0)$. Thus, by definition, g is C^{1} on U. Further, $g\left(x_{0}\right)=G_{2}\left(x_{0} ; 0\right)=G_{2}\left(F\left(x_{0} ; y_{0}\right)\right)=y_{0}$.
For every $\left(v_{1} ; v_{2}\right) \in V$ there is a unique $\left(w_{1} ; w_{2}\right) \in W$ such that $F\left(w_{1} ; w_{2}\right)=\left(v_{1} ; v_{2}\right)$ because F is bijective from W to V.But we know, by definition, that $\left(v_{1} ; v_{2}\right)=F\left(w_{1} ; w_{2}\right)=\left(w_{1} ; f\left(w_{1} ; w_{2}\right)\right)$.

Proof Continued...

Let $U:=\left\{x \in \mathbb{R}^{m} \mid(x, 0) \in V\right\}$ and is an open set containing x_{0} and define $g: U \rightarrow \mathbb{R}^{n}$ as $g(x):=G_{2}(x ; 0)$. Thus, by definition, g is C^{1} on U. Further, $g\left(x_{0}\right)=G_{2}\left(x_{0} ; 0\right)=G_{2}\left(F\left(x_{0} ; y_{0}\right)\right)=y_{0}$.
For every $\left(v_{1} ; v_{2}\right) \in V$ there is a unique $\left(w_{1} ; w_{2}\right) \in W$ such that $F\left(w_{1} ; w_{2}\right)=\left(v_{1} ; v_{2}\right)$ because F is bijective from W to V.But we know, by definition, that $\left(v_{1} ; v_{2}\right)=F\left(w_{1} ; w_{2}\right)=\left(w_{1} ; f\left(w_{1} ; w_{2}\right)\right)$. This implies that $w_{1}=v_{1}$ and hence $G\left(v_{1} ; v_{2}\right)=\left(v_{1} ; w_{2}\right)$.

Proof Continued...

Let $U:=\left\{x \in \mathbb{R}^{m} \mid(x, 0) \in V\right\}$ and is an open set containing x_{0} and define $g: U \rightarrow \mathbb{R}^{n}$ as $g(x):=G_{2}(x ; 0)$. Thus, by definition, g is C^{1} on U. Further, $g\left(x_{0}\right)=G_{2}\left(x_{0} ; 0\right)=G_{2}\left(F\left(x_{0} ; y_{0}\right)\right)=y_{0}$.
For every $\left(v_{1} ; v_{2}\right) \in V$ there is a unique $\left(w_{1} ; w_{2}\right) \in W$ such that $F\left(w_{1} ; w_{2}\right)=\left(v_{1} ; v_{2}\right)$ because F is bijective from W to V.But we know, by definition, that $\left(v_{1} ; v_{2}\right)=F\left(w_{1} ; w_{2}\right)=\left(w_{1} ; f\left(w_{1} ; w_{2}\right)\right)$. This implies that $w_{1}=v_{1}$ and hence $G\left(v_{1} ; v_{2}\right)=\left(v_{1} ; w_{2}\right)$. Therefore, $G_{1}\left(v_{1} ; v_{2}\right)=v_{1}$ and $\left(v_{1}, v_{2}\right)=F\left(G\left(v_{1} ; v_{2}\right)\right)=F\left(v_{1} ; G_{2}\left(v_{1} ; v_{2}\right)\right)$.

Proof Continued...

Let $U:=\left\{x \in \mathbb{R}^{m} \mid(x, 0) \in V\right\}$ and is an open set containing x_{0} and define $g: U \rightarrow \mathbb{R}^{n}$ as $g(x):=G_{2}(x ; 0)$. Thus, by definition, g is C^{1} on U. Further, $g\left(x_{0}\right)=G_{2}\left(x_{0} ; 0\right)=G_{2}\left(F\left(x_{0} ; y_{0}\right)\right)=y_{0}$.
For every $\left(v_{1} ; v_{2}\right) \in V$ there is a unique $\left(w_{1} ; w_{2}\right) \in W$ such that $F\left(w_{1} ; w_{2}\right)=\left(v_{1} ; v_{2}\right)$ because F is bijective from W to V.But we know, by definition, that $\left(v_{1} ; v_{2}\right)=F\left(w_{1} ; w_{2}\right)=\left(w_{1} ; f\left(w_{1} ; w_{2}\right)\right)$. This implies that $w_{1}=v_{1}$ and hence $G\left(v_{1} ; v_{2}\right)=\left(v_{1} ; w_{2}\right)$. Therefore, $G_{1}\left(v_{1} ; v_{2}\right)=v_{1}$ and $\left(v_{1}, v_{2}\right)=F\left(G\left(v_{1} ; v_{2}\right)\right)=F\left(v_{1} ; G_{2}\left(v_{1} ; v_{2}\right)\right)$. For all $(x ; y) \in V$, we have $F(G(x ; y))=(x ; y)$ and hence for all $x \in U$, we have $F(G(x ; 0))=(x ; 0)$.

Proof Continued...

Let $U:=\left\{x \in \mathbb{R}^{m} \mid(x, 0) \in V\right\}$ and is an open set containing x_{0} and define $g: U \rightarrow \mathbb{R}^{n}$ as $g(x):=G_{2}(x ; 0)$. Thus, by definition, g is C^{1} on U. Further, $g\left(x_{0}\right)=G_{2}\left(x_{0} ; 0\right)=G_{2}\left(F\left(x_{0} ; y_{0}\right)\right)=y_{0}$.
For every $\left(v_{1} ; v_{2}\right) \in V$ there is a unique $\left(w_{1} ; w_{2}\right) \in W$ such that $F\left(w_{1} ; w_{2}\right)=\left(v_{1} ; v_{2}\right)$ because F is bijective from W to V.But we know, by definition, that $\left(v_{1} ; v_{2}\right)=F\left(w_{1} ; w_{2}\right)=\left(w_{1} ; f\left(w_{1} ; w_{2}\right)\right)$. This implies that $w_{1}=v_{1}$ and hence $G\left(v_{1} ; v_{2}\right)=\left(v_{1} ; w_{2}\right)$. Therefore, $G_{1}\left(v_{1} ; v_{2}\right)=v_{1}$ and $\left(v_{1}, v_{2}\right)=F\left(G\left(v_{1} ; v_{2}\right)\right)=F\left(v_{1} ; G_{2}\left(v_{1} ; v_{2}\right)\right)$. For all $(x ; y) \in V$, we have $F(G(x ; y))=(x ; y)$ and hence for all $x \in U$, we have $F(G(x ; 0))=(x ; 0)$. This implies that $(x ; 0)=F\left(G_{1}(x ; 0) ; G_{2}(x ; 0)\right)=F(x ; g(x))=(x ; f(x, g(x))$. Thus, $f(x, g(x))=0$.

Proof Continued..

Let $U:=\left\{x \in \mathbb{R}^{m} \mid(x, 0) \in V\right\}$ and is an open set containing x_{0} and define $g: U \rightarrow \mathbb{R}^{n}$ as $g(x):=G_{2}(x ; 0)$. Thus, by definition, g is C^{1} on U. Further, $g\left(x_{0}\right)=G_{2}\left(x_{0} ; 0\right)=G_{2}\left(F\left(x_{0} ; y_{0}\right)\right)=y_{0}$.
For every $\left(v_{1} ; v_{2}\right) \in V$ there is a unique $\left(w_{1} ; w_{2}\right) \in W$ such that $F\left(w_{1} ; w_{2}\right)=\left(v_{1} ; v_{2}\right)$ because F is bijective from W to V.But we know, by definition, that $\left(v_{1} ; v_{2}\right)=F\left(w_{1} ; w_{2}\right)=\left(w_{1} ; f\left(w_{1} ; w_{2}\right)\right)$. This implies that $w_{1}=v_{1}$ and hence $G\left(v_{1} ; v_{2}\right)=\left(v_{1} ; w_{2}\right)$. Therefore, $G_{1}\left(v_{1} ; v_{2}\right)=v_{1}$ and $\left(v_{1}, v_{2}\right)=F\left(G\left(v_{1} ; v_{2}\right)\right)=F\left(v_{1} ; G_{2}\left(v_{1} ; v_{2}\right)\right)$. For all $(x ; y) \in V$, we have $F(G(x ; y))=(x ; y)$ and hence for all $x \in U$, we have $F(G(x ; 0))=(x ; 0)$. This implies that $(x ; 0)=F\left(G_{1}(x ; 0) ; G_{2}(x ; 0)\right)=F(x ; g(x))=(x ; f(x, g(x))$. Thus, $f(x, g(x))=0$. The uniqueness of g follows from the uniqueness of the inverse map G of F.

