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1 First Week
Imaginary Number ı
Fundamental Theorem of Algebra

2 Second Week
Visualising Complex Numbers and Maps
Holomorphic Functions and Cauchy-Riemann Equations

3 Third Week
Laplacian and Harmonic Functions
Two Dimensional Harmonic Functions and Dirichlet Problem
Contour Integration and Homotopy

4 Fourth Week
Cauchy Theorems
Taylor Series and Zeroes of Holomorphic Functions

5 Fifth Week
Laurent, Fourier Series and Singularity
Baire Category Theorem

6 Sixth Week
Space of Continuous Functions
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Dense Subsets of Continuous Functions
7 Seventh Week

Approximation of Periodic Continuous Functions and Fourier Series
Regularization and Cut-off Technique

8 Eighth Week
Compact Subsets of C (X )
Compact Subsets of Lp(Rn)
Space Filling Curves

9 Ninth Week
Nowhere Differentiable Continuous Functions
No Complete Metric on Space of Polynomials
Solution of Differential Equations as Fixed Point

10 Tenth Week
Existence Results for Nonlinear ODE
Existence of Solution to Nonlinear Two Point Boundary Value
Problem

11 Eleventh Week
Stability of two-point Boundary Value Problem
Open Mapping Theorem (Non-Linear Version)
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12 Twelfth Week
Inverse and Implicit Function Theorem
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Purpose of the Course

The course will recall and refresh selected topics from analysis that
you may have come across in your bachelors and masters programme.

Given the different academic backgrounds students may have come
from, the purpose of the course is to the ensure that the student’s
understanding of concept in Analysis are on equal footing.

However, to avoid boring repetition, an attempt is being made to
present the topics in an application oriented perspective, thus
compromising on the usual logical order.
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Algebraic and Differential Equations

Till the invention of calculus (differentiation and integration), all the
mathematical modelling involved only algebraic equations.

The invention of calculus gave rise to differential equations (DEs).

Modern topics in Analysis grew out of the attempt to understand and
analyse the solutions of DEs.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 3 / 251



Algebraic and Differential Equations

Till the invention of calculus (differentiation and integration), all the
mathematical modelling involved only algebraic equations.

The invention of calculus gave rise to differential equations (DEs).

Modern topics in Analysis grew out of the attempt to understand and
analyse the solutions of DEs.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 3 / 251



Algebraic and Differential Equations

Till the invention of calculus (differentiation and integration), all the
mathematical modelling involved only algebraic equations.

The invention of calculus gave rise to differential equations (DEs).

Modern topics in Analysis grew out of the attempt to understand and
analyse the solutions of DEs.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 3 / 251



One Variable Polynomials

While defining the n-th root of a real number, one naturally encounters
the following algebraic equation: Given any a ∈ R and n ∈ N, find all
x ∈ R such that xn = a.

Definition

A polynomial in one variable of degree n is a map f : R→ R defined as

f (x) := anx
n + an−1x

n−1 + . . .+ a2x
2 + a1x + a0

where {a0, a1, . . . , an−1, an} ⊂ R, the coefficients, and N ∪ {0} are given
such that an 6= 0.

A constant function is a polynomial of degree zero.
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Zeroes or Roots of Polynomial

One is interested to find all x ∈ R where the polynomial attains zero.

−1 0 1 2 3 4

−4

−2

0

2

4

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 5 / 251



Zero Degree Polynomial

The constant function zero has infinitely many roots!

Every non-zero constant function has no roots!

x

y
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One Degree Polynomial

Consider the polynomial in one variable of degree one, f : R→ R
defined as f (x) = ax + b for any given a, b ∈ R and a 6= 0.

If f attains zero at some x , then ax + b = 0 and hence x = −b/a.
Thus, there is exactly one zero of f .
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Quadratic Equations

The polynomial in one variable of degree two, called quadratic
function, is a map f : R→ R defined as f (x) = ax2 + bx + c , for any
given a, b, c ∈ R with a 6= 0.

If f attains zero at some x , we should have

ax2 + bx + c = 0

x2 +
b

a
x = −c

a

x2 +
b

a
x +

(
b

2a

)2

= −c

a
+

(
b

2a

)2

(
x +

b

2a

)2

=
b2 − 4ac

4a2

x +
b

2a
= ±

√
b2 − 4ac

2a

x =
−b ±

√
b2 − 4ac

2a
.
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Positive Discriminant

The ± symbol denotes that we get at most two roots of f . We have
three situations depending on the sign of the discriminant, b2 − 4ac.

The case b2 − 4ac > 0 corresponds to two distinct real roots. The
graph of the polynomial lies on both the upper and lower plane.

x

y

x

y
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Zero Discriminant

The case b2 − 4ac = 0 corresponds to exactly one root. The graph of
the polynomial lies on either upper or lower plane but touches the
x-axis tangentially.

x

y

x

y

Observe that in this case the zero is also a zero of the derivative (zero
slope tangent). It is a repeated (double) root!
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Negative Discriminant

The case b2 − 4ac < 0 corresponds to no real roots. The graph never
intersects/touches the x-axis but lies completely in either the upper or
lower plane.

x

y

x

y

For example, consider the function f (x) = x2 + 1. Note that for any
x ∈ R, x2 + 1 ≥ 1 > 0. Hence the function f never attains zero.

There is no reason to seek an ‘imaginary’ solution to x2 + 1 = 0 yet!
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Cubic Equations

The formula for roots of cubic equation were discovered
independently by Scipione del Ferro and Nicolo Tartaglia which were
orally passed on to Girolamo Cardano who published it in 1545.

The polynomial in one variable of degree three, called cubic function,
is f : R→ R defined as f (x) = ax3 + bx2 + cx + d , for any given
a, b, c, d ∈ R with a 6= 0.

The roots are given by the Cardan’s Formula x = y − b
3a where

y =

(
− q

2a
+

√
q2

4a2
+

p3

27

)1/3

+

(
− q

2a
−
√

q2

4a2
+

p3

27

)1/3

,

p :=
3ac − b2

3a
(1.1)

and

q :=

(
b

3a

)3

(3a− 1) +
3ad − bc

3a
. (1.2)
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The imaginary number ı

The need to introduce an ‘imaginary’ solution to x2 = −1 arose with
the formula for roots of cubic equations.

For instance, the cubic equation x3 − 3x = 0 has exactly three real
roots 0,

√
3,−
√

3 which is easily seen by rewriting
x3 − x = x(x2 − 3) = x(x +

√
3)(x −

√
3).

For x3 − x = 0, a = 1, p = −3, q = 0. Therefore,
y = (

√
−1)1/3 + (−

√
−1)1/3. Thus, y takes us in to an unknown

territory,
√
−1.

Thus, it seems that to obtain the real roots of the equation with real
coefficients, using the Cardan’s formula, one has to solve for x2 = −1
which, as already observed, admits no real solutions!

This lead to the introduction of ı :=
√
−1 for the purpose of

computing real roots.

To avoid the confusion that
√
−1
√
−1 = −1 which contradicts the

known formula
√
ab =

√
a
√
b, we denote ı =

√
−1 and ı2 = −1.
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y = (

√
−1)1/3 + (−

√
−1)1/3. Thus, y takes us in to an unknown

territory,
√
−1.

Thus, it seems that to obtain the real roots of the equation with real
coefficients, using the Cardan’s formula, one has to solve for x2 = −1
which, as already observed, admits no real solutions!

This lead to the introduction of ı :=
√
−1 for the purpose of

computing real roots.

To avoid the confusion that
√
−1
√
−1 = −1 which contradicts the

known formula
√
ab =

√
a
√
b, we denote ı =

√
−1 and ı2 = −1.
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C is Algebraically Closed

The introduction of imaginary number, ı, enables the possibility of
including complex roots of polynomials.

For instance, x2 + 1 = 0 has no real roots. But the complex
polynomial extension z2 + 1 has exactly two roots ±ı.
The complex extension of a real function is not unique. For instance,
x2 + 1 also has the following possible extensions: [<(z)]2 + 1 and{

z2 + 1 =(z) = 0

0 =(z) 6= 0.

Which of the possible extensions are natural or nice choice? The
theory of holomorphic functions and Analytic Continuation begins
here!

In contrast to R, C is algebraically closed, i.e. all complex
polynomials admit complex roots? This is the statement of the
Fundamental theorem of Algebra.
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Quartic Equations

The formula for roots of a general fourth degree equation was solved
by Lodovico Ferrari (1522-1565) in 1540, much before the solution of
cubic equation was published, but was published much later.

The roots of general quartic equation x4 + ax3 + bx2 + cx + d = 0
can be obtained by solving for x in the two quadratic equations:

x2 +
ax

2
+

y

2
=
√
Ax +

√
C and x2 +

ax

2
+

y

2
= −
√
Ax −

√
C

where A = a2

4 − b + y ,C = y2

4 − d and y is chosen as one of the roots
to the cubic equation:

y3 − by2 + (ac − 4d)y − [d(a2 − 4b) + c2] = 0.

There are three choices for y and every choice will give the same root.
Solving the two quadratic equations for x , we get all four roots of the
quartic equation.
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Polynomials of Degree Five and More

In 1823 Niels Henrick Abel proved that no ‘formula’ exists to compute
the roots of a polynomial of degree 5.

By a ‘formula’, we refer to finite expression which involves elementary
operations and extraction of roots.

In 1832, Evariste Galois showed that no such ‘formula’ exists for a
general polynomial of degree greater than or equal to 5.

Thus, it becomes interesting to prove the existence of roots without
having an explicit formula for roots. This is the statement of
‘Fundamental Theorem of Algebra’.

The proof of the Fundamental theorem of Algebra, is a result in
Analysis!
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Polynomials are Unbounded in C

Any polynomial p : C→ C of degree n has the form
p(z) =

∑n
i=0 aiz

i where ai ∈ C are given.

lim
|z|→∞

|p(z)| = lim
|z|→∞

(
|zn|

∣∣∣an +
an−1

z
+ . . .+

a0

zn

∣∣∣) =∞.

Since |zn| → ∞ as |z | → ∞, we have |p(z)| → ∞, as well. Thus, any
polynomial is unbounded in C.

Above arguments also reveals that lim|z|→∞
p(z)
anzn

= 1.
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Fundamental Theorem of Algebra

The fundamental theorem of algebra (FTA) states that any
non-constant polynomial with complex coefficients of positive degree
admits, at least, one complex root.

This statement is enough to conclude that any non-constant
polynomial has exactly as many roots as its degree, counting
multiplicities.

This follows from the observation that if z0 is a root of a polynomial
p(z) of degree n ≥ 1, then p(z) = (z − z0)q(z) where q is a
polynomial of degree n − 1 which, in turn, will admit atleast one
complex root.

The first correct proof of FTA for real and complex coefficient
polynomial was presented by Carl-Friedrich Gauss in 1816 and 1849,
respectively.
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Fundamental Theorem of Algebra

Theorem

If p : C→ C is a non-constant polynomial with constant coefficients then
there is a complex number z0 ∈ C such that p(z0) = 0.

Proof.

Suppose p(z) 6= 0 for all z ∈ C. Set q(z) := 1/p(z) is an analytic fuction
on C (entire function). By Cauchy’s integral formula, for all r > 0, we have

q(0) =
1

2πi

∫
|z|=r

q(z)

z
dz =

1

2π

∫ 2π

0
q(re iθ) dθ.

The integral on RHS tends to zero as r →∞ because p(z) is unbounded
on C. But the LHS, q(0) = 1/p(0) is non-zero, which is a
contradiction.
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Linear Maps

For any two vector spaces V and W over a field F, the map
T : V →W is said to be linear if T (αx + βy) = αT (x) + βT (y) for
all x , y ∈ V and α, β ∈ F.

If V and W are vector spaces of finite dimension, say n and m
respectively with some chosen basis then T : V →W is linear iff
there is an m × n matrix A such that Tx = Ax .

The dimension of range of T is the rank of T or A and the dimension
of null space of T is the nullity of T or A.

The dimension of V is the sum of the rank and nullity of T .
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Real Numbers Dilate

For instance, a map T : R→ R is linear iff Tx = αx for some α ∈ R,
i.e. the graphs are straight lines in R2 passing through origin with
slope α and angle of inclination tan−1(α).

x

y

The real numbers are in on-to-one correspondence with real valued
linear maps on R.

The real linear maps dilates points. i.e. it stretches (|α| > 1) or
shrinks (|α| < 1) points in R.
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Complex Numbers Rotate and Dilate

For every ω ∈ C, Tω : C→ C defined by the complex multiplication,
Tω(z) = ωz , is linear.

Conversely, any linear map T : C→ C is of the
form Tω with ω = T (1).

Given any complex number ω := x + ıy , for all z := ξ + ıη ∈ C, the
complex multiplication gives

(x + ıy)(ξ + ıη) =

(
xξ − yη
yξ + xη

)
=

(
x −y
y x

)(
ξ
η

)
.

Thus, every linear map on C (or complex number x + ıy or reıθ) can
be associated with the real linear map on R2 of the form(

x −y
y x

)
=

(
r cos θ −r sin θ
r sin θ r cos θ

)
.

There is a one-to-one correspondence between complex numbers (or
linear maps) and rotation-dilation matrices on R2.
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Multiplication in Polar Form

The polar form of any complex number z = (|z |, arg(z)) can be
written as z = |z |eıarg(z) using Euler’s formula.

Thus, multiplication of complex numbers wz = |w ||z |eı(arg(z)+arg(w)).

z

<

w

wz

arg(w)

arg(z)
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Complex Linearity Vs Real Linearity

Recall that, geometrically, derivative at a point is the linear
approximation of the given function at that point.

The complex linearity is a stronger (more restrictive) requirement
than real linearity because the complex scalars include real scalars.
Complex linearity means, for any α + ıβ ∈ C,
T [(α + ıβ)z) = (α + ıβ)T (z). The case β = 0 corresponds to real
linearity.

Consequently, the complex derivative (or complex linear
approximation) is a stronger requirement than the total derivative in
R2.

For instance, the map z 7→ z̄ is not complex linear while its analogue
map in R2, (x , y) 7→ (x ,−y) is real linear.

Thus, while the map (x , y) 7→ (x ,−y) is differentiable everywhere and
its derivative is itself (being linear) the complex valued function
z 7→ z̄ is nowhere complex differentiable.
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Visualising Functions

A function from R to itself can be geometrically understood via its
graph in R2. The graph of a function from C to itself is contained in
R4 which cannot be visualised!

An alternate way to visualise f : C→ C which are injective is by
studying the images of lines and circles.
Lines in C can be thought of as circle of infinite radius, i.e. passing
through infinity. The complex plane with infinity (C ∪ {∞}) is the
Riemann sphere with the north pole identified with infinity.

z = 0

P(x , y , 0)

(ξ, η, ζ)

(0, 0, 1)

For functions that are not injective or is multi-valued can be visualised
using the concept of Riemann surfaces!
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Plot for z2

z2 = (x2 − y2) + ı2xy is not injective.
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Plot for ez

ez = exeıy is not injective because ez+ı2πk = ez for integral k .

=(z)

<(z)
3π
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π

=(ez)

<(ez)

e
3π
10

f (z) = ez
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The inversion map 1
z

The inversion map f (z) = 1
z with 1/0 =∞ (in Riemann sphere) also

preserves the family of lines and circles, i.e. curves of the form
a(x2 + y2) + bx + cy + d = 0 such that b2 + c2 > 4ad .

The image of 2azz̄ + (b − ıc)z + (b + ıc)z̄ + 2d = 0 is
2dww̄ + (b + ıc)z + (b − ıc)z̄ + 2a = 0 which rewritten in terms its
real and imaginary part is d(u2 + v2) + Bu − cv + a = 0.

The image of line through the origin (a = d = 0) is a line through
origin.

The image of line not through the origin (a = 0) is a circle through
the origin.

The image of a circle through origin (d = 0) is a line not through the
origin.

The image of a circle not through origin is a circle not through the
origin.
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Fractional Linear Maps

Recall that linear maps f (z) = az + b, for a 6= 0, also preserve the
family of lines and circles (Rotation, dilation and translation).

Thus, the composition of linear and inverse maps also preserve the
family of circles and lines.

More generally, the fractional linear maps given by

f (z) =
az + b

cz + d

such that ad − bc 6= 0 (to exclude constant functions) preserve the
family of circles and lines because f (z) = a

c + 1
cz+d

(
b − ad

c

)
,

composition of linear and inverse map.
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Conformal maps

The Fractional Linear Transformation are conformal maps.

Conformal maps are functions on C that preserves angles between
curves.

More precisely, a map f : C→ C is conformal at z0 if for any smooth
curve γ passing through z0 there is an angle θ and a scale r > 0
(both depending on z0 and not on γ) such that f rotates the tangent
vector at z0 of γ by θ and scales by r .

f is conformal at z0 iff f multiplies all tangent vectors at z0 by a
complex number reıθ.

If f is holomorphic at z0 such that f ′(z0) 6= 0 then f is conformal
because, for any γ, (f ◦ γ)′(t0) = f ′(z0)γ′(t0) where γ(t0) = z0.

The map z 7→ z̄ is not conformal because it reflects tangent vectors
changing its orientation!
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Real Differentiation

Definition

A function f : R→ R is said to be differentiable at a, denoted as f ′(a) or
df
dx (a), if the limit

f ′(a) := lim
x→a

f (x)− f (a)

x − a

exists.

Example

The real valued function x 7→ |x | is not differentiable at 0.
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Differentiation in Normed Space

Definition

Let Ω ⊂ E be an open subset of the normed linear space E. We say
f : Ω→ F , where F is another normed linear space, is said to be Fréchet
differentiable or, simply, differentiable at a ∈ Ω if there exists a linear map
Df (a) ∈ L(E ,F ) such that

lim
x→a

‖f (x)− f (a)− Df (a)(x − a)‖
‖x − a‖

= 0.

We say f is Fréchet differentiable in Ω if f is Fréchet differentiable at
all a ∈ Ω and Df : Ω→ L(E ,F ) is a map defined as a 7→ Df (a).

In particular, one can choose E = Rn and F = Rm and the derivative
is referred to as total derivative.

The hypothesis that Ω is open ensures that Df (a) is unique.
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Directional Derivative in Vector Spaces

Definition

Let V be a vector space. The directional or Gâteau derivative of
f : V → R at a ∈ V , along the direction v ∈ V \ {0}, is defined as

Dv f (a) := lim
h→0

1

h
[f (a + hv)− f (a)] .

If V = Rn and v = ej , the standard unit j-th basis vector, then
Dej f (a), also denoted as Dj f (a) or ∂f

∂xj
(a), is called the j-th partial

derivative of f at a.

Also, Dv f (a) = Df (a) · v .
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Jacobian Matrix

In the finite dimensional case, the total derivative (being a linear
map) admits a matrix representation.

The matrix representation of Df (a), called the Jacobian matrix,
corresponding to the standard basis vectors of Rn and Rm, is

Df (a) :=


∂f1
∂x1

(a) · · · ∂f1
∂xn

(a)
...

. . .
...

∂fm
∂x1

(a) · · · ∂fm
∂xn

(a)

 .

where f = (f1, . . . , fm) has m components.

Let Jf (a) denote the determinant of the Jacobian matrix Df (a).
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Complex Differentiation

Definition

A function f : C→ C is said to be complex differentiable at a, denoted as
f ′(a), if the limit

f ′(a) := lim
z→a

f (z)− f (a)

z − a

exists.

If f is complex differentiable in a neighbourhood of a then f is said
to be holomorphic at a.

z 7→ |z |2 is differentiable at a = 0 but not holomorphic at a.

For a holomorphic f at z0 its derivative at z0 is continuous.

Above property is not true for real derivatives. The derivative of
x2 sin(1/x) for x 6= 0 with 0 for x = 0 is not continuous.

Real derivatives satisfy the intermediate value theorem, a property
weaker than continuity!
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Cauchy-Riemann Equations

If f := u + ıv is complex differentiable then taking the limit along
reals, i.e. z − a being purely real and choosing z − a purely imaginary,
respectively, we get

ux(a) + ıvx(a) = f ′(a) = vy (a)− ıuy (a).

Equating the real and imaginary parts we get the necessary condition
of first order system of PDE called Cauchy-Riemann equations.

A complex valued function is holomorphic iff its real and imaginary
parts are solution of the Cauchy-Riemann equations.

Cauchy-Riemann equations is a first order elliptic system of PDE{
uy (x , y) = −vx(x , y)

vy (x , y) = ux(x , y)
or

(
uy
vy

)
=

(
0 −1
1 0

)(
ux
vx

)
where the unknowns u, v : R2 → R.
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Cauchy-Riemann Equations

It also means that the gradient of the imaginary part (vx , vy ) can be
obtained by a π/2 rotation of the gradient of the real part (ux , uy ).

Equivalently, ∇u · ∇v = 0.

This means that the level curves {u(x , y) = c} and {v(x , y) = d
form an orthgonal system of curves because ∇v is tangetial to
{u = a} and viceversa.

Observe that the π/2 rotation matrix corresponds to the complex
number ı and square of the matrix is negative of identity matrix.

In short, the real and imaginary parts of a holomorphic function
cannot be chosen independently.
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Complex Derivative Vs Total Derivative

A complex differentiable map f : C→ C can be viewed as a map
from f : R2 → R2.

Thus, if f = u + ıv and z = x + ıy then the total
derivative f ′(a) has the (Jacobian) matrix form(

ux(a) uy (a)
vx(a) vy (a)

)
=

(
ux(a) −vx(a)
vx(a) ux(a)

)
or

(
vy (a) uy (a)
−uy (a) vy (a)

)
.

The equality is a consequence of Cauchy-Riemann equations.

The RHS has the rotational-dilation matrix form that corresponds to
a complex number.

Thus f ′(a) = ∂x f (a) = −ı∂y f (a) and Jf (a) = |∂x f (a)|2 = |∂y f (a)|2.
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Cauchy-Riemann Equations and Ideal Fluid

An ideal fluid flow is both incompressible and irrotational.

Incompressibility is given by vanishing divergence and irrotational is
given by vanishing curl.

Let (u, v) denote the velocity vector field of a planar steady state
fluid. Then, the fluid is ideal iff ∇ · (u, v) := ux + vy = 0 and
∇× (u, v) := vx − uy = 0.

The incompressibility and irrotational condition is precisely the CR
equations satisfied by the pair (u,−v).

A velocity vector field (u, v) induces an ideal planar fluid flow iff
u − ıv is holomorphic.
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Real-Valued Complex Functions

The real valued complex function z 7→ |z |2 is not complex
differentiable except at 0

while the R2 analogue (x , y) 7→ x2 + y2 is
differentiable everywhere (admits continuous partial derivatives).

The function z 7→ <(z) when restricted to R is the function x 7→ x .
While the latter is real differentiable, the former is not complex
differentiable.

The function z 7→ z when restricted to R is also the function x 7→ x
and they are complex and real differentiable, respectively.

A map f : C→ R is either not holomorphic or is a constant.
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Laplacian Commutes with Translations

The n-dimensional Laplacian ∆ :=
∑n

i=1 ∂
2
xi

= Tr(∇∇t) is a linear
operator from C 2(Ω)→ C (Ω).

For any a ∈ Rn, the translation operator Ta : C (Ω)→ C (Ω) is
defined as (Tau)(x) = u(x + a).

The Laplace operator commutes with the translation operator, i.e.,
∆ ◦ Ta = Ta ◦∆.

Because, for any u ∈ C 2(Ω), (Tau)xi (x) = uxi (x + a) and
(Tau)xixi (x) = uxixi (x + a). Thus, ∆(Tau)(x) = ∆u(x + a).
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Laplacian Commutes with Rotations

Let O be an orthogonal (O−1 = Ot) n × n matrix which leaves
Ω ⊂ Rn invariant O, the rotation operator R : C (Ω)→ C (Ω) is
defined as Ru(x) = u(Ox).

The Laplace operator commutes with rotation operator, i.e.,
∆ ◦ R = R ◦∆.

Let y = Ox . Then, yj =
∑n

i=1 Ojixi and, by chain rule,

(Ru)xi =
n∑

j=1

uyj
∂yj
∂xi

=
n∑

j=1

uyjOji .

Therefore, ∇xRu = Ot∇yu and

(∆ ◦ R)u(x) = Tr[∇x∇t
xu(Ox)] = Tr[∇x∇t

yu(y)O]

= Tr[Ot∇y∇t
yu(y)O] = ∆yu = (R ◦∆)u(x).

The class of all radial functions is invariant under Laplacian.
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Ω ⊂ Rn invariant O, the rotation operator R : C (Ω)→ C (Ω) is
defined as Ru(x) = u(Ox).

The Laplace operator commutes with rotation operator, i.e.,
∆ ◦ R = R ◦∆.

Let y = Ox .

Then, yj =
∑n

i=1 Ojixi and, by chain rule,

(Ru)xi =
n∑

j=1

uyj
∂yj
∂xi

=
n∑

j=1

uyjOji .

Therefore, ∇xRu = Ot∇yu and

(∆ ◦ R)u(x) = Tr[∇x∇t
xu(Ox)] = Tr[∇x∇t

yu(y)O]
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Harmonic Functions

Definition

Let Ω be an open subset of Rn. A function u ∈ C 2(Ω) is said to be
harmonic on Ω if ∆u(x) :=

∑n
i=1 ∂

2
xi
u = 0 in Ω.

Harmonic functions naturally arose with Newtonian gravitation
potential which is given by

u(x) =
1

4π

∫
Ω

ρ(y)

|x − y |
dy

where ρ(y) is the density at y of a mass occupying the region Ω ⊂ R3.

In 1782, Laplace discovered that the Newton’s gravitational potential
satisfies the equation: ∆u = 0 in R3 \ Ω. This is the reason the
operator ∆ is called Laplacian.

Later, in 1813, Poisson discovered that on Ω the Newtonian potential
satisfies the equation: −∆u = ρ in Ω. Inhomogeneous Laplace
equations are called Poisson equations.
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1D Harmonic Functions

The one dimensional Laplace equation, d2u
dx2 = 0 can be solved in full

generality by fundamental theorem of calculus.

All the solutions are the one degree polynomial u(x) = ax + b for
some real constants a and b, the linear combination of the linearly
independent polynomials {1, x}.
However, it is not easy to compute all solutions of Laplace equation
in higher dimensions.

For instance, a two dimensional Laplace equation uxx + uyy = 0 has
the solution, u(x , y) = ax + by + c . In addition, xy , x2 − y2,
x3 − 3xy2, 3x2y − y3, ex sin y and ex cos y are all solutions.
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Wirtinger Derivatives

Note that any complex function of (x , y) can be changed to a
function of (z , z̄).

Thus, ∂x = ∂zzx +∂z̄ z̄x = ∂z +∂z̄ and ∂y = ∂zzy +∂z̄ z̄y = ı(∂z −∂z̄).

2∂z = ∂x − ı∂y and 2∂z̄ = ∂x + ı∂y .

A complex function f is holomorphic iff ∂z̄ f = 0, alternate way of
writing CR equations.

A function u is harmonic iff ∂zz̄u = 0 because the Laplacian
∆ = 4∂zz̄ , the complex mixed derivative.
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2D Laplacian and Complex Wave Operator

The Laplace operator can be viewed as

∆ := ∂2
x + ∂2

y = ∂2
x − ı2∂2

y ,

the wave equation with complex speed ±ı.

Using the general solution of the wave equation, we get
u(x , y) = F (x + ıy) + G (x − ıy) = F (z) + G (z̄).

If we are seeking real solutions u, then

u(x , y) =
1

2

(
u(x , y) + u(x , y)

)
= <[F (z) + G (z̄)],

real part of a complex function.
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Holomorphic and Harmonic Functions

For any holomorphic function f = u + ıv , its real part u and
imaginary part v are harmonic functions, a consequence of CR
equations, uxx + uyy = vxy − vyx = 0.

Conversely, any harmonic function u on a simply connected domain in
R2 is the real part of a holomorphic function.

For u(x , y) = 1
2 log(x2 + y2) is harmonic in the non-simple connected

domain C \ {0} is the real part of the multivalued log z .

Properties of harmonic functions can be obtained from properties of
holomorphic functions. Compare (Mean value property with Cauchy
Integral formula, Maximum Principle with Maximum Modulus and
Liouville theorem etc.)
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Complex Polynomials

For any α ∈ R, zα = rαeıθα

= rαeı(θ+2kπ)α = zαeı2πkα, for all k ∈ Z.

For α ∈ Z, kα ∈ Z and zα is a single valued functions.

For positive integer α, zα is holomorphic everywhere in C and its real
and imaginary parts rα cosαθ and rα sinαθ are harmonic functions in
R2. For instance, x2 − y2 and 2xy are harmonic because they are the
real and imaginary part of the holomorphic z2.

For negative integer α, zα is holomorphic in C \ {0}. For instance,
1/z is holomorphic and its real and imaginary parts x

x2+y2 and −y
x2+y2

are harmonic except at z = 0.

For irrational α, zα takes different value for each k . Thus, it is
multi-valued!

For rational α = p/q with gcd(p, q) = 1, zα is also multivalued and
takes exactly q different values corresponding to the q-th roots of
unity.
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Exponential, Logarithm and Trigonometric

The complex exponential ez is defined using the power series∑∞
k=0

zk

k! . It is many-to-one function because ez+ı2πk = ez . Its real
and imaginary parts ex cos y and ex sin y are harmonic.

The complex trigonometric function cos z and sin z are holomorphic
and its real and imaginary parts, respectively, cos x cosh y ,
− sin x sinh y , sin x cosh y and cos x sinh y .

The inverse of exponential is log z = log r + ıθ. It is holomorphic
except at z = 0 and is multivalued because
log z = log |z |+ ı(θ + 2kπ) has different value for eack k ∈ Z+.

For instance, real logarithm of 1 is zero but complex log(1) = ı2kπ
for all k ∈ Z+.

Logarithm of negative real numbers is log(x) = log |x |+ ıπ(1 + 2k)
for all k ∈ Z+.
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Dirichlet Problem

The boundary value problem of seeking a harmonic function with
Dirichlet boundary conditions (prescribed value of the harmonic
function on the boundary) is:{

∆u = 0 in Ω ⊂ Rn

u = g on ∂Ω.
(3.1)

In two dimensions, the solution to above problem can be reduced to
the Dirichlet problem on the unit disk D = {|z | < 1} for large class of
Ω!

Theorem (Riemann Mapping Theorem)

Every simply connected proper subset Ω of C is conformally equivalent to
D, i.e. there is a biholomorphism (inverse holomorphic too) f : Ω→ D.
For each z0 ∈ Ω there is a unique biholomorphism such that f (z0) = 0 and
f ′(z0) > 0.

Note that the above result allows Ω to be unbounded!
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Multiplicity of Conformality of Unit Disk to Itself

For any z0 ∈ D, the map T (z) = z−z0
1−z0z

maps D onto itself with
T (z0) = 0 (verify that |T (z)| < 1!).

The map stills works on composition with rotations, i.e.
T (z) = eıθ( z−z0

z0z−1 ) for all θ ∈ (−π, π) and z0 ∈ D.

However, once z0 and θ are fixed, there is a unique biholomorphism
on D such that T (z0) = 0 and T ′(z0) > 0.
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Poisson Kernel for Disk

Theorem (2D Disk)

Let Ω be D, the unit disk in R2. Let g : ∂Ω→ R be a continuous
function. Then there is a unique solution to (3.1) on the unit disk with
given boundary value g.

Proof: Setting U(r , θ) = u(reıθ), (3.1) is
1
r
∂
∂r

(
r ∂U∂r

)
+ 1

r2
∂2U
∂θ2 = 0 in Ω

U(r , θ + 2π) = U(r , θ) in Ω
U(1, θ) = g(eıθ) on ∂Ω

(3.2)

and the Poisson formula

u(z) =
1− |z |2

2π

∫ 2π

0

g(eıθ)

|z − eıθ|2
dθ.

Use method of separation of variable, Fourier series and uniqueness of
Dirichlet problem for bounded domains. If g is real valued then u is real
valued!
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Solution on Arbitrary Simple Connected Set

Thus, to solve the Dirichlet problem on any arbitrary proper simply
connected subset of R2 it is enough to solve it in the unit disk D as
long as the conformal mapping between Ω and D is known explicitly.

If u : Ω1 → R is harmonic and T : Ω2 → Ω1 is holomorphic then
u ◦ T is harmonic in Ω2 because u ◦ T is the real part of the
holomorphic function (u + ıv) ◦ T and composition of holomorphic
fuctions are holomorphic.

Given a conformal mapping T : Ω→ D such that T (∂Ω) = ∂D the
solution to Dirichlet problem on Ω is given by u ◦ T : Ω→ R

u(Tz) =
1− |Tz |2

2π

∫ 2π

0

g ◦ T−1(eıθ)

|Tz − eıθ|2
dθ.
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Some Unbounded Domains Conformal to Unit Disk

The conformal map z−1
z+1 maps the right half-plane to D.

The conformal map z+ı
z−ı maps the upper half-plane to D. This is

obtained by rotating the right half-plane map by π/2, i.e. composing
with the map z 7→ ız .

The conformal map z2+ı
z2−ı maps the first quadrant to D because

z 7→ z2 maps first quadrant to upper half-plane.

The conformal map ez−1
ez+1 maps the horizontal strip

−π/2 < =(z) < π/2 to D because z 7→ ez maps the strip to right
half-plane.
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Discontinuous Boundary Data

Exercise

Solve (3.1) in the upper half-plane with discontinuous boundary data

g(x , 0) =

{
0 x > 0

1 x < 0.

Verify that u(x , y) = θ
π = <( 1

ıπ log(z)) is a solution, after solving in D and
using the conformal maps.
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Curves in Complex Plane

A parametrized curve is a continuous map γ : I ⊂ R→ C where I is
either an open or closed interval and, possibly, infinite.

A curve is regular if γ′(t) 6= 0, for all t ∈ I . Thus, points are not
regular curves!

A contour is a union of finite number of smooth curves.
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Simple Loop

A path (or curve) in C is a loop if there is a continuous map
γ : [a, b]→ C with γ(a) = γ(b).

A loop is simple if γ(s) 6= γ(t) for all a < s 6= t < b.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 57 / 251



Simple Loop

A path (or curve) in C is a loop if there is a continuous map
γ : [a, b]→ C with γ(a) = γ(b).

A loop is simple if γ(s) 6= γ(t) for all a < s 6= t < b.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 57 / 251



Jordan Curve Theorem

Theorem

The complement of a simple closed curve in C is a disconnected set and
has exactly two connected components, one bounded (interior) component
and the other unbounded (exterior).
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Jordan Curve Theorem

Figure: Image Courtesy: Google Images
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Orientation

Definition

A simple closed curve is said to be positively oriented (or
counter-clockwise) if moving along the direction the bounded component
(interior) is always to the left.

For a positively oriented curve the γ(t) + εN(t) lies in the bounded
component for sufficiently small ε and all t, where N(t) is the normal
in the positive direction.

The parametrization can be chosen to fix an orientation.

For instance, for t ∈ [0, 1], γ(t) = (cos 2πt, sin 2πt) is positively
oriented while γ(t) = (cos 2πt,− sin 2πt) is oriented clockwise
(negatively).
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Contour or Path Integral

Definition

The integral of a function f : C→ C along a path or contour
γ : [a, b]→ C is defined as∫

γ
f (z) dz :=

∫ b

a
f (γ(t))γ′(t) dt.

As an abuse of notation, we are using γ to denote the curve in C and
also to denote its parametrisation map.

If z is a point on the curve γ then z = γ(t) and dz = γ′(t) dt, by
usual chain rule.
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Properties of Path Integral

The contour integration is independent of the choice of
parametrization of the path. (Exercise! Using chain rule.)

If −γ is the curve γ traced in the opposite direction then∫
−γ

f (z) dz = −
∫
γ
f (z) dz .

The parametrisation of −γ can be given by the map γ− : [0, 1]→ C
defined as γ−(t) := γ[ta + (1− t)b].
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Path Independence

Is the contour integral path independent, i.e. for two different paths
γ1 and γ2 joining z1 and z2, is

∫
γ1
f (z) dz =

∫
γ2
f (z) dz?

z2
z1

γ2

γ1

Set γ := γ1 ∪ (−γ2) which is a loop at z1. Then the question on path
independence is same as asking: under what conditions on γ and f ,∫

γ
f (z) dz = 0.

For a continuous f on a domain Ω, f admits single-valued primitive in
Ω iff

∫
γ f (z) dz = 0 for every loop in Ω. (Exercise!)
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Prototype Examples

If γ be the unit circle and k ∈ Z. Then∫
γ
zk dz

= ı

∫ 2π

0
eı(k+1)θ dθ =

{
0 k 6= −1

2πı k = −1.

The case k = −1 has a multi-valued primitive log z .

If γ1 is the straight line joining −1 and ı, and γ2 is the arc of unit
circle joining −1 and ı then

γ1

ı

−1

γ2

Then∫
γ1∪−γ2

|z |2 dz =

∫
γ1

|z |2 dz −
∫
γ2

|z |2 dz =
2

3
(1 + ı)− 1− ı 6= 0.
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Homotopy and Simply Connected

Two paths γ1 and γ2 are homotopic in a topological space X

if there
is a continuous map T : [0, 1]× [0, 1]→ X with T (t, 0) = γ1(t) and
T (t, 1) = γ2(t).

t

s

(0, 0)
(1, 0)

(0, t) (1, t)

(0, 1) (1, 1)

(t, s)
γ1

γ2

T (t, s)

A topological space X is simply connected if every loop or closed path
in X is homotopic to a point in X .
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Fundamental Theroem of Calculus: Complex Version

If f admits a primitive F , i.e. F ′ = f and γ is piecewise differentiable
curve then, using the fundamental theorem of calculus, we get∫

γ
f (z) dz =

∫
γ
F ′(z) dz =

∫ b

a
F ′(γ(t))γ′(t) dt

=

∫ b

a

d

dt
(F ◦ γ)(t) dt = F (γ(b))− F (γ(a)).

In particular, if γ is a loop then
∫
γ f (z) dz = 0.

Conversely, if f is continuous in domain Ω such that
∫
γ f = 0 for all

loop γ ⊂ Ω then f has a primitive. Fix z0 ∈ Ω and define
F (z) :=

∫
γ(z0,z) f (w) dw for any path γ(z0, z) joining z0 and z . By

assumption F is independent of the path chosen.

Differentiate F to observe that it is the primitive of f . (For
holomorphic functions, this is Morera’s Theorem!)
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Cauchy’s Theorem

Theorem (Cauchy’s Theorem)

Let γ be a counterclockwise simple loop in a simply connected open set
Ω ⊂ C. If f : Ω→ C is a holomorphic function then

∫
γ f (z) dz = 0.

Equivalently, every holomorphic function f on a simply connected domain
has a primitive.

Proof: ∫
γ
f (z) dz =

∫
γ

(u dx − v dy) + ı

∫
γ

(u dy + v dx)

= −
∫
U

(vx + uy ) dx dy + ı

∫
U

(ux − vy ) dx dy

where U is the bounded region enclosed by the loop γ. The last equality is
due to Green’s Theorem. Since f is holomorphic, u and v satisfy the
Cauchy-Riemann equations and, hence, the RHS is zero.
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Green’s Theorem

Theorem

Let γ be a counterclockwise simple loop in C and U is the bounded region
enclosed by γ. If P and Q admit continuous partial derivatives in U ∪ γ
then ∫

γ
(P dx + Q dy) =

∫
U

(Qx − Py ) dx dy .

Proof:

γ1

U

γ2

γ1
U

γ2

The region U can be interpreted in two ways as above: First one being
U := ∪x∈(a,b) [{x} × (γ1(x), γ2(x))].
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Proof Continued...

∫
U
−Py dx dy

=

∫ b

a

∫ γ2(x)

γ1(x)
−Py dy dx

=

∫ b

a
[P(x , γ1(x))− P(x , γ2(x))] dx

=

∫
γ1

P(x , y) dx +

∫
−γ2

P(x , y) dx =

∫
γ
P(x , y) dx .

∫
U
Qx dx dy =

∫ b

a

∫ γ1(y)

γ2(y)
Qx dx dy

=

∫ b

a
[Q(γ1(y), y)− Q(γ2(y), y)] dy

=

∫
γ1

Q(x , y) dy +

∫
−γ2

Q(x , y) dy =

∫
γ
Q(x , y) dy .
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Generalised Cauchy’s Theorem

Theorem (Invariance for Homotopic Curves)

Let γ1 and γ2 be two homotopic curves oriented counterclockwise in a
domain Ω ⊂ C. If f : Ω→ C is a holomorphic function then∫
γ1
f (z) dz =

∫
γ2
f (z) dz.

For closed curves homotopy need not necessarily have same the start and
end points!
Sketch of Proof: Choose ε > 0 such that 3ε < dist(Image(T ), ∂Ω) and
choose disks of radius 2ε for each z ∈ Image(T ) and, by compactness,
there is a finite cover. The homotopy map T is continuous on the
compact set [0, 1]× [0, 1] and, hence, its image is compact and T is
uniformly continuous. For the chosen ε > 0, there is a δ > 0 such that, for
all |s1 − s2| < δ, sup[0,1] |T (s1, t)− T (s2, t)| < ε. Choose one point each
on the curve γs1 and γs2 which lie in the intersection of adjacent disks.
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Proof Continued...

γs2

γ1

γs1

γ2

Then for each s1, s2 such that |s1 − s2| < δ,∫
γs1

f (z) dz =

∫
γs2

f (z) dz .

Extend the argument for s = 0 to s = 1 in finitely many steps.
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Weaker Hypothesis

Theorem

Let γ be a counterclockwise simple loop in a simply connected open set
Ω ⊂ C. If f : Ω→ C is a holomorphic function except at z0 but
continuous everywhere then

∫
γ f (z) dz = 0.

Proof: The continuity of f at z0 ensures f has no blow-up at z0. Now,
choose γ2 as the circle of radius ε > 0 centred at z0. Since f is
continuous, it is bounded in the region enclosed by the ball of radius ε.
Since γ2 is homotopic to γ, it is enough to compute the integral over γ2.

|
∫
γ2

f (z) dz | ≤ ‖f ‖∞2πε.

Since ε can be chosen as small as required, we have the result. Recall that∫
γ dz = 0 and

∫
γ |dz | = Length of γ.
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Cauchy Integral Formula (CIF)

Theorem (Cauchy Integral Formula)

Let f : Ω→ C be holomorphic on a simply connected open set Ω ⊂ C and
γ be a counter-clockwise simple loop in Ω. Then

1

2πı

∫
γ

f (w)

w − z
dw =


f (z) z ∈ U := Int(γ)

0 z ∈ Ω \ Ū
undefined z ∈ γ.

Proof: ∫
γ

f (w)

w − z
dw =

∫
γ
g(w) dw + f (z)

∫
γ

1

w − z
dw where

g(w) := f (w)−f (z)
w−z for w 6= z and g(z) := f ′(z).Then

∫
γ g = 0 because g

is holomorphic, except possibly at z , but continuous everywhere. Also, γ is
homotopic to the unit circle centred at z . Thus, the RHS is f (z)2πı.
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undefined z ∈ γ.

Proof: ∫
γ

f (w)

w − z
dw =

∫
γ
g(w) dw + f (z)

∫
γ

1

w − z
dw where

g(w) := f (w)−f (z)
w−z for w 6= z and g(z) := f ′(z).

Then
∫
γ g = 0 because g

is holomorphic, except possibly at z , but continuous everywhere. Also, γ is
homotopic to the unit circle centred at z . Thus, the RHS is f (z)2πı.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 73 / 251



Cauchy Integral Formula (CIF)

Theorem (Cauchy Integral Formula)

Let f : Ω→ C be holomorphic on a simply connected open set Ω ⊂ C and
γ be a counter-clockwise simple loop in Ω. Then

1

2πı

∫
γ

f (w)

w − z
dw =


f (z) z ∈ U := Int(γ)

0 z ∈ Ω \ Ū
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Infinite Differentiability

Theorem (Converse to CIF)

Let γ be a counter-clockwise simple loop. If f : γ → C be any continuous
function such that, for all z in the interior of γ,

f (z) =
1

2πı

∫
γ

f (w)

w − z
dw

then f is infinitely complex differentiable (and hence holomorphic) and
given by the formula

f (k)(z) =
k!

2πı

∫
γ

f (w)

(w − z)k+1
dw .

Proof: Note that

f (k)(z) =
1

2πı

∫
γ
f (w)

dk

dzk

(
1

w − z

)
dw .
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Taylor Series: Holomorphic is Analytic

Theorem

Let Ω ⊂ C is open. A function f : Ω→ C is holomorphic at z0 iff
f (z) =

∑∞
k=0 ak(z − z0)k in a neighbourhood of z0. (The convergence is

uniform).

Proof: If f admits power series then f (k)(z0) = k!ak and, hence
holomorphic at z0. Conversely, if f is holomorphic then choose the
neighbourhood N(z0) centred at z0 with radius dist(z0, γ) where γ is any
counter clockwise simple loop in Ω enclosing z0. Then, for all z ∈ N(z0)
and w ∈ γ, we have |z − z0| < |w − z0|. Then

f (z) =
1

2πı

∫
γ

f (w)

w − z0

1

1− z−z0
w−z0

dw =
1

2πı

∫
γ

f (w)

w − z0

∞∑
k=0

(
z − z0

w − z0

)k

dw

=
1

2πı

∞∑
k=0

(z − z0)k
∫
γ

f (w)

(w − z0)k+1
dw =

∞∑
k=0

f (k)(z0)

k!
(z − z0)k .
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Non-Analytic Infinitely Differentiable Real Function

Consider the function f : R→ R defined as

f (x) =

{
exp(−1/x) if x > 0

0 if x ≤ 0.

It is clear that 0 ≤ f (x) < 1 and f is infinitely differentiable for all
x 6= 0.

The left side limit of f and its derivative is zero at x = 0. Further,
the right side limit

f (k+1)(0) = lim
h→0+

f (k)(h)− f (k)(0)

h
= 0.(Exercise!)

Therefore, f ∈ C∞(R).

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 76 / 251



Non-Analytic Infinitely Differentiable Real Function

Consider the function f : R→ R defined as

f (x) =

{
exp(−1/x) if x > 0

0 if x ≤ 0.

It is clear that 0 ≤ f (x) < 1 and f is infinitely differentiable for all
x 6= 0.

The left side limit of f and its derivative is zero at x = 0. Further,
the right side limit

f (k+1)(0) = lim
h→0+

f (k)(h)− f (k)(0)

h
= 0.(Exercise!)

Therefore, f ∈ C∞(R).

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 76 / 251



Non-Analytic Infinitely Differentiable Real Function

Consider the function f : R→ R defined as

f (x) =

{
exp(−1/x) if x > 0

0 if x ≤ 0.

It is clear that 0 ≤ f (x) < 1 and f is infinitely differentiable for all
x 6= 0.

The left side limit of f and its derivative is zero at x = 0. Further,
the right side limit

f (k+1)(0) = lim
h→0+

f (k)(h)− f (k)(0)

h
= 0.(Exercise!)

Therefore, f ∈ C∞(R).

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 76 / 251



Non-Analytic Infinitely Differentiable Real Function

The Taylor series of f at x = 0,

∞∑
k=0

f (k)(0)

k!
xk = 0,

converges to the zero function for all x ∈ R.

But for x > 0, we know that f (x) > 0 and hence do not converge to
the Taylor series at x = 0.

Thus, f is not analytic at 0.
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Zeroes of Holomorphic Functions

Definition

A z0 ∈ C is said to be a zero of order m if f (j)(z0) = 0 for all
0 ≤ j ≤ m − 1. A zero is simple if m = 1.

For a non-zero holomorphic function, at least one coefficient of Taylor
series is non-zero, say the f (m)(z0) is first non-zero coefficient, then
z0 is a zero of order m of f .

If f is holomorphic in Ω with a zero of order m then, from the Taylor
series of f in a neighbourhood of z0, we get f (z) = (z − z0)mg(z)
where g(z0) 6= 0 and

g(z) =
∞∑
k=0

f (k+m)(z0)

(k + m)!
(z − z0)k

where g has the same domain of convergence about z0 as f .
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Number of Zeroes of Analytic functions

All complex polynomials are analytic functions and, by FTC, have
exactly as many zeroes as its degree (including order).

Roughly, one can imagine analytic functions as ‘polynomial of
finite/infinite degree’.

However, in contrast to polynomials, there are non-zero, non-constant
analytic functions with no complex zero. For instance, 1/z , ez , e1/z

etc.

The zeroes of sin z are zeroes of eı2z − 1 = 0. Thus, the zeroes are
kπ for all k ∈ Z (Countably infinite zeroes).

The zeroes of sin(1/z) are 1/kπ for all k ∈ Z. The zeroes 1/kπ
converge to the point of singularity 0.

The zeroes of sinh z are roots of e2z − 1 = 0. Thus, the zeroes are
ıkπ for all k ∈ Z (Only imaginary zeroes).
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Non-zero Holomorphic has Isolated Zeroes

Theorem

Let f be a non-zero holomorphic function in a domain Ω ⊂ C. If z0 is a
zero of f then there is a neighbourhood N(z0) of z0 such that f (z) 6= 0 for
all z ∈ N(z0).

Proof.

Since f 6≡ 0, without loss of generality, say z0 is a zero of order m <∞.
Then there is a holomorphic g such that f (z) = (z − z0)mg(z) and
g(z0) 6= 0. By continuity of g , there is a ε > 0 such that for all
|z − z0| < ε, g(z) 6= 0. Thus, f (z) 6= 0 in {|z − z0| < ε}.
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Zero set of Non-zero Holomorphic has no Accumulation

Theorem (Identity Theorem)

Let f be holomorphic in a domain Ω ⊂ C. If {zn} is a sequence of zeroes
of f such that its limit z0 ∈ Ω then f ≡ 0 in Ω.

Proof.

Let E := {z ∈ Ω | ∃non-trivial {zn} ⊂ Ω 3 f (zn) = 0∀n, limn→∞ zn = z}.
E is non-empty because z0 ∈ E and, by continuity of f , f (z) = 0∀z ∈ E .
E is closed in Ω. (Exercise!). We claim E is also open. For any
w ∈ E ⊂ Ω there is an open ball B ⊂ Ω containing w . Since f (w) = 0,
suppose f is non-zero in B then w is an isolated zero of f contradicting
the fact that w ∈ E . Thus, f ≡ 0 in B. Hence E is open. Since E is
non-empty, open and closed subset of connected Ω, E = Ω.
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Laurent Series on Annular Domains

Theorem

If f is holomorphic in open set Ω ⊂ C except at z0 ∈ Ω then
f (z) =

∑∞
k=−∞ ak(z − z0)k in Ω \ {|z − z0| < r} for any r > 0 where

ak = 1
2πı

∫
γ

f (w)
(w−z0)k+1 dw for any simple loop γ ⊂ Ω \ {|z − z0| < r}.

z0

C

z
γ

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 82 / 251



Laurent Series on Annular Domains

Theorem

If f is holomorphic in open set Ω ⊂ C except at z0 ∈ Ω then
f (z) =

∑∞
k=−∞ ak(z − z0)k in Ω \ {|z − z0| < r} for any r > 0 where

ak = 1
2πı

∫
γ

f (w)
(w−z0)k+1 dw for any simple loop γ ⊂ Ω \ {|z − z0| < r}.

z0

C

z
γ

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 82 / 251



Proof Continued...

Note that

f (z) =
1

2πı

∫
γ−C

f (w)

w − z
dw .

For w ∈ γ, the proof is similar to the power series because
|z − z0| < |w − z0|. For w ∈ C , |z − z0| > |w − z0|.
Then

− 1

2πı

∫
C

f (w)

w − z
dw =

1

2πı

∫
C

f (w)

z − z0

1

1− w−z0
z−z0

dw

=
1

2πı

∫
C

f (w)

z − z0

∞∑
m=0

(
w − z0

z − z0

)m

dw

=
1

2πı

∞∑
k=1

(z − z0)−k
∫
γ

f (w)

(w − z0)−k+1
dw

=
−∞∑
k=−1

ak(z − z0)k .
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Calculus of Residues

Definition

let f be holomorphic in Ω except at z0 ∈ Ω. The residue of f at z0 is

Resz=z0f (z) :=
1

2πı

∫
γ
f (z) dz

for any simple loop γ with z0 in its interior. The residue of f at z0 is the
coefficient a−1.

Theorem

Let γ be a simple loop oriented counter-clockwise and f is holomorphic in
its interior except at finite number of poles z1, . . . , zk . Then

1

2πı

∫
γ
f (z) dz =

k∑
j=1

Resz=zk f (z).
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Proof Sketch of Residue Theorem
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Simply Periodic Functions

Definition

A holomorphic function f : Ω ⊂ C→ C is said to be periodic if there is a
non-zero ω ∈ C such that f (z + ω) = f (z) for all z ∈ C and ω is called
the period of f .

The domain Ω should be such that, for all z ∈ Ω, z + kω ∈ Ω.

The function eız is 2π periodic with the domain being the strip
{|=(z)| < π} and the image is the annular region {e−π < |w | < eπ}.
The inverse is given by log(w).

More generally, eıkz , sin kz and cos kz are all 2π periodic functions.

The 2π periodic holomorphic functions f is in one-to-one
correspondence with holomorphic functions g on the annulus
{eπ < |w | < eπ}. Given f , set g(w) = f (logw) and given g , set
f (z) = g(eız).
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Fourier Series Via Laurent Series

Theorem

If f is a 2π periodic function in the strip {|=(z)| < π} then f admits the
Fourier series representation f (z) =

∑∞
k=−∞ ake

ıkz where

ak = 1
2π

∫ 2π
0 f (θ)e−ıkθ dθ.

Proof.

The function g(w) = f (logw) is holomorphic in the annular region and
admits Laurent series expansion g(w) =

∑∞
k=−∞ akw

k with

ak = 1
2πı

∫
|w |=1

g(w)
wn+1 dw .Then, f (z) = g(eız) =

∑∞
k=−∞ ake

ıkz .Further,

ak =
1

2πı

∫ 2π

0

g(eıθ)

eı(k+1)θ
ıeıθ dθ =

1

2π

∫ 2π

0
f (θ)e−ıkθ dθ.
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Removable Singularity

Definition

We say z0 is singularity of f if f is not holomorphic at z0 but every
neigbourhood of z0 has at least one point where f is holomorphic.

We say
the singularity is isolated if the function is holomorphic in a neighbourhood
of z0. A removable singularity is a singular point z0 if the function is
bounded in a neighbourhood of z0.

z̄ , <(z) are not holomorphic in C hence has no singularities.
1

sin(1/z) has non-isolated singularity at 0 which is an limit point of the

isolated singularities { 1
kπ} for ±k = N.

The singularity 0 of log z is non-isolated because it is a branch point.

The sinc function sin z
z has removable singularity at 0 since

limz→0
sin z
z = 1.
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Removable Singularity

Theorem (Riemann Removable Singularity Theorem)

If f is holomorphic and bounded in Ω \ {z0} then the extension

f̃ (z) =

{
f (z) z 6= z0

limw→z0 f (w) z = z0.

is holomorphic in Ω. Also, f has removable singularity iff
limz→z0(z − z0)f (z) = 0.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 89 / 251



Pole and Essential Singularity

Definition

A pole z0 is a point at which the function blows-up i.e. it is unbounded in
a neighbourhood of z0. A pole z0 is of order k if limz→z0(z − z0)k f (z) is
finite and non-zero. If no such k exists then z0 is an essential singularity of
f , i.e. pole of infinite order.

Theorem

f has a pole of order k iff limz→z0(z − z0)k+1f (z) = 0.

The function e1/z has an essential singularity at 0.

The complex function

e
−1

(z−1)2

(z2 + 1)(z + 2)2/3

has a simple pole at ±ı,a branch point at −2 and an essential
singularity at z = 1.
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Property of Essential Singularity

Theorem (Casorati-Weierstrass)

If f has an essential singularity at z0 and is holomorphic in a punctured
neighbourhood U := Br (z0)\{z0} of z0 then the image f (U) is dense in C.

Proof.

Suppose f (U) 6= C then choose a w ∈ C \ f (U), i.e. there is an ε > 0
such that |f (z)− w | ≥ ε for all z ∈ U. Set g(z) := 1

f (z)−w . Then g is

holomorphic and bounded by 1/ε in U. By Riemann removable singularity
result, z0 is a removable singularity of g and can be extended holomorphic
to U ∪ {z0}. Then f (z) = w + 1

g(z) has either a pole (g(z0) = 0) or

removable singularity (g(z0) 6= 0) at z0, a contradiction.
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Complex singularities of Real Functions

The real function (1 + x2)−1 is defined and differentiable in all R but
its power series converges only in (−1, 1). Why?

The analytic extension of the above real function is (1 + z2)−1 which
has singularities at ±ı.
The above singularities forced the radius of convergence to be one.

The radius of convergence of a complex analytic function is the
distance from the nearest singularity!

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 92 / 251



Complex singularities of Real Functions

The real function (1 + x2)−1 is defined and differentiable in all R but
its power series converges only in (−1, 1). Why?

The analytic extension of the above real function is (1 + z2)−1 which
has singularities at ±ı.

The above singularities forced the radius of convergence to be one.

The radius of convergence of a complex analytic function is the
distance from the nearest singularity!

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 92 / 251



Complex singularities of Real Functions

The real function (1 + x2)−1 is defined and differentiable in all R but
its power series converges only in (−1, 1). Why?

The analytic extension of the above real function is (1 + z2)−1 which
has singularities at ±ı.
The above singularities forced the radius of convergence to be one.

The radius of convergence of a complex analytic function is the
distance from the nearest singularity!

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 92 / 251



Complex singularities of Real Functions

The real function (1 + x2)−1 is defined and differentiable in all R but
its power series converges only in (−1, 1). Why?

The analytic extension of the above real function is (1 + z2)−1 which
has singularities at ±ı.
The above singularities forced the radius of convergence to be one.

The radius of convergence of a complex analytic function is the
distance from the nearest singularity!

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 92 / 251



Dense and No-where Dense Subsets

Definition

A subset E of a topological space X is said to be dense in X , if E = X,
where E is the closure of E .

Definition

A subset E of a topological space X is said to be nowhere dense in X , if
Int(E ) = ∅.

Definition

A topological space is said to be separable if it contains a countable dense
subset.
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Distance from a Set

Definition

Let (X , d) be a metric space and let E be a subset of X . For any given
x ∈ X, we define the distance of E from x, denoted as d(x ,E ), as:

d(x ,E ) := inf
y∈X

d(x , y).

Of course, d(x ,E ) = 0 for all x ∈ Ē .

Theorem

Let (X , d) be a metric space and E ⊂ X. Then

|d(x ,E )− d(y ,E )| ≤ d(x , y) ∀x , y ∈ X .

In particular, the function x 7→ d(x ,E ) is uniformly continuous on X .
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Let (X , d) be a metric space and let E be a subset of X . For any given
x ∈ X, we define the distance of E from x, denoted as d(x ,E ), as:
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Theorem

Let (X , d) be a metric space and E ⊂ X. Then

|d(x ,E )− d(y ,E )| ≤ d(x , y) ∀x , y ∈ X .

In particular, the function x 7→ d(x ,E ) is uniformly continuous on X .

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 94 / 251



Proof

Set f (x) = d(x ,E ).

Note that E is either dense or not dense in X . If E is
dense in X , then E = X . Then f (X ) = {0} is the constant function zero
and is continuous. Now, let E 6= X . By definition of f , for any given
ε > 0, there is a e ∈ E such that d(x , e) ≤ f (x) + ε. Therefore,

f (y)− f (x) ≤ d(y , e)− d(x , e) + ε ≤ d(y , x) + ε

where the last inequality is by triangle inequality. Repeat the above
argument, by interchanging the role of x and y , but with same ε. Then,
we get

|f (y)− f (x)| ≤ d(x , y) + ε.

Since choice of ε was arbitrary, we get

|f (y)− f (x)| ≤ d(x , y).

Thus, f is Lipschitz and, hence, continuous.
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First and Second Category Sets

Definition

A subset E ⊂ X of a topological space is said to be of the first category in
X if it is the countable union of no-where dense sets.

A subset which is
not of the first category is said to be of the second category.

Theorem

Let {Ui}n1 be a finite collection of dense open subsets of a metric space X .
Then U = ∩ni=1Ui is dense in X .

Proof:

It is enough to show that, for any x0 ∈ X and ε0 > 0,
Bε0(x0) ∩ U 6= ∅.
By the density of U1, Bε0(x0) ∩ U1 6= ∅ and hence there is a
x1 ∈ Bε0(x0) ∩ U1.

Further, since Bε0(x0) ∩ U1 is open, there is a ε1 > 0 such that
Bε1(x1) ⊂ Bε0(x0) ∩ U1.
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Proof Continued...

Repeat the above argument for x1, ε1 and U2 to obtain a x2, ε2 > 0
and Bε2(x2) ⊂ Bε1(x1) ∩ U2.

Proceeding this way, we construct {x1, x2, . . . , xn} ⊂ X and positive
numbers ε1, ε2, . . . , εn such that Bεi (xi ) ⊂ Bεi−1(xi−1) ∩ Ui , for all
i = 1, 2, . . . , n.

Thus, by our construction, xn ∈ Bε0(x0) ∩ U. Since x0 and ε0 were
arbitrary, we have shown the density of U in X .
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Baire Category Theorem

Theorem

Let X be a complete metric space and {Ui}∞1 be a sequence of dense
open subsets of X , then U = ∩∞i=1Ui is dense in X .

Equivalently, if {Fi}∞1
is a sequence of nowhere dense closed subsets of X then ∪∞i=1Fi is
nowhere dense in X .

Proof:

Let x0 ∈ X and ε > 0. We have to show that Bε(x0) ∩ U 6= ∅.
Since U1 is dense, we choose a x1 ∈ X and 0 < ε1 < 1 such that
Bε1(x1) ⊂ U1 ∩ Bε(x0).

Similarly, choose x2 ∈ X and 0 < ε2 < 1/2 such that
Bε2(x2) ⊂ U2 ∩ Bε1(x1).

By construction, we have a sequence {εn} converging to 0 and
Bε1(x1) ⊃ Bε2(x2) ⊃ Bε3(x3) ⊃ . . ..
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Proof Continued...

For a n0 ∈ N such that m, n ≥ n0, we have 0 < εm < 1/m ≤ 1/n0

and 0 < εn < 1/n ≤ 1/n0. Therefore,

d(xm, xn) ≤ d(xm, xn0) + d(xn0 , xn) < 2εn0 ≤
2

n0
.

Hence, {xn} is Cauchy.

Since X is a complete metric space, xn → x in X , for some x ∈ X .

Observe that, for all n ≥ n0, xn ∈ Bεn0
(xn0).

Hence, the limit x ∈ Bεn0
(xn0).

But Bεi (xi ) ⊂ Ui ∩ Bε(x0) for all i = 1, 2, . . ..

Thus, x ∈ U ∩ Bε(x0).

The Baire category theorem is, in fact, stating that: any complete metric
space is second category.
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Consequences of Baire’s Theorem

Corollary

Let X be a metric space which is countable union of closed sets {Gi}.
(a) If Int(Gi ) = ∅, for all n, then X is not complete.

(b) If X is complete then, at least, one of the closed sets of {Gi} has
non-empty interior.

Proof.

Let X = ∪∞i=1Gi , where X is a complete metric space and each Gi is closed.
Set Ui = X \ Gi , hence ∩∞i=1Ui = ∅. Hence, Baire’s theorem, at least one
of the Ui is not dense in X . Then Int(Gi ) = X \ Ui is non-empty for those
Ui which are not dense.
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Examples

Example

Note that Q = ∪i∈N{ri} with usual metric d(r , s) = |r − s|. Thus Q is a
countable union of nowhere dense closed subsets. Thus, Q cannot be
complete.

Example

The plane R2 cannot be written as countable union of lines. More
generally, the space Rn cannot be written as countable union of
hyperplanes.
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Consequences of Baire’s Theorem

Corollary

In a complete metric space, the intersection of any countable collection of
dense Gδ sets is also a dense Gδ set.

Proof.

The proof is trivial from the fact that Gδ set is a countable intersection of
open sets.
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Consequences of Baire’s Theorem

Corollary

Let X be a complete metric space with no isolated points. Any countable
dense subset of X cannot be a Gδ set.

Proof.

Let E = {x1, x2, . . . , } be a countable dense subset of X . Suppose E is Gδ
set, then E = ∩∞i=1Ui for a sequence of open sets {Ui}. Since E is dense
in X , Ui is dense in X , for all i . Then the set

Vi := Ui \ {x1, x2, . . . , xi}

is also dense (because X has no isolated points) and open in X . But
∩iVi = ∅ is not dense in X which contradicts Baire’s theorem. Therefore,
E is not a Gδ set.
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Uniform Boundedness Principle

Theorem

Let X be a complete metric space and F ⊂ C (X ) be a sub-family of the
space of continuous functions f : X → R. Then

(i) either
sup
f ∈F
|f (x)| =∞ (5.1)

for all x in some dense Gδ subset of X

(ii) or there exists a M > 0, r > 0 and x0 ∈ X such that

sup
x∈Br (x0)

sup
f ∈F
|f (x)| ≤ M. (5.2)

Proof: For each n ≥ 1, set

Fn = {x ∈ X | sup
f ∈F
|f (x)| ≤ n}.
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Proof Continued

Note that Fn = ∩f ∈F f −1([−n, n]) and hence is closed because it is an
arbitrary intersection of closed sets (since f is continuous).

Further, {Fn}
is an increasing sequence of closed subsets in X , i.e., F1 ⊂ F2 ⊂ . . .. Then
the union F := ∪∞n=1Fn is a Fσ subset of X . Then there are two
possibilities:

(i) F is a first category subset of X . Since X is complete, by Baire
category theorem, F c := X \ F is a dense Gδ subset of X . Further,
for any x ∈ F c , (5.1) is satisfied.

(ii) F is second category subset of X . Since X is complete, by Baire
category theorem, there is a M > 0 such that FM has non-empty
interior. Thus, there is a x0 ∈ FM ⊂ X and r > 0 such that
Br (x0) ⊂ FM and (5.2) is satisfied.
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Limit

Definition

Let f : X → Y be any function and X ,Y are topological spaces. A L ∈ Y
is called a limit of f at an accumulation point x0 ∈ X , if for every
neighbourhood V of L in Y there exists a neighbourhood U of x0 in X
such that f (U) ⊂ V .

In particular, if X and Y are metric spaces with metric d1 and d2,
respectively, then for any given real number ε > 0 (however small)
there exists a δ > 0 such that d2(f (x), L) < ε, for all x , with
d1(x , x0) < δ.

If Y is Hausdorff then the limit L is unique.
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Continuous Functions

Definition

Let X and Y be topological spaces. A function f : X → Y is continuous
at x0 ∈ X if for any open set U ⊂ Y containing f (x0), its inverse image
f −1(U) ⊂ X containing x0 is also open.

In particular, for metric spaces (X , d1) and (Y , d2), we say f : X → Y
is continuous at x0, if for any given real number ε > 0 (however
small) there exists a δ > 0 (depends on ε and x0) such that
d2(f (x), f (x0)) < ε for all x with d1(x , x0) < δ.

If δ can be chosen independent of x0 then the function is uniformly
continuous.
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Topology on Space of Continuous Functions

Let C (X ) denote the class of all real valued continuous functions on
the topological space X .

For any compact topological space K , the norm of a f ∈ C (K ) is
given as ‖f ‖∞ := supx∈K |f (x)| called the uniform or supremum
norm. Thus, the associated uniform metric is d(f , g) := ‖f − g‖∞
and induces the uniform convergence topology.
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Pointwise and Uniform Convergence

Definition

A sequence of functions {fn} : X → R is said to converge pointwise to a
function f : X → R if limn→∞ fn(x) = f (x) for each x ∈ X , i.e. for any
given ε > 0 and x ∈ X there is a positive integer N ∈ N (depending on x
and ε) such that for all n ≥ N, |fn(x)− f (x)| < ε.

If N can be chosen
independent of x then the convergence is uniform.

Exercise

Show that for any α ∈ [0, 1), αn → 0 as n→∞. Consequently, show that
the sequence {xn} indexed by the degree n and defined on [0, 1] pointwise
converges to

f (x) =

{
0 0 ≤ x < 1

1 x = 1.
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Uniform Convergence Preserves Continuity

The exercise in the previous slide shows that the pointwise limit of a
sequence of continuous functions can be discontinuous.

Theorem

Let {fn} : X → R be a sequence of continuous functions. If fn converges
uniformly to f then f is continuous.

Proof.

By uniform convergence, for any given ε > 0, there exists m ∈ N such that
|f (x)− fm(x)| < ε

3 for all x ∈ X . For any x0 ∈ X , note that

|f (x)− f (x0)| ≤ |f (x)− fm(x)|+ |fm(x)− fm(x0)|+ |fm(x0)− f (x0)| < 3
ε

3
.

The choice of δ > 0 comes from the continuity of fm at x0.
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C (K ) is a Banach space

Theorem

For a compact topological space K, C (X ) is a Banach space.

Exercise

Let I ⊂ R be a closed bounded interval of R. If {fn} is a monotone
sequence of continuous real valued functions on I which converge
point-wise to a continuous function f , then the convergence is uniform on
I .

What is the topology for continuous functions on non-compact
Topological Spaces?
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Continuous Functions on Open Euclidean Subsets

For any open subset Ω of Rn, there is a sequence Kj of non-empty
compact subsets of Ω such that Ω = ∪∞j=0Kj and Kj ⊂ Int(Kj+1), for
all j . This property is called the σ-compactness of Ω.

We define a countable family of semi-norms (exercise!) on C (Ω) as
pj(φ) = supx∈Kj

|φ(x)|. Note that p0 ≤ p1 ≤ p2 ≤ . . .. The sets
{φ ∈ C (Ω) | pj(φ) < 1/j} form a local base for C (Ω).

The metric induced by the family of semi-norms on C (Ω) is

d(φ, ψ) = max
j∈N∪{0}

1

2j
pj(φ− ψ)

1 + pj(φ− ψ)
or
∞∑
j=0

1

2j
pj(φ− ψ)

1 + pj(φ− ψ)
.

The metric is complete and C (Ω) is a Fréchet space. This is precisely
the topology of compact convergence (uniform convergence on
compact sets) or the compact-open topology.

Show that the topology given in C (Ω) is independent of the choice
the exhaustion compact sets {Kj} of Ω.
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Polynomial Approximation of |x |

Lemma

There is a sequence of polynomials {pn} which converge uniformly to |x |
on [−1, 1].

Proof: Set p0 = 1 and

pn+1(x) =
1

2
(x2 + 2pn(x)− p2

n(x)) ∀n = 0, 1, 2, . . . .

Note that each pn is a polynomial. Further, the following recursive
relations hold

pn(x)− pn+1(x) =
1

2
(p2

n(x)− x2)

and

pn+1 − |x | =
1

2
(x2 − 2|x |+ 2pn − p2

n) =
1

2

[
(1− |x |)2 − (1− pn)2

]

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 113 / 251



Polynomial Approximation of |x |

Lemma

There is a sequence of polynomials {pn} which converge uniformly to |x |
on [−1, 1].

Proof: Set p0 = 1

and

pn+1(x) =
1

2
(x2 + 2pn(x)− p2

n(x)) ∀n = 0, 1, 2, . . . .

Note that each pn is a polynomial. Further, the following recursive
relations hold

pn(x)− pn+1(x) =
1

2
(p2

n(x)− x2)

and

pn+1 − |x | =
1

2
(x2 − 2|x |+ 2pn − p2

n) =
1

2

[
(1− |x |)2 − (1− pn)2

]

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 113 / 251



Polynomial Approximation of |x |

Lemma

There is a sequence of polynomials {pn} which converge uniformly to |x |
on [−1, 1].

Proof: Set p0 = 1 and

pn+1(x) =
1

2
(x2 + 2pn(x)− p2

n(x)) ∀n = 0, 1, 2, . . . .

Note that each pn is a polynomial. Further, the following recursive
relations hold

pn(x)− pn+1(x) =
1

2
(p2

n(x)− x2)

and

pn+1 − |x | =
1

2
(x2 − 2|x |+ 2pn − p2

n) =
1

2

[
(1− |x |)2 − (1− pn)2

]

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 113 / 251



Polynomial Approximation of |x |

Lemma

There is a sequence of polynomials {pn} which converge uniformly to |x |
on [−1, 1].

Proof: Set p0 = 1 and

pn+1(x) =
1

2
(x2 + 2pn(x)− p2

n(x)) ∀n = 0, 1, 2, . . . .

Note that each pn is a polynomial.

Further, the following recursive
relations hold

pn(x)− pn+1(x) =
1

2
(p2

n(x)− x2)

and

pn+1 − |x | =
1

2
(x2 − 2|x |+ 2pn − p2

n) =
1

2

[
(1− |x |)2 − (1− pn)2

]

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 113 / 251



Polynomial Approximation of |x |

Lemma

There is a sequence of polynomials {pn} which converge uniformly to |x |
on [−1, 1].

Proof: Set p0 = 1 and

pn+1(x) =
1

2
(x2 + 2pn(x)− p2

n(x)) ∀n = 0, 1, 2, . . . .

Note that each pn is a polynomial. Further, the following recursive
relations hold

pn(x)− pn+1(x) =
1

2
(p2

n(x)− x2)

and

pn+1 − |x | =
1

2
(x2 − 2|x |+ 2pn − p2

n) =
1

2

[
(1− |x |)2 − (1− pn)2

]

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 113 / 251



Polynomial Approximation of |x |

Lemma

There is a sequence of polynomials {pn} which converge uniformly to |x |
on [−1, 1].

Proof: Set p0 = 1 and

pn+1(x) =
1

2
(x2 + 2pn(x)− p2

n(x)) ∀n = 0, 1, 2, . . . .

Note that each pn is a polynomial. Further, the following recursive
relations hold

pn(x)− pn+1(x) =
1

2
(p2

n(x)− x2)

and

pn+1 − |x | =
1

2
(x2 − 2|x |+ 2pn − p2

n) =
1

2

[
(1− |x |)2 − (1− pn)2

]
T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 113 / 251



Proof Continued...

Since |x | ≤ p0 = 1, we have |x | ≤ p1 ≤ p0 = 1.

By induction, we have |x | ≤ pn+1 ≤ pn for all n.

Hence pn(x) converges for every x ∈ [−1, 1] (decreasing and bounded
below).

Set p(x) := limn pn(x), then using the recursive formula
p(x) = 1

2 (x2 + 2p(x)− p2(x)) we get p2(x) = x2.

Since p is limit of a positive sequence, p ≥ 0 and hence p(x) = |x |.
The convergence is uniform because the sequence is monotone.
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Polynomial Approximation in R

Lemma

For any c ∈ R, there exists a sequence {pn} of polynomials which
converge to |x − c | uniformly on every compact subset of R.

Proof.

Given any sequence {qn} as obtained the previous lemma, we have
|qn(x)− |x || < 1

k2 for n ≥ nk and for each k ∈ N. We now construct a
subsequence Pk(x) := qnk of {qn} for each k ∈ N. Then the new sequence
{Pn}, in [−1, 1], is such that |Pn(x)− |x || < 1/n2 for all x ∈ [−1, 1].
Define pn(x) = nPn[(x − c)/n], then

|pn(x)− |x − c || = n|Pn[(x − c)/n]− |x − c|/n| < 1/n

for all |x − c|/n ≤ 1 or, equivalently, x ∈ [c − n, c + n].
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Separating Points

Definition

A subset A ⊂ C (X ) is said to separate points of X if, for any x , y ∈ X,
such that x 6= y there exists f ∈ A such that f (x) 6= f (y).

Lemma

Let A ⊂ C (X ) satisfy the following properties:

(i) A is a vector (linear) subspace of C (X );

(ii) every constant function is in A; and

(iii) A separates points.

Then, for any x , y ∈ X with x 6= y and a, b ∈ R, there exists a f ∈ A such
that f (x) = a and f (y) = b.
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Proof

Proof.

Since A separates points, there is a g ∈ C (X ) such that g(x) = α
and g(y) = β and α 6= β.

We seek s, t ∈ R and set f := sg + t.

Then, f (x) = sα + t = a and f (y) = sβ + t = b.

We solve for s and t to obtain s := b−a
β−α , t := βa−αb

β−α ∈ R.

Note that sg + t ∈ A because A is a linear space and the function
1 ∈ A.

Note that if a = b then s = 0 and t = a, and, hence f ≡ a.
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Dense Subsets of C(X)

Theorem

Let X be a compact topological space and A ⊂ C (X ) satisfies the
properties as in Lemma 11 and also is a lattice, i.e., f ∨ g ∈ A and
f ∧ g ∈ A whenever f , g ∈ A. Then A is dense in C (X ) under the uniform
topology.

Proof:

Let f ∈ C (X ). Given ε > 0, we must get a g ∈ A such that
‖f − g‖ < ε.

Let x , y ∈ X be such that x 6= y and set a := f (x) and b := f (y).

Thus, by Lemma 11, there is a gxy ∈ A such that gxy (x) = f (x) and
gxy (y) = f (y).

Fix x ∈ X and for each y ∈ X with y 6= x , by the continuity of
gxy − f at y , for the given ε > 0, there is an open set Uxy ∈ X such
that |gxy (z)− f (z)| < ε for all z ∈ Uxy . In particular,
gxy (z) < f (z) + ε for all z ∈ Uxy .
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Proof Continued...

For the fixed x ∈ X , the open sets Uxy form an open cover of X and,
since X is compact, we have finite collection of {yi}ni=1 ⊂ X such
that X = ∪ni=1Uxyi .

Set gx := gxy1 ∧ · · · ∧ gxyn , then gx ∈ A.

Since gxyi (z) < f (z) + ε, we have gx(z) < f (z) + ε for all z ∈ X .
Moreover, gx(x) = f (x).

Now, for each fixed x ∈ X , by the continuity of gx − f at x , for the
given ε > 0, there is an open set Vx ∈ X such that |gx(z)− f (z)| < ε
for all z ∈ Vx . In particular, gx(z) > f (z)− ε for all z ∈ Vx .

The open sets Vx form an open cover of X and, since X is compact,
we have finite collection of {xi}mi=1 ⊂ X such that X = ∪mi=1Vxi .

Set g := gx1 ∨ · · · ∨ gxn , then g ∈ A.

Since gxi (z) > f (z)− ε, we have g(z) > f (z)− ε for all z ∈ X .
Therefore |f (z)− g(z)| < ε for all z ∈ X and hence ‖f − g‖ < ε.
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Lattice in C (X )

Theorem

A linear subspace A ⊂ C (X ) is a lattice iff f ∈ A implies |f | ∈ A.

Proof.

If A is a lattice and f ∈ A, then |f | = f ∨ (−f ). Conversely, if |f | ∈ A
whenever f ∈ A, then

f ∨ g =
f + g

2
+
|f − g |

2
and f ∧ g =

f + g

2
− |f − g |

2
.
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Real Stone-Weierstrass

Theorem (Real Stone-Weierstrass)

Let X be a compact topological space and A ⊂ C (X ) satisfies the
properties as in Lemma 11 and, in addition, satisfies the property that
fg ∈ A whenever f , g ∈ A. Then A is dense in C (X ) under the uniform
topology.

Proof:

We first consider the closure of A and denote it as A. Note that A
satisfies all the hypotheses of A.

It is enough to show that A is a lattice or, equivalently, |f | ∈ A
whenever f ∈ A.

We introduce the notation

p(f ) := anf
n + an−1f

n−1 + · · ·+ a1f + a0

for any real polynomial p(x) =
∑n

i=0 aix
i .

For any f ∈ A, we have p(f ) ∈ A.
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Proof Continued...

By Lemma 10, we have a sequence of polynomials pn converging
uniformly on compact subsets of R to |x |.

Thus, we have pn(f ) converge uniformly to |f | on X because the
range of |f | is compact subset of R.

Hence |f | is in A, since A is closed.

Since A satisfies all the hypotheses of A, by Theorem 24, A is dense
in C (X ).

Thus, A = C (X ) and hence A is dense in C (X ).
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Weierstrass Approximation

Corollary (Weierstrass Approximation)

Let K be a compact subset of Rn and let P(K ) denote the space of all
n-variable real polynomials restricted to K. Then P(K ) is dense in C (K ).

Proof.

Note that P(K ) is a subspace and contains constant polynomials.
The n variable polynomial has the form

∑k
|α|=0 aαx

α.

Given x , y ∈ K with x 6= y , there is a component 1 ≤ i ≤ n such that
xi 6= yi .

Consider the polynomial f (x) = xi for the chosen i . Then
f (x) 6= f (y) and P(K ) separates points.

Thus, P(K ) is dense in C (K ).
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Complex Stone-Weierstrass

Theorem (Complex Stone-Weierstrass)

Let X be a compact topological space and A ⊂ C (X ,C), all complex
valued continuous functions, satisfies the properties as in Theorem 26 and,
in addition, satisfies the property that if f ∈ A then f̄ ∈ A, the conjugate
of f . Then A is dense in C (X ,C) under the uniform topology.

Proof.

Let A0 be the set of all real-valued functions of A. Thus, A0 ⊂ A. Since
both f , f̄ ∈ A, we have <f ,=f ∈ A0. We claim that A0 satisfies the
hypotheses real Stone-Weiertrass theorem. One needs to check that A0

separates points in X . Since A separates points, there is f ∈ A such that
f (x) = 0 and f (y) = 1, by Lemma 11. Thus, <f ∈ A0 separates points
x , y . Hence, A0 is dense in C (X ). If f ∈ C (X ,C) then <f ,=f ∈ C (X )
and both can be approximated by real-valued polynomials from A0. Thus,
A is dense C (X ,C).

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 124 / 251



Complex Stone-Weierstrass

Theorem (Complex Stone-Weierstrass)

Let X be a compact topological space and A ⊂ C (X ,C), all complex
valued continuous functions, satisfies the properties as in Theorem 26 and,
in addition, satisfies the property that if f ∈ A then f̄ ∈ A, the conjugate
of f . Then A is dense in C (X ,C) under the uniform topology.

Proof.

Let A0 be the set of all real-valued functions of A. Thus, A0 ⊂ A.

Since
both f , f̄ ∈ A, we have <f ,=f ∈ A0. We claim that A0 satisfies the
hypotheses real Stone-Weiertrass theorem. One needs to check that A0

separates points in X . Since A separates points, there is f ∈ A such that
f (x) = 0 and f (y) = 1, by Lemma 11. Thus, <f ∈ A0 separates points
x , y . Hence, A0 is dense in C (X ). If f ∈ C (X ,C) then <f ,=f ∈ C (X )
and both can be approximated by real-valued polynomials from A0. Thus,
A is dense C (X ,C).

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 124 / 251



Complex Stone-Weierstrass

Theorem (Complex Stone-Weierstrass)

Let X be a compact topological space and A ⊂ C (X ,C), all complex
valued continuous functions, satisfies the properties as in Theorem 26 and,
in addition, satisfies the property that if f ∈ A then f̄ ∈ A, the conjugate
of f . Then A is dense in C (X ,C) under the uniform topology.

Proof.

Let A0 be the set of all real-valued functions of A. Thus, A0 ⊂ A. Since
both f , f̄ ∈ A, we have <f ,=f ∈ A0.

We claim that A0 satisfies the
hypotheses real Stone-Weiertrass theorem. One needs to check that A0

separates points in X . Since A separates points, there is f ∈ A such that
f (x) = 0 and f (y) = 1, by Lemma 11. Thus, <f ∈ A0 separates points
x , y . Hence, A0 is dense in C (X ). If f ∈ C (X ,C) then <f ,=f ∈ C (X )
and both can be approximated by real-valued polynomials from A0. Thus,
A is dense C (X ,C).

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 124 / 251



Complex Stone-Weierstrass

Theorem (Complex Stone-Weierstrass)

Let X be a compact topological space and A ⊂ C (X ,C), all complex
valued continuous functions, satisfies the properties as in Theorem 26 and,
in addition, satisfies the property that if f ∈ A then f̄ ∈ A, the conjugate
of f . Then A is dense in C (X ,C) under the uniform topology.

Proof.

Let A0 be the set of all real-valued functions of A. Thus, A0 ⊂ A. Since
both f , f̄ ∈ A, we have <f ,=f ∈ A0. We claim that A0 satisfies the
hypotheses real Stone-Weiertrass theorem.

One needs to check that A0

separates points in X . Since A separates points, there is f ∈ A such that
f (x) = 0 and f (y) = 1, by Lemma 11. Thus, <f ∈ A0 separates points
x , y . Hence, A0 is dense in C (X ). If f ∈ C (X ,C) then <f ,=f ∈ C (X )
and both can be approximated by real-valued polynomials from A0. Thus,
A is dense C (X ,C).

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 124 / 251



Complex Stone-Weierstrass

Theorem (Complex Stone-Weierstrass)

Let X be a compact topological space and A ⊂ C (X ,C), all complex
valued continuous functions, satisfies the properties as in Theorem 26 and,
in addition, satisfies the property that if f ∈ A then f̄ ∈ A, the conjugate
of f . Then A is dense in C (X ,C) under the uniform topology.

Proof.

Let A0 be the set of all real-valued functions of A. Thus, A0 ⊂ A. Since
both f , f̄ ∈ A, we have <f ,=f ∈ A0. We claim that A0 satisfies the
hypotheses real Stone-Weiertrass theorem. One needs to check that A0

separates points in X .

Since A separates points, there is f ∈ A such that
f (x) = 0 and f (y) = 1, by Lemma 11. Thus, <f ∈ A0 separates points
x , y . Hence, A0 is dense in C (X ). If f ∈ C (X ,C) then <f ,=f ∈ C (X )
and both can be approximated by real-valued polynomials from A0. Thus,
A is dense C (X ,C).

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 124 / 251



Complex Stone-Weierstrass

Theorem (Complex Stone-Weierstrass)

Let X be a compact topological space and A ⊂ C (X ,C), all complex
valued continuous functions, satisfies the properties as in Theorem 26 and,
in addition, satisfies the property that if f ∈ A then f̄ ∈ A, the conjugate
of f . Then A is dense in C (X ,C) under the uniform topology.

Proof.

Let A0 be the set of all real-valued functions of A. Thus, A0 ⊂ A. Since
both f , f̄ ∈ A, we have <f ,=f ∈ A0. We claim that A0 satisfies the
hypotheses real Stone-Weiertrass theorem. One needs to check that A0

separates points in X . Since A separates points, there is f ∈ A such that
f (x) = 0 and f (y) = 1, by Lemma 11.

Thus, <f ∈ A0 separates points
x , y . Hence, A0 is dense in C (X ). If f ∈ C (X ,C) then <f ,=f ∈ C (X )
and both can be approximated by real-valued polynomials from A0. Thus,
A is dense C (X ,C).

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 124 / 251



Complex Stone-Weierstrass

Theorem (Complex Stone-Weierstrass)

Let X be a compact topological space and A ⊂ C (X ,C), all complex
valued continuous functions, satisfies the properties as in Theorem 26 and,
in addition, satisfies the property that if f ∈ A then f̄ ∈ A, the conjugate
of f . Then A is dense in C (X ,C) under the uniform topology.

Proof.

Let A0 be the set of all real-valued functions of A. Thus, A0 ⊂ A. Since
both f , f̄ ∈ A, we have <f ,=f ∈ A0. We claim that A0 satisfies the
hypotheses real Stone-Weiertrass theorem. One needs to check that A0

separates points in X . Since A separates points, there is f ∈ A such that
f (x) = 0 and f (y) = 1, by Lemma 11. Thus, <f ∈ A0 separates points
x , y . Hence, A0 is dense in C (X ).

If f ∈ C (X ,C) then <f ,=f ∈ C (X )
and both can be approximated by real-valued polynomials from A0. Thus,
A is dense C (X ,C).

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 124 / 251



Complex Stone-Weierstrass

Theorem (Complex Stone-Weierstrass)

Let X be a compact topological space and A ⊂ C (X ,C), all complex
valued continuous functions, satisfies the properties as in Theorem 26 and,
in addition, satisfies the property that if f ∈ A then f̄ ∈ A, the conjugate
of f . Then A is dense in C (X ,C) under the uniform topology.

Proof.

Let A0 be the set of all real-valued functions of A. Thus, A0 ⊂ A. Since
both f , f̄ ∈ A, we have <f ,=f ∈ A0. We claim that A0 satisfies the
hypotheses real Stone-Weiertrass theorem. One needs to check that A0

separates points in X . Since A separates points, there is f ∈ A such that
f (x) = 0 and f (y) = 1, by Lemma 11. Thus, <f ∈ A0 separates points
x , y . Hence, A0 is dense in C (X ). If f ∈ C (X ,C) then <f ,=f ∈ C (X )
and both can be approximated by real-valued polynomials from A0.

Thus,
A is dense C (X ,C).

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 124 / 251



Complex Stone-Weierstrass

Theorem (Complex Stone-Weierstrass)

Let X be a compact topological space and A ⊂ C (X ,C), all complex
valued continuous functions, satisfies the properties as in Theorem 26 and,
in addition, satisfies the property that if f ∈ A then f̄ ∈ A, the conjugate
of f . Then A is dense in C (X ,C) under the uniform topology.

Proof.

Let A0 be the set of all real-valued functions of A. Thus, A0 ⊂ A. Since
both f , f̄ ∈ A, we have <f ,=f ∈ A0. We claim that A0 satisfies the
hypotheses real Stone-Weiertrass theorem. One needs to check that A0

separates points in X . Since A separates points, there is f ∈ A such that
f (x) = 0 and f (y) = 1, by Lemma 11. Thus, <f ∈ A0 separates points
x , y . Hence, A0 is dense in C (X ). If f ∈ C (X ,C) then <f ,=f ∈ C (X )
and both can be approximated by real-valued polynomials from A0. Thus,
A is dense C (X ,C).

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 124 / 251



Separability of C (X )

Corollary

C [a, b] endowed with supremum metric is separable. More generally, if X
is a compact metric space the C (X ) is separable.

Proof.

For any f ∈ C [a, b] there is a polynomial p(x) :=
∑n

k=0 ckx
k such that

‖f − p‖∞ ≤ ε/2. Since rationals are dense in R, for each ck there is a
rational rk such that |ck − rk | ≤ ε

2(n+1) . Set q(x) :=
∑n

k=0 rkx
k then

‖p − q‖∞ ≤ supx∈[a,b]

(
n∑

k=0

|ck − rk |xk
)
≤ ε

2
.

Thus, ‖f − q‖∞ ≤ ε. If the set of all polynomials with rational coefficients
is countable then our proof is done. This is left as an exercise!
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Trigonometric Polynomials

Let Pn
] ([−π, π]) denote the space of all 2π periodic trigonometric

polynomials on R of degree n, i.e.,

n∑
k=0

ak cos(kθ) +
n∑

k=1

bk sin(kθ) ∀ak , bk ∈ R, n ∈ N.

Note that the set {1, cos(kθ), sin(kθ)}, for 1 ≤ k ≤ n, generates
Pn
] ([−π, π]) and, hence, has a dimension of 2n + 1.

Let P]([−π, π]) denote the space of all 2π periodic trigonometric
polynomials on R of any degree, i.e.,

P]([−π, π]) = ∪∞n=0P
n
] ([−π, π]).
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Corollary (Trigonometric Approximation)

Let P]([−π, π],C) denote the space of all complex valued 2π periodic
trigonometric polynomials, i.e.,

k=n∑
k=−n

ck exp(ıkθ) ∀ck ∈ C, n ∈ N.

Then P]([−π, π],C) is dense in C]([−π, π],C).

The density is not valid for non-periodic C [−π, π] in uniform norm. For
instance, f (x) = x cannot be approximated and P][−π, π] has no function
that separates −π and π.
Proof:

We use the continuous bijection from C]([−π, π],C) to C (T,C)
where T := {z ∈ C | |z |2 = 1} is a compact subset of C endowed
with the usual Euclidean metric.

For each f ∈ C]([−π, π],C), we define f] : T→ C as f](e
ıθ) := f (θ),

for all −π ≤ θ < π.
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for all −π ≤ θ < π.
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Proof Continued...

The continuity of f implies the continuity of f], composition of
continuous functions. (Exercise!)

Thus, the subspace P](X ,C) of C (T,C) satisfies hypotheses of
complex Stone-Weierstrass theorem.

The separation property is satisfied because for any z ,w ∈ T, the
image f] of the f (θ) = exp(ıθ) satisifes f](z) 6= f](w).
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Fourier Series

Definition

The Fourier Series of a function f ∈ L1(−π, π) is defined as

∞∑
n=−∞

f̂ (n)e int (7.1)

where the Fourier coefficient is given as

f̂ (n) =
1

2π

∫ π

−π
f (x)e−inx dx . (7.2)

Following questions arise from the definition of Fourier series of f :

(a) Will the series (7.1) always converge?

(b) If it converges, will it converge to f at some/all points t ∈ (−π, π)?

We shall show that there is a large class of integrable functions on [−π, π]
which fail to converge on a very large set of points in [−π, π].
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Dirichlet Kernel

To study the convergence of (7.1), we consider the sequence of partial
sums

Sm
f (t) :=

m∑
n=−m

f̂ (n)e int

of (7.1).

Thus, using (7.2), we get

Sm
f (t) :=

1

2π

∫ π

−π
f (x)

[
m∑

n=−m
e in(t−x)

]
dx .

This motivates the definition of Dirichlet kernel, Dm : R→ R, defined as

Dm(s) :=
m∑

n=−m
e ins

and the partial sum is the convolution Sm
f (t) = (f ∗ Dm)(t).
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Proposition

Let m ∈ N ∪ {0}. Then

Dm(s) =


sin(m+ 1

2 )s
sin s

2
if s 6= 2kπ for k ∈ N ∪ {0}

2m + 1 if s = 2kπ for k ∈ N ∪ {0}.

Further
1

2π

∫ π

−π
Dm(s) ds = 1.

Proof: Since e i2kπ = 1 for every k ∈ N ∪ {0}, we have
Dm(2kπ) = 2m + 1. If s 6= 2kπ for all k ∈ N ∪ {0}, then e is − 1 6= 0 and,
hence,

(e is − 1)Dm(s) =
m∑

n=−m

(
e i(n+1)s − e ins

)
= e i(m+1)s − e−ims .
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Proof Continued...

Multiplying both sides by e−is/2, we get

(e is/2 − e−is/2)Dm(s) = e i(m+ 1
2 )s − e−i(m+ 1

2 )s .

Thus, we have our desired result.

Further,

1

2π

∫ π

−π
Dm(s) ds =

m∑
n=−m

1

2π

∫ π

−π
e ins ds = 1

because for non-zero n,∫ π

−π
e ins ds =

[
e ins

in

]π
−π

=
2 sin(nπ)

n
= 0.
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Exercise

Show that Dm is an even function and is 2π-periodic in R. Also, show that
Dm is continuous in R.

Proposition

limm→∞
∫ π
−π |Dm(s)| ds = +∞.
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Proof: For any s ∈ R, we have | sin s| ≤ |s|.

Thus,∫ π

−π
|Dm(s)| ds = 2

∫ π

0
|Dm(s)| ds = 2

∫ π

0

∣∣∣∣∣sin
(
m + 1

2

)
s

sin s
2

∣∣∣∣∣ ds
≥ 4

∫ π

0

∣∣∣∣∣sin
(
m + 1

2

)
s

s

∣∣∣∣∣ ds = 4

∫ (m+ 1
2

)π

0

| sin t|
t

dt

= 4

[
m∑

n=1

∫ nπ

(n−1)π

| sin t|
t

dt +

∫ (m+ 1
2

)π

mπ

| sin t|
t

dt

]

> 4
m∑

n=1

∫ nπ

(n−1)π

| sin t|
t

dt > 4
m∑

n=1

∫ nπ

(n−1)π

| sin t|
nπ

dt

=
4

π

m∑
n=1

1

n

∫ nπ

(n−1)π
| sin t| dt

=
4

π

m∑
n=1

1

n

∫ π

0
sin t dt =

8

π

m∑
n=1

1

n
.

As m→∞, the series in RHS diverges, we get our desired result.
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Theorem

Let X = C [−π, π] be the space of continuous functions with the
supremum norm and define the linear functionals {Tn} : X → R as

Tn(f ) := Sn
f (0),

where Sn
f is the n-th partial sum of the Fourier series associated to f .

Then Tn continuous (bounded), for each n, and

‖Tn‖ :=
1

2π

∫ π

−π
|Dn(s)| ds. (7.3)

Proof: Note that

Tn(f ) = Sn
f (0) =

1

2π

∫ π

−π
f (x)

[
m∑

n=−m
e−inx

]
dx =

1

2π

∫ π

−π
f (x)Dn(x) dx .
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Proof Continued ...

Therefore,

|Tn(f )| ≤ ‖f ‖∞
2π

∫ π

−π
|Dn(x)| dx

and, hence,

‖Tn‖ ≤
1

2π

∫ π

−π
|Dn(x)| dx .

To show equality, we shall construct a sequence of continuous functions
which converges to the equality case. For each fixed n ∈ N, let

En := {x ∈ [−π, π] | Dn(x) ≥ 0}
and define, for m ∈ N,

fm(x) :=
1−md(x ,En)

1 + md(x ,En)
.

Note that

fm(x) =

{
1 x ∈ En
1/m−d(x ,En)
1/m+d(x ,En) x ∈ E c

n
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Proof Continued ...

and {fm} ⊂ C [−π, π] because, for each n, d(x ,En) is a continuous
function on [−π, π] (cf. Exercise 19).

Further, ‖fm‖∞ < 1 because
1−md(x ,En) ≤ 1 + md(x ,En). Note that fm(x)→ 1, for all x ∈ En, and
fm(x)→ −1, for all x ∈ E c

n , as m→∞. Therefore, by Dominated
convergence theorem,

lim
m→∞

Tn(fm) = lim
m→∞

1

2π

∫ π

−π
fm(x)Dn(x) dx

=
1

2π

[∫
En

Dn(x) dx +

∫
E c
n

−Dn(x) dx

]

=
1

2π

∫ π

−π
|Dn(x)| dx .

Thus, we have proved (7.3).
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Divergence of Fourier Series

For the Banach space X = C [−π, π], the sub-family F ⊂ X ? defined as
Tn(f ) = Sn

f (0) is such that supn ‖Tn‖ =∞ using Proposition 2 and
Theorem 28.

Thus, by Uniform Boundedness Principle (cf. Theorem 22),
there is a dense Gδ subset G0 ⊂ C [−π, π] such that supn ‖Tn(f )‖ =∞ for
all f ∈ G0, i.e., the Fourier series of all f ∈ G0 diverges at x = 0. Note that
this result is true for any point x ∈ [−π, π]. In fact, for each x ∈ [−π, π],
there is a dense Gδ subset Gx ⊂ C [−π, π] such that the Fourier series of
all f ∈ Gx diverge at x . For any countable subset {xi} ⊂ [−π, π], we
define G := ∩iGxi ⊂ C [−π, π]. Then G is a dense Gδ subset of C [−π, π]
and the Fourier series of f ∈ G diverge at xi , for all i . The set G cannot
be countable because it is a dense Gδ subset (cf. Corollary 3). Thus, the
set of functions whose Fourier series diverges is very ‘big’. In fact, the
points xi on which the Fourier series diverge is also quite ‘big’.
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points xi on which the Fourier series diverge is also quite ‘big’.
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Convolution

The technique of regularization by convolution was introduced by Leray
and Friedrichs.

Definition

Let f , g ∈ L1(Rn). The convolution f ∗ g is defined as,

(f ∗ g)(x) =

∫
Rn

f (x − y)g(y) dy ∀x ∈ Rn.

The integral on RHS is well-defined, since by Fubini’s Theorem and the
translation invariance of the Lebesgue measure, we have∫
Rn×Rn

|f (x − y)g(y)| dx dy =

∫
Rn

|g(y)| dy
∫
Rn

|f (x − y)| dx = ‖g‖1‖f ‖1.

Thus, for a fixed x , f (x − y)g(y) ∈ L1(Rn).
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Properties of Convolution

Exercise

The convolution operation on L1(Rn) is both commutative and associative.

Exercise (Young’s inequality)

Let 1 ≤ p, q, r <∞ such that (1/p) + (1/q) = 1 + (1/r). If f ∈ Lp(Rn)
and g ∈ Lq(Rn), then the convolution f ∗ g ∈ Lr (Rn) and

‖f ∗ g‖r ≤ ‖f ‖p‖g‖q.

In particular, for 1 ≤ p <∞, if f ∈ L1(Rn) and g ∈ Lp(Rn), then the
convolution f ∗ g ∈ Lp(Rn) and

‖f ∗ g‖p ≤ ‖f ‖1‖g‖p.
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Properties of Convolution

Exercise

Let f ∈ L1(Rn) and g ∈ Lp(Rn), for 1 ≤ p ≤ ∞. Then

supp(f ∗ g) ⊂ supp(f ) + supp(g)

If both f and g have compact support, then support of f ∗ g is also
compact.

The convolution operation preserves smoothness.

Exercise

Let f ∈ C k
c (Rn) (k ≥ 1) and let g ∈ L1

loc(Rn). Then f ∗ g ∈ C k(Rn) and
for all |α| ≤ k

Dα(f ∗ g) = Dαf ∗ g = f ∗ Dαg .
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Mollifiers

For ε > 0,

ρε(x) =

{
cε−nexp

(
−ε2

ε2−|x |2

)
if |x | < ε

0 if |x | ≥ ε
(7.4)

where

c−1 =

∫
|y |≤1

exp

(
−1

1− |y |2

)
dy .

Note that ρε ≥ 0 and is in C∞c (Rn) with support in B(0; ε). The sequence
{ρε} is an example of mollifiers, a particular case of the Dirac sequence.
The notion of mollifiers is also an example for the approximation of
identity concept in functional analysis and ring theory.
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Dirac Sequence and Approximate Identity

Definition

A sequence of functions {ρk}, say on Rn, is said to be a Dirac Sequence if

(i) ρk ≥ 0 for all k.

(ii)
∫
Rn ρk(x) dx = 1 for all k.

(iii) For every given r > 0 and ε > 0, there exists a N0 ∈ N such that∫
Rn\B(0;r)

ρk(x) dx < ε, ∀k > N0.

Definition

An approximate identity is a sequence (or net) {ρk in a Banach algebra or
ring (possible with no identity), (X , ?) such that for any element a in the
algebra or ring, the limit of a ? ρk (or ρk ? a) is a.
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Regularization

Theorem

Let Ω ⊂ Rn be an open subset of Rn and let

Ωε := {x ∈ Ω | dist(x , ∂Ω) > ε}.

If f ∈ L1
loc(Ω) then fε := ρε ∗ f is in C∞(Ωε).

Proof: Fix x ∈ Ωε. Consider

fε(x + hei )− fε(x)

h
=

1

h

∫
Ω

[ρε(x + hei − y)− ρε(x − y)] f (y) dy

=

∫
Bε(x)

1

h
[ρε(x + hei − y)− ρε(x − y)]f (y) dy .
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Proof Continued...

Now, taking limh→0 both sides, we get

∂fε(x)

∂xi

= lim
h→0

∫
Bε(x)

1

h
[ρε(x + hei − y)− ρε(x − y)]f (y) dy

=

∫
Bε(x)

∂ρε(x − y)

∂xi
f (y) dy

(interchange of limits is due to the uniform convergence)

=

∫
Ω

∂ρε(x − y)

∂xi
f (y) dy =

∂ρε
∂xi
∗ f .

Similarly, one can show that, for any tuple α, Dαfε(x) = (Dαρε ∗ f )(x).
Thus, uε ∈ C∞(Ωε).
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Theorem (Regularization technique)

C∞(Rn) is dense in C (Rn) under the uniform convergence on compact
sets topology.

Proof: Let g ∈ C (Rn) and K ⊂ Rn be a compact subset. Note that g is
uniformly continuous on K . Hence, for every η > 0, there exist a δ > 0
(independent of x and dependent on K and η) such that
|g(x − y)− g(x)| < η whenever |y | < δ for all x ∈ K . For each m ∈ N,
set ρm := ρ1/m, the sequence of mollifiers. Define gm := ρm ∗ g . Note
that gm ∈ C∞(Rn) (Dαgm = Dαρm ∗ g).
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Proof Continued...

Now, for all x ∈ Rn,

|gm(x)− g(x)| =

∣∣∣∣∣
∫
|y |≤1/m

g(x − y)ρm(y) dy − g(x)

∫
|y |≤1/m

ρm(y) dy

∣∣∣∣∣

≤
∫
|y |≤1/m

|g(x − y)− g(x)|ρm(y) dy

Hence, for all x ∈ K and m > 1/δ, we have

|gm(x)− g(x)| ≤
∫
|y |<δ

|g(x − y)− g(x)|ρm(y) dy

≤ η

∫
|y |<δ

ρm(y) dy = η

Since the δ is independent of x ∈ K , we have ‖gm − g‖∞ < η for all
m > 1/δ. Hence, gm → g uniformly on K .
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Density of Smooth Bump Functions

Theorem

For any Ω ⊆ Rn, C∞c (Ω) is dense in Cc(Ω) under the uniform topology.

Proof: Let g ∈ Cc(Ω) and K := supp(g). One can view Cc(Ω) as a
subset of Cc(Rn) under the following identification: Each g ∈ Cc(Ω) is
extended to Rn as g̃

g̃(x) =

{
g(x) x ∈ K

0 x ∈ Rn \ K .

By Theorem 29, the sequence gm := ρm ∗ g̃ in C∞(Rn) converges to g̃
uniformly on every compact subsets of Rn. Note that
supp(gm) ⊂ K + B(0; 1/m) is compact because K is compact. Since we
want gm ∈ C∞c (Ω), we choose m0 ∈ N such that
1/m0 < dist(K ,Ωc).Thus, supp(gm) ⊂ Ω and gm ∈ C∞c (Ω), for all
m ≥ m0. The proof of the uniform convergence of gm to g on Ω is same
as in Theorem 29.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 148 / 251



Density of Smooth Bump Functions

Theorem

For any Ω ⊆ Rn, C∞c (Ω) is dense in Cc(Ω) under the uniform topology.

Proof: Let g ∈ Cc(Ω) and K := supp(g).

One can view Cc(Ω) as a
subset of Cc(Rn) under the following identification: Each g ∈ Cc(Ω) is
extended to Rn as g̃

g̃(x) =

{
g(x) x ∈ K

0 x ∈ Rn \ K .

By Theorem 29, the sequence gm := ρm ∗ g̃ in C∞(Rn) converges to g̃
uniformly on every compact subsets of Rn. Note that
supp(gm) ⊂ K + B(0; 1/m) is compact because K is compact. Since we
want gm ∈ C∞c (Ω), we choose m0 ∈ N such that
1/m0 < dist(K ,Ωc).Thus, supp(gm) ⊂ Ω and gm ∈ C∞c (Ω), for all
m ≥ m0. The proof of the uniform convergence of gm to g on Ω is same
as in Theorem 29.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 148 / 251



Density of Smooth Bump Functions

Theorem

For any Ω ⊆ Rn, C∞c (Ω) is dense in Cc(Ω) under the uniform topology.

Proof: Let g ∈ Cc(Ω) and K := supp(g). One can view Cc(Ω) as a
subset of Cc(Rn) under the following identification: Each g ∈ Cc(Ω) is
extended to Rn as g̃

g̃(x) =

{
g(x) x ∈ K

0 x ∈ Rn \ K .

By Theorem 29, the sequence gm := ρm ∗ g̃ in C∞(Rn) converges to g̃
uniformly on every compact subsets of Rn. Note that
supp(gm) ⊂ K + B(0; 1/m) is compact because K is compact. Since we
want gm ∈ C∞c (Ω), we choose m0 ∈ N such that
1/m0 < dist(K ,Ωc).Thus, supp(gm) ⊂ Ω and gm ∈ C∞c (Ω), for all
m ≥ m0. The proof of the uniform convergence of gm to g on Ω is same
as in Theorem 29.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 148 / 251



Density of Smooth Bump Functions

Theorem

For any Ω ⊆ Rn, C∞c (Ω) is dense in Cc(Ω) under the uniform topology.

Proof: Let g ∈ Cc(Ω) and K := supp(g). One can view Cc(Ω) as a
subset of Cc(Rn) under the following identification: Each g ∈ Cc(Ω) is
extended to Rn as g̃

g̃(x) =

{
g(x) x ∈ K

0 x ∈ Rn \ K .

By Theorem 29, the sequence gm := ρm ∗ g̃ in C∞(Rn) converges to g̃
uniformly on every compact subsets of Rn.

Note that
supp(gm) ⊂ K + B(0; 1/m) is compact because K is compact. Since we
want gm ∈ C∞c (Ω), we choose m0 ∈ N such that
1/m0 < dist(K ,Ωc).Thus, supp(gm) ⊂ Ω and gm ∈ C∞c (Ω), for all
m ≥ m0. The proof of the uniform convergence of gm to g on Ω is same
as in Theorem 29.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 148 / 251



Density of Smooth Bump Functions

Theorem

For any Ω ⊆ Rn, C∞c (Ω) is dense in Cc(Ω) under the uniform topology.

Proof: Let g ∈ Cc(Ω) and K := supp(g). One can view Cc(Ω) as a
subset of Cc(Rn) under the following identification: Each g ∈ Cc(Ω) is
extended to Rn as g̃

g̃(x) =

{
g(x) x ∈ K

0 x ∈ Rn \ K .

By Theorem 29, the sequence gm := ρm ∗ g̃ in C∞(Rn) converges to g̃
uniformly on every compact subsets of Rn. Note that
supp(gm) ⊂ K + B(0; 1/m) is compact because K is compact.

Since we
want gm ∈ C∞c (Ω), we choose m0 ∈ N such that
1/m0 < dist(K ,Ωc).Thus, supp(gm) ⊂ Ω and gm ∈ C∞c (Ω), for all
m ≥ m0. The proof of the uniform convergence of gm to g on Ω is same
as in Theorem 29.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 148 / 251



Density of Smooth Bump Functions

Theorem

For any Ω ⊆ Rn, C∞c (Ω) is dense in Cc(Ω) under the uniform topology.

Proof: Let g ∈ Cc(Ω) and K := supp(g). One can view Cc(Ω) as a
subset of Cc(Rn) under the following identification: Each g ∈ Cc(Ω) is
extended to Rn as g̃

g̃(x) =

{
g(x) x ∈ K

0 x ∈ Rn \ K .

By Theorem 29, the sequence gm := ρm ∗ g̃ in C∞(Rn) converges to g̃
uniformly on every compact subsets of Rn. Note that
supp(gm) ⊂ K + B(0; 1/m) is compact because K is compact. Since we
want gm ∈ C∞c (Ω), we choose m0 ∈ N such that
1/m0 < dist(K ,Ωc).

Thus, supp(gm) ⊂ Ω and gm ∈ C∞c (Ω), for all
m ≥ m0. The proof of the uniform convergence of gm to g on Ω is same
as in Theorem 29.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 148 / 251



Density of Smooth Bump Functions

Theorem

For any Ω ⊆ Rn, C∞c (Ω) is dense in Cc(Ω) under the uniform topology.

Proof: Let g ∈ Cc(Ω) and K := supp(g). One can view Cc(Ω) as a
subset of Cc(Rn) under the following identification: Each g ∈ Cc(Ω) is
extended to Rn as g̃

g̃(x) =

{
g(x) x ∈ K

0 x ∈ Rn \ K .

By Theorem 29, the sequence gm := ρm ∗ g̃ in C∞(Rn) converges to g̃
uniformly on every compact subsets of Rn. Note that
supp(gm) ⊂ K + B(0; 1/m) is compact because K is compact. Since we
want gm ∈ C∞c (Ω), we choose m0 ∈ N such that
1/m0 < dist(K ,Ωc).Thus, supp(gm) ⊂ Ω and gm ∈ C∞c (Ω), for all
m ≥ m0.

The proof of the uniform convergence of gm to g on Ω is same
as in Theorem 29.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 148 / 251



Density of Smooth Bump Functions

Theorem

For any Ω ⊆ Rn, C∞c (Ω) is dense in Cc(Ω) under the uniform topology.

Proof: Let g ∈ Cc(Ω) and K := supp(g). One can view Cc(Ω) as a
subset of Cc(Rn) under the following identification: Each g ∈ Cc(Ω) is
extended to Rn as g̃

g̃(x) =

{
g(x) x ∈ K

0 x ∈ Rn \ K .

By Theorem 29, the sequence gm := ρm ∗ g̃ in C∞(Rn) converges to g̃
uniformly on every compact subsets of Rn. Note that
supp(gm) ⊂ K + B(0; 1/m) is compact because K is compact. Since we
want gm ∈ C∞c (Ω), we choose m0 ∈ N such that
1/m0 < dist(K ,Ωc).Thus, supp(gm) ⊂ Ω and gm ∈ C∞c (Ω), for all
m ≥ m0. The proof of the uniform convergence of gm to g on Ω is same
as in Theorem 29.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 148 / 251



Corollary

For any Ω ⊆ Rn, C∞c (Ω) is dense in C (Ω) under the uniform convergence
on compact sets topology.
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Density of Simple Functions

A simple function φ is a non-zero function on Rn having the (canonical)
form

φ(x) =
k∑

i=1

ai1Ei

with disjoint measurable subsets Ei ⊂ Rn with µ(Ei ) < +∞ and ai 6= 0,
for all i , and ai 6= aj for i 6= j . By our definition, simple function is
non-zero on a finite measure.

Theorem

Let Ω ⊂ Rn. The class of all simple functions are dense in Lp(Ω) for
1 ≤ p <∞.

Proof: Fix 1 ≤ p <∞ and let f ∈ Lp(Ω) such that f ≥ 0. Then, we have
an increasing sequence of non-negative simple functions {φk} that
converge point-wise a.e. to f and φk ≤ f for all k .
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Proof Continued...

Thus,
|φk(x)− f (x)|p ≤ 2p|f (x)|p

and, by Dominated Convergence Theorem, we have

lim
k→∞

‖φk − f ‖pp = lim
k→∞

∫
Ω
|φk − f |p → 0.

For an arbitrary f ∈ Lp(Ω), we use the decomposition f = f + − f − where
f +, f − ≥ 0. Thus we have sequences of simple functions {φk} and {ψk}
such that φm − ψm → f in Lp(Ω) (using triangle inequality). Thus, the
space of simple functions is dense in Lp(Ω).
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Density of Compactly Supported Functions

Theorem

The space of all compactly supported continuous functions on Ω, denoted
as Cc(Ω) is dense in Lp(Ω) for 1 ≤ p <∞.

Proof: It is enough to prove the result for a characteristic function χF ,
where F ⊂ Ω such that F is bounded. By outer regularity, for a given
ε > 0 there is an open (bounded) set ω such that ω ⊃ F and
µ(ω \ F ) < ε/2. Also, by inner regularity, there is a compact set K ⊂ F
such that µ(F \ K ) < ε/2. By Urysohn lemma, there is a continuous
function g : Ω→ R such that g ≡ 0 on Ω \ ω, g ≡ 1 on K and 0 ≤ g ≤ 1
on ω \ K . Note that g ∈ Cc(Ω). Therefore,

‖χF − g‖pp =

∫
Ω
|χF − g |p =

∫
Ω\K
|χF − g |p ≤ µ(Ω \ K ) = ε.
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Alternate Proof

Proof: Let f ∈ Lp(Ω) and fix ε > 0.

By Theorem 31, there is a simple
function φ such that ‖φ− f ‖p < ε/2. Note that φ is supported on a finite
measure set, by definition of simple funciton.Let F := supp(φ) and F ⊂ Ω.
By Luzin’s theorem, there is a closed subset Γ ⊂ F such that φ ∈ C (Γ) and

µ(F \ Γ) <

(
ε

2‖φ‖∞

)p

.

Γ being a closed subset of finite measure set F , Γ is compact in Ω. Thus,
we put φ to be zero on Γc := Ω \ Γ, call it g , and g ∈ Cc(Ω) with
supp(g) = Γ. Further, by our construction, we have |g(x)| ≤ ‖φ‖∞.
Hence,

‖g − φ‖p = ‖φ‖p,Γc = ‖φ‖p,F\Γ <
ε

2‖φ‖∞
‖φ‖∞ =

ε

2
.

Therefore, ‖g − f ‖p < ε. Thus, Cc(Ω) is dense in Lp(Ω).
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Theorem (Regularization technique)

The space C∞(Rn) is dense in Lp(Rn), for 1 ≤ p <∞, under the p-norm.

Proof: Let f ∈ Lp(Rn).

For each m ∈ N, set ρm := ρ1/m, the sequence of
mollifiers. Then the sequence fm := ρm ∗ f is in C∞(Rn). Since
ρm ∈ L1(Rn), by Young’s inequality, fm ∈ Lp(Rn). We shall prove that fm
converges to f in p-norm. For any given ε > 0, by Theorem 32, we choose
a g ∈ Cc(Rn) such that ‖g − f ‖p < ε/3. Therefore, by Theorem 30, there
is a compact subset K ⊂ Rn such that ‖ρm ∗ g − g‖∞ < ε/3(µ(K ))1/p.
Hence, ‖ρm ∗ g − g‖p < ε/3. Thus, for sufficiently large m, we have

‖fm − f ‖p ≤ ‖ρm ∗ f − ρm ∗ g‖p + ‖ρm ∗ g − g‖p + ‖g − f ‖p

< ‖ρm ∗ (f − g)‖p +
2ε

3
≤ ‖f − g‖p‖ρm‖1 +

2ε

3

<
ε

3
+

2ε

3
= ε.

The first term has been handled using Young’s inequality.
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Theorem (Cut-Off Technique)

For 1 ≤ p <∞ and Ω ⊆ Rn, C∞c (Ω) is dense in Lp(Ω).

Proof: Any f ∈ Lp(Ω) can be viewed as an element in Lp(Rn) under the
extension

f̃ (x) =

{
f (x) x ∈ Ω

0 x ∈ Ωc .

By Theorem 33, the sequence fm := ρm ∗ f̃ converges to f̃ in p-norm. The
sequence {fm} may fail to have compact support in Ω because support of
f̃ is not necessarily compact in Ω. To fix this issue, we shall multiply the
sequence with suitable choice of test functions in C∞c (Ω). Choose the
sequence of exhaustion compact sets {Km} in Ω. In particular, for Ω = Rn,
we can choose Km = B(0;m). Note that Ω = ∪mKm. Consider (The type
of functions, φk , are called cut-off functions) {φm} ⊂ C∞c (Ω) such that
φm ≡ 1 on Km and 0 ≤ φm ≤ 1, for all m. We extend φm by zero on Ωc .
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sequence {fm} may fail to have compact support in Ω because support of
f̃ is not necessarily compact in Ω. To fix this issue, we shall multiply the
sequence with suitable choice of test functions in C∞c (Ω).

Choose the
sequence of exhaustion compact sets {Km} in Ω. In particular, for Ω = Rn,
we can choose Km = B(0;m). Note that Ω = ∪mKm. Consider (The type
of functions, φk , are called cut-off functions) {φm} ⊂ C∞c (Ω) such that
φm ≡ 1 on Km and 0 ≤ φm ≤ 1, for all m. We extend φm by zero on Ωc .

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 155 / 251



Theorem (Cut-Off Technique)

For 1 ≤ p <∞ and Ω ⊆ Rn, C∞c (Ω) is dense in Lp(Ω).

Proof: Any f ∈ Lp(Ω) can be viewed as an element in Lp(Rn) under the
extension

f̃ (x) =

{
f (x) x ∈ Ω

0 x ∈ Ωc .

By Theorem 33, the sequence fm := ρm ∗ f̃ converges to f̃ in p-norm. The
sequence {fm} may fail to have compact support in Ω because support of
f̃ is not necessarily compact in Ω. To fix this issue, we shall multiply the
sequence with suitable choice of test functions in C∞c (Ω). Choose the
sequence of exhaustion compact sets {Km} in Ω. In particular, for Ω = Rn,
we can choose Km = B(0;m). Note that Ω = ∪mKm.

Consider (The type
of functions, φk , are called cut-off functions) {φm} ⊂ C∞c (Ω) such that
φm ≡ 1 on Km and 0 ≤ φm ≤ 1, for all m. We extend φm by zero on Ωc .

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 155 / 251



Theorem (Cut-Off Technique)

For 1 ≤ p <∞ and Ω ⊆ Rn, C∞c (Ω) is dense in Lp(Ω).

Proof: Any f ∈ Lp(Ω) can be viewed as an element in Lp(Rn) under the
extension

f̃ (x) =

{
f (x) x ∈ Ω

0 x ∈ Ωc .

By Theorem 33, the sequence fm := ρm ∗ f̃ converges to f̃ in p-norm. The
sequence {fm} may fail to have compact support in Ω because support of
f̃ is not necessarily compact in Ω. To fix this issue, we shall multiply the
sequence with suitable choice of test functions in C∞c (Ω). Choose the
sequence of exhaustion compact sets {Km} in Ω. In particular, for Ω = Rn,
we can choose Km = B(0;m). Note that Ω = ∪mKm. Consider (The type
of functions, φk , are called cut-off functions) {φm} ⊂ C∞c (Ω) such that
φm ≡ 1 on Km and 0 ≤ φm ≤ 1, for all m.

We extend φm by zero on Ωc .

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 155 / 251



Theorem (Cut-Off Technique)

For 1 ≤ p <∞ and Ω ⊆ Rn, C∞c (Ω) is dense in Lp(Ω).

Proof: Any f ∈ Lp(Ω) can be viewed as an element in Lp(Rn) under the
extension

f̃ (x) =

{
f (x) x ∈ Ω

0 x ∈ Ωc .

By Theorem 33, the sequence fm := ρm ∗ f̃ converges to f̃ in p-norm. The
sequence {fm} may fail to have compact support in Ω because support of
f̃ is not necessarily compact in Ω. To fix this issue, we shall multiply the
sequence with suitable choice of test functions in C∞c (Ω). Choose the
sequence of exhaustion compact sets {Km} in Ω. In particular, for Ω = Rn,
we can choose Km = B(0;m). Note that Ω = ∪mKm. Consider (The type
of functions, φk , are called cut-off functions) {φm} ⊂ C∞c (Ω) such that
φm ≡ 1 on Km and 0 ≤ φm ≤ 1, for all m. We extend φm by zero on Ωc .

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 155 / 251



Proof Continued...

Define Fm := φmfm and, hence, Fm ∈ C∞c (Ω).

Also, Fm = fm on Km and
|Fm| ≤ |fm| in Rn.
Thus,

‖Fm − f ‖p,Ω = ‖Fm − f̃ ‖p,Rn ≤ ‖φmfm − φm f̃ ‖p,Rn + ‖φm f̃ − f̃ ‖p,Rn

≤ ‖fm − f̃ ‖p,Rn + ‖φm f̃ − f̃ ‖p,Rn .

The first term converges to zero by Theorem 33 and the second term
converges to zero by Dominated convergence theorem.

Remark

The case p =∞ is ignored in the above results, because the L∞-limit of
ρm ∗ f is continuous and we do have discontinuous functions in L∞(Ω).
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Total Boundedness

Definition

Let (X , d) be a metric space. A set E ⊂ X is said to be totally bounded
if, for every given ε > 0, there exists a finite collection of points
{x1, x2, · · · , xn} ⊂ X such that E ⊂ ∪ni=1Bε(xi ).

Exercise

If E ⊂ X is totally bounded then En ⊂ X n is also totally bounded.

Definition

A subset A ⊂ C (X ) is said to be bounded if there exists a M ∈ N such
that ‖f ‖∞ ≤ M for all f ∈ A.
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Equicontinuity

Definition

A subset A ⊂ C (X ) is said to be equicontinuous at x0 ∈ X if, for every
given ε > 0, there is an open set U of x0 such that

|f (x)− f (x0)| < ε ∀x ∈ U; f ∈ A.

A is said to be equicontinuous if it is equicontinuous at every point of X .
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Total Boundedness implies Equicontinuity

Theorem

Let X be a compact topological space and A ⊂ C (X ). If A is totally
bounded then A is equicontinuous.

Proof: Let A be totally bounded. Then, for given ε > 0, there is a
collection of {f1, f2, · · · , fm} ⊂ C (X ) such that A ⊂ ∪mj=1Bε/3(fj). By the
continuity of fj , for each x ∈ X , there is an open set Ux

j containing x such
that |fj(y)− fj(x)| < ε/3 for all y ∈ Ux

j .Let Ux := ∩mj=1U
x
j which is an

open set containing x . Now, for any f ∈ A, choose j such that
f ∈ Bε/3(fj).Then, for all y ∈ Ux , we have

|f (x)− f (y)| ≤ |f (x)− fj(x)|+ |fj(x)− fj(y)|+ |fj(y)− f (y)| < ε.

The first and third term is smaller that ε/3, by the total boundedness of A
and the second term is smaller than ε/3 by the continuity of fj . Hence A
is equicontinuous.
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Ascoli-Arzela Theorem

Corollary (one implication of Ascoli-Arzela Theorem)

Let X be a compact topological space. If a subset A ⊂ C (X ) is compact
then A is closed and equicontinuous.

Proof.

Since C (X ) is a metric space and A is compact we have that A is closed
and totally bounded. By above theorem, A is equicontinuous.

The converse of the Theorem proved above is true with some restriction
on the range.
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Equicontinuity implies Total Boundedness

Theorem

Let X be a compact topological space and (Y , d) be a totally bounded
metric space. If a subset A ⊂ C (X ,Y ) is equicontinuous then A is totally
bounded.

Proof: Let A be equicontinuous and ε > 0. Then, for each x ∈ X , there is
a open set Ux containing x such that

|f (y)− f (x)| < ε

3
∀y ∈ Ux ; f ∈ A.

Since X is compact, there is a finite set of points {xi}n1 ⊂ X such that
X = ∪ni=1Uxi . Define the subset EA of Y n as,

EA := {(f (x1), f (x2), · · · , f (xn)) | f ∈ A}
which is endowed with the product metric, i.e.,

d(y , z) = max
1≤i≤n

{|yi − zi |}

where y , z ∈ Y n are n-tuples.
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a open set Ux containing x such that

|f (y)− f (x)| < ε

3
∀y ∈ Ux ; f ∈ A.

Since X is compact, there is a finite set of points {xi}n1 ⊂ X such that
X = ∪ni=1Uxi .

Define the subset EA of Y n as,

EA := {(f (x1), f (x2), · · · , f (xn)) | f ∈ A}
which is endowed with the product metric, i.e.,

d(y , z) = max
1≤i≤n

{|yi − zi |}

where y , z ∈ Y n are n-tuples.
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Proof Continued...

Since Y is totally bounded, Y n is also totally bounded (cf. Exercise 8).

Thus, EA is totally bounded and there are m number of n-tuples,
yj := (fj(x1), fj(x2), · · · , fj(xn)) ∈ Y n, for each 1 ≤ j ≤ m, such that
EA ⊂ ∪mj=1Bε/3(yj). For any f ∈ A, there is a j such that d(yj , zf ) < ε

3
where zf = (f (x1), f (x2), · · · , f (xn)). In particular, given any f ∈ A, there
is a j such that, for all 1 ≤ i ≤ n,

|fj(xi )− f (xi )| <
ε

3
.

Given f ∈ A, fix the j as chosen above. Now, for any given x ∈ X , there is
a i such that x ∈ Uxi . For this choice of i , j , we have

|f (x)− fj(x)| ≤ |f (x)− f (xi )|+ |f (xi )− fj(xi )|+ |fj(xi )− fj(x)|.

The first and third term is smaller that ε/3 by the continuity of f and fj ,
respectively, and the second term is smaller than ε/3 by choice of fj .
Hence A is totally bounded, i.e., A ⊂ ∪mj=1Bε(fj), equivalently, for any
f ∈ A there is a j such that ‖f − fj‖∞ < ε.
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Necessary Conditions for Bounded Subsets of C (X )

Lemma

Let X be compact topological space. If A ⊂ C (X ) is bounded then there
is a compact subset K ⊂ R such that f (x) ∈ K for all f ∈ A and x ∈ X.

Proof.

Choose an element g ∈ A. Since A is bounded in the uniform topology,
there is a M such that ‖f − g‖∞ < M for all f ∈ A. Since X is compact,
g(X ) is compact. Hence there is a N > 0 such that g(X ) ⊂ [−N,N].
Then f (X ) ⊂ [−M − N,M + N] for all f ∈ A. Set
K := [−M − N,M + N] and we are done.
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Ascoli-Arzela Theorem

Corollary (other part of Ascoli-Arzela Theorem)

Let X be a compact topological space. If a subset A ⊂ C (X ) is closed,
bounded and equicontinuous then A is compact.

Proof.

Since A is bounded, by Lemma 13, we have A ⊂ C (X ,K ) ⊂ C (X ) for
some compact subset K ⊂ R. Then, by Theorem 36, A is totally bounded.
Since A is a closed and totally bounded subset of the metric space C (X ),
A is compact.
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Kolmogorov Compactness Criteria

Theorem (Kolmogorov Compactness Criteria)

Let p ∈ [1,∞) and let A be a subset of Lp(Rn). Then A is relatively
compact in Lp(Rn) iff the following conditions are satisfied:

(i) A is bounded in Lp(Rn);

(ii) limr→+∞
∫
{|x |>r} |f (x)|p dx = 0 uniformly with respect to f ∈ A;

(iii) limh→0 ‖τhf − f ‖p = 0 uniformly with respect to f ∈ A, where τhf is
the translated function (τhf )(x) := f (x − h).

Proof: We shall prove the sufficiency part, i.e, (i), (ii), (iii) implies that A
is relatively compact in Lp(Rn). Equivalently, we have to prove that A is
precompact, which means that for any ε > 0, there exists a finite number
of balls Bε(f1), . . . ,Bε(fk) which cover A.
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Proof Continued...

Let us choose ε > 0. By (ii) there exists a r > 0 such that∫
|x |>r

|f (x)|p dx < ε ∀f ∈ A.

Let (ρn)n∈N be a mollifier. It follows from Theorem 34 that, for all n ≥ 1
and f ∈ Lp(Rn)

‖f − f ∗ ρn‖pp ≤
∫
Rn

ρn(y)‖f − τy f ‖pp dy .

Hence
‖f − f ∗ ρn‖p ≤ sup

|y |≤ 1
n

‖f − τy f ‖p.

By (iii), there exists an integer N(ε) ∈ N such that, for all f ∈ A,

‖f − f ∗ ρN(ε)‖p < ε.
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Proof Continued...
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Proof Continued...

On the other hand, for any x , z ∈ Rn, f ∈ Lp(Rn) and n ∈ N,

|(f ∗ ρn)(x)− (f ∗ ρn)(z)| ≤
∫
Rn

|f (x − y)− f (z − y)|ρn(y) dy

≤ ‖τx f̌ − τz f̌ ‖p‖ρn‖q
≤ ‖τx−z f − f ‖p‖ρn‖q.

The last inequality follows from the invariance property of the Lebesgue
measure.

Moreover,

|(f ∗ ρn)(x)| ≤ ‖f ‖p‖ρn‖q.

Let us consider the family A = {f ∗ ρN(ε) : Br (0)→ R | f ∈ A}. By using
(i), (iii) and Ascoli-Arzela result, we observe that A is relatively compact
w.r.t the uniform topology on C (Br (0)). Hence, there exists a finite set
{f1, . . . , fk} ⊂ A such that

A ⊂ ∪ki=1Bεr−n/p(fi ∗ ρN(ε)).
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Proof Continued...

Thus, for all f ∈ A, there exists some j ∈ {1, 2, . . . , k} such that, for all
x ∈ Br (0)

|f ∗ ρN(ε)(x)− fj ∗ ρN(ε)(x)| ≤ ε|Br (0)|−1/p.

Hence,

‖f − fj‖p ≤

(∫
|x |>r

|f |p dx

)1/p

+

(∫
|x |>r

|fj |p dx

)1/p

+‖f − f ∗ ρN(ε)‖p + ‖fj − fj ∗ ρN(ε)‖p
+‖f ∗ ρN(ε) − fj ∗ ρN(ε)‖p,Br (0).

The last term may be treated as follows:

‖f ∗ ρN(ε) − fj ∗ ρN(ε)‖p,Br (0) =

(∫
Br (0)

|f ∗ ρN(ε)(x)− fj ∗ ρN(ε)(x)|p dx

)1/p

≤ ε|Br (0)|−1/p|Br (0)|1/p = ε.
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Proof Continued...

Finally,
‖f − fj‖p ≤ 5ε

and, hence, A is precompact in Lp(Rn).
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Continuous Bijection on Intervals

The function f : [0, 1]→ (0, 1), defined as

f (x) =


1
2 for x = 0

1
n+2 for x = 1

n

x otherwise

is a bijection.

In fact, there is also a bijection between [0, 1] and R.

However, there is no continuous bijection between [0, 1] and (0, 1).
This is because image of compact sets under continuous function is
compact (Exercise!).

Also, there is no continuous bijection f : (0, 1)→ [0, 1]. If
f : (0, 1)→ [0, 1] is bijection, then there exist distinct x 6= y such
that f (x) = 0 and f (y) = 1. Let I := [x , y ] denote the closed interval
with endpoints x and y . If f is continuous, then f (I ) is a proper
connected subset (or proper subinterval) of [0, 1] containing both 0
and 1. This is a contradiction.
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Bijection onto Square

In 1878, Cantor showed a bijection between [0, 1] and
[0, 1]× [0, 1] ⊂ R2.

The decimal form of any a ∈ [0, 1] is

a = 0.a1a2a3 . . . or a =
∞∑
n=1

an10−n,

where ai takes values between 0 and 9.

Define the map f : [0, 1]→ [0, 1]× [0, 1] as

f (0.a1a2a3a4 . . .) = (0.a1a3a5 . . . , 0.a2a4a6 . . .).

This map f is not well defined because the decimal representation is
not unique. For instance, since 0.2 = 0.1999999999,

f (0.1999999999 . . .) = (0.19999 . . . , 0.99999 . . .) = (0.2, 1)

and f (0.2) = (0.2, 0).
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Bijection onto Square

f is made well defined by choosing one of the possible decimal
expansion, the infinitely repeated 9’s.

f is a surjection except that f is not defined for all x ∈ [0, 1]. For
instance, there is no (a, b) ∈ [0, 1]× [0, 1] such that

f (0.12304050607080900010 . . .) = (a, b)

because its image, by definition, is (0.134567890123 . . . , 0.2000 . . .)
which is an image of the element

f (0.11394959697989990919 . . .) = (0.134567890123 . . . , 0.19999 . . .)

since we chose to identify 0.2 = 0.19999 . . ..

To avoid above situation, whenever the decimal expansion has zeroes
interjected, we identify a number with all its preceding zeros till the
previous non-zero number as a single unit. For instance,

f (0.123040506070809000102 . . .) = (0.1305070902 . . . , 0.20406080001 . . .).

With this modification, the function f is a bijection.
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With this modification, the function f is a bijection.
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No Continuous Bijection onto Square

Non-existence of continuous bijection was proved by E. Netto in 1879.

We
use the following results.

Lemma

Let (X , dX ) and (Y , dY ) be metric spaces and f : X → Y be a continuous
map.

(i) If K ⊂ X is a compact subset then f (K ) is a compact subset of Y .

(ii) If K ⊂ X is a connected subset then f (K ) is a connected subset of Y .

Theorem

Let (X , dX ) and (Y , dY ) be metric spaces and f : X → Y be an injective
map. If X is compact and f is continuous, then f −1 : f (X ) ⊆ Y → X is
continuous.
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The compactness of X is essential in the above theorem as seen from the
example below.

Example

Consider f : [0, 1)→ C defined as f (x) = e i2πx which is bijective on to the
unit circle |z | = 1 of C.However, f −1 is not continuous at the point
f (0) = 1 ∈ C because the sequence f

(
1− 1

n

)
converges to f (0) while

1− 1
n do not converge in [0, 1).
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No Continuous Bijection onto Square

Theorem

If f : [0, 1]→ [0, 1]× [0, 1] is a bijection then f is not continuous.

Proof.

Assume f is continuous. Since f is bijection and [0, 1] is compact, by
Theroem 38, f −1 is also continuous.Consider the two points f (0) and f (1)
in the unit square which are distinct due to the injectivity of f . Let γ1 and
γ2 be two disjoint curves in the unit square with endpoints f (0) and f (1).
Then both f −1(γ1) and f −1(γ2) are connected in [0, 1] (cf.Lemma 14) and
hence f −1(γ1) = f −1(γ2) = [0, 1] which contradicts the injectivity of f .
Thus, f cannot be continuous.
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Continuous Surjection onto Square

In 1890, Peano produced a continuous surjective map from the unit
interval to unit square. Such curves are now called space filling curve.

We shall now construct a curve in R2 which passes through all the
points of the square [0, 1]× [0, 1] using the following results:

Theorem (Weierstrass M-test)

Let {fn} be a sequence of functions and, for all n, there exists a Mn ∈ R
such that |fn(x)| ≤ Mn for all x. If

∑
n Mn converges then

∑
n fn(x)

converges uniformly on the domain of consideration.

Theorem

Let f (x) :=
∑

n fn(x), a uniform limit of the series in its domain. If fn is
continuous at x0, for all n, then f is also continuous at x0.
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Space Filling Curve

Define the function f : [0, 2]→ [0, 1] as

f (t) :=


0 if 0 ≤ t ≤ 1

3 and 5
3 ≤ t ≤ 2

3t − 1 if 1
3 ≤ t ≤ 2

3

1 if 2
3 ≤ t ≤ 4

3

−3t + 5 if 4
3 ≤ t ≤ 5

3

and extend f periodically to all of R with period 2, i.e.,
f (t + 2) = f (t).

Now define two function F1 and F2 on R as

F1(t) :=
∞∑
n=1

f (32n−2t)

2n
and F2(t) :=

∞∑
n=1

f (32n−1t)

2n
.

By Weierstrass M-test (cf. Theorem 40), and choosing Mn = 2n, we
see that both the series converge uniformly (also absolutely) for all
t ∈ R.
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Space Filling Curve

Since f is continuous on R, by Theorem 41, both F1 and F2 are
continuous on R.

Since
∑

n 2−n = 1, we have that 0 ≤ F1 ≤ 1 and 0 ≤ F2 ≤ 1.
We will show that the image of the function F = (F1,F2) fills
[0, 1]× [0, 1], i.e., given (a, b) ∈ [0, 1]× [0, 1], we will find c ∈ [0, 1]
such that F (c) = (a, b).
We consider the binary form of both a and b as

a =
∞∑
n=1

an
2n

and b =
∞∑
n=1

bn
2n

where each an and bn are either 0 or 1.
Now, set

c := 2
∞∑
n=1

cn
3n

where c2n−1 = an and c2n = bn.
Moreover, 0 ≤ c ≤ 1 since 2

∑
n 3−n = 1.
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Space Filling Curve

Consider, for each fixed k ∈ N ∪ {0},

3kc = 2
k∑

n=1

cn
3n−k

+ 2
∞∑

n=k+1

cn
3n−k

= uk + vk

where vk = 2
∑∞

m=1
cm+k

3m .

Since

uk = 2
k∑

n=1

cn3k−n

is an even integer and f is periodic of period 2, we have
f (3kc) = f (vk).

We shall now analyse vk based on ck+1. Recall that ck+1 is either 0
or 1.
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Space Filling Curve

If ck+1 = 0 then

0 = 2
∞∑

m=2

0

3m
≤ vk ≤ 2

∞∑
m=2

3−m =
1

3

because the other cn+k are either 0 or 1. Thus, f (vk) = 0 = ck+1.

If ck+1 = 1 then

2

3
= 2

(
1

3
+
∞∑

m=2

0

3m

)
≤ vk ≤ 2

∞∑
m=1

3−m = 1.

Thus, f (vk) = 1 = ck+1.

Therefore, we have f (3kc) = ck+1 for all k = 0, 1, 2, . . ..

Hence, f (32n−2c) = c2n−1 = an and f (32n−1c) = c2n = bn.

Consequently, F1(c) = a and F2(c) = b.
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Continuity and Differentiability

Recall the following results on continuity and differentiability:

Exercise

If a function f : [a, b]→ R is differentiable at an interior point of [a, b]
then it is also continuous at that point.

Converse of above result is not true! We have seen that f (x) = |x | is
continuous at 0 but not differentiable at 0.

We have the nested proper inclusions C k+1[a, b] ( C k [a, b] ( C [a, b],
for all k ∈ N (Exercise!).

The lack of differentiability signifies a sharp corner at the point.

Is there a function which is continuous everywhere but nowhere
differentiable, i.e. sharp corners everywhere?
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Nowhere differentiable Continuous Functions

An example of a nowhere differentiable continuous was first given by
Karl Weierstrass in 1872.

His example was f : R→ R defined as

f (x) :=
∞∑
n=0

1

2n
sin(3nx).

Prior to Weierstrass’ example it was believed that every continuous
function is differentiable except on a set of “isolated” points.

In 1916, G. H. Hardy gave the example f : R→ R defined as

f (x) :=
∞∑
n=1

1

n2
sin(n2πx).

A nice application of Baire’s category theorem gives a
non-constructive existential proof for nowhere differentiable
continuous functions.
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Existence of Nowhere differentiable Continuous Functions

Theorem

There exists nowhere differentiable functions in C [0, 1].

Proof: Set, for each n ∈ N,

Fn := {f ∈ C [0, 1] | ∃x ∈ [0, 1] s.t. sup
h 6=0

∣∣∣∣ f (x + h)− f (x)

h

∣∣∣∣ ≤ n}

and set Y := ∪∞n=1Fn. It is understood that we consider all those non-zero
h such that x + h ∈ [0, 1], the domain of f .
We first show that if f ∈ C [0, 1] is differentiable at, at least, one point
x ∈ [0, 1] then f ∈ Y . By the differentiability of f at x there exists a δ > 0
such that, for all |h| ≤ δ,∣∣∣∣ f (x + h)− f (x)

h
− f ′(x)

∣∣∣∣ ≤ 1.
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Proof Continued...

Therefore, for all |h| ≤ δ,∣∣∣∣ f (x + h)− f (x)

h

∣∣∣∣ ≤ ∣∣∣∣ f (x + h)− f (x)

h
− f ′(x)

∣∣∣∣+ |f ′(x)| ≤ 1 + |f ′(x)|.

Also, for all |h| ≥ δ, ∣∣∣∣ f (x + h)− f (x)

h

∣∣∣∣ ≤ 2

δ
‖f ‖∞.

Thus,

sup
h 6=0

∣∣∣∣ f (x + h)− f (x)

h

∣∣∣∣ <∞.
Hence, there exists a n ∈ N such that f ∈ Fn ⊂ Y .
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Proof Continued...

We shall now show that each Fn is closed in C [0, 1].

Consider a sequence {fk} ⊂ Fn that converges to f ∈ C [0, 1] under
supremum metric.

Since fk ∈ Fn, for each k ∈ N, there exists a xk ∈ [0, 1] such that

sup
h 6=0

∣∣∣∣ fk(xk + h)− fk(xk)

h

∣∣∣∣ ≤ n.

Since {xk} ⊂ [0, 1], by Bolzano-Weierstrass result, there is a
subsequence {xj} which converges to, say, x0.

Thus, for any h 6= 0, there exists a n0 ∈ N (depending on h) such
that x0 − |h| < xj < x0 + |h|, for all j ≥ n0.

Let hj be such that xj + hj = x0 + h. Hence hj is non-zero for all
j ≥ n0. Note that, by definition, hj → h.
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Proof Continued...

Consider

|f (x0+h)−f (x0)| ≤ |f (x0+h)−fj(xj+hj)|+|fj(xj)−f (x0)|+|fj(xj+hj)−fj(xj)|.

The first term satisfies, j ≥ n0,

|f (x0 + h)− fj(xj + hj)| = |f (xj + hj)− fj(xj + hj)| ≤ ‖fj − f ‖∞

and the second term satisfies

|fj(xj)−f (x0)| ≤ |fj(xj)−f (xj)|+|f (xj)−f (x0)| ≤ ‖fj−f ‖∞+|f (xj)−f (x0)|.

Therefore, ∣∣∣∣ f (x0 + h)− f (x0)

h

∣∣∣∣ = lim
j→∞

∣∣∣∣ fj(xj + hj)− fj(xj)

hj

∣∣∣∣ ≤ n.

The last inequality is due to the fact that fj ∈ Fn for all j ≥ n0. Hence,
f ∈ Fn and Fn is closed.
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The last inequality is due to the fact that fj ∈ Fn for all j ≥ n0. Hence,
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Proof Continued...

We now show that each Fn has an empty interior, i.e, given any
f ∈ Fn and ε > 0 there exists a function g ∈ C [0, 1] \ Fn such that
‖g − f ‖∞ ≤ ε.

By Weierstrass approximation theorem (cf. 4), there is a polynomial p
such that ‖f − p‖∞ ≤ ε

2 .

Note that ‖p′‖∞,[0,1] <∞ because p is a polynomial.

We construct a piecewise affine function g , starting from (0, p(0)),
such that ‖g − p‖∞ ≤ ε

2 and |g ′(x)| > n for all those x ∈ [0, 1] for
which g ′ exists.

This g satisfies our requirement and, hence, Fn has empty interior for
all n.

Thus, Int(Y ) = ∅.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 187 / 251



Proof Continued...

We now show that each Fn has an empty interior, i.e, given any
f ∈ Fn and ε > 0 there exists a function g ∈ C [0, 1] \ Fn such that
‖g − f ‖∞ ≤ ε.

By Weierstrass approximation theorem (cf. 4), there is a polynomial p
such that ‖f − p‖∞ ≤ ε

2 .

Note that ‖p′‖∞,[0,1] <∞ because p is a polynomial.

We construct a piecewise affine function g , starting from (0, p(0)),
such that ‖g − p‖∞ ≤ ε

2 and |g ′(x)| > n for all those x ∈ [0, 1] for
which g ′ exists.

This g satisfies our requirement and, hence, Fn has empty interior for
all n.

Thus, Int(Y ) = ∅.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 187 / 251



Proof Continued...

We now show that each Fn has an empty interior, i.e, given any
f ∈ Fn and ε > 0 there exists a function g ∈ C [0, 1] \ Fn such that
‖g − f ‖∞ ≤ ε.

By Weierstrass approximation theorem (cf. 4), there is a polynomial p
such that ‖f − p‖∞ ≤ ε

2 .

Note that ‖p′‖∞,[0,1] <∞ because p is a polynomial.

We construct a piecewise affine function g , starting from (0, p(0)),
such that ‖g − p‖∞ ≤ ε

2 and |g ′(x)| > n for all those x ∈ [0, 1] for
which g ′ exists.

This g satisfies our requirement and, hence, Fn has empty interior for
all n.

Thus, Int(Y ) = ∅.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 187 / 251



Proof Continued...

We now show that each Fn has an empty interior, i.e, given any
f ∈ Fn and ε > 0 there exists a function g ∈ C [0, 1] \ Fn such that
‖g − f ‖∞ ≤ ε.

By Weierstrass approximation theorem (cf. 4), there is a polynomial p
such that ‖f − p‖∞ ≤ ε

2 .

Note that ‖p′‖∞,[0,1] <∞ because p is a polynomial.

We construct a piecewise affine function g , starting from (0, p(0)),
such that ‖g − p‖∞ ≤ ε

2 and |g ′(x)| > n for all those x ∈ [0, 1] for
which g ′ exists.

This g satisfies our requirement and, hence, Fn has empty interior for
all n.

Thus, Int(Y ) = ∅.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 187 / 251



Proof Continued...

We now show that each Fn has an empty interior, i.e, given any
f ∈ Fn and ε > 0 there exists a function g ∈ C [0, 1] \ Fn such that
‖g − f ‖∞ ≤ ε.

By Weierstrass approximation theorem (cf. 4), there is a polynomial p
such that ‖f − p‖∞ ≤ ε

2 .

Note that ‖p′‖∞,[0,1] <∞ because p is a polynomial.

We construct a piecewise affine function g , starting from (0, p(0)),
such that ‖g − p‖∞ ≤ ε

2 and |g ′(x)| > n for all those x ∈ [0, 1] for
which g ′ exists.

This g satisfies our requirement and, hence, Fn has empty interior for
all n.

Thus, Int(Y ) = ∅.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 187 / 251



Proof Continued...

We now show that each Fn has an empty interior, i.e, given any
f ∈ Fn and ε > 0 there exists a function g ∈ C [0, 1] \ Fn such that
‖g − f ‖∞ ≤ ε.

By Weierstrass approximation theorem (cf. 4), there is a polynomial p
such that ‖f − p‖∞ ≤ ε

2 .

Note that ‖p′‖∞,[0,1] <∞ because p is a polynomial.

We construct a piecewise affine function g , starting from (0, p(0)),
such that ‖g − p‖∞ ≤ ε

2 and |g ′(x)| > n for all those x ∈ [0, 1] for
which g ′ exists.

This g satisfies our requirement and, hence, Fn has empty interior for
all n.

Thus, Int(Y ) = ∅.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 187 / 251



Proof Continued...

Since C [0, 1] is complete, by Baire’s category theorem,
C [0, 1] \ Y 6= ∅.

This non-empty collection is, precisely, the collection of all nowhere
differentiable continuous functions on [0, 1].

In fact, we have proved that for any f ∈ Y and ε > 0, there is a
g ∈ C [0, 1] which is nowhere differentiable such that ‖f − g‖∞ ≤ ε
or, more particularly, any continuous function which is differentiable,
at least, at one point is a uniform limit of a sequence of nowhere
differentiable continuous functions.
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Span and Linear Independence

Definition

Let V denote a vector space over a field F. If U is a subset of V , we
define the span of U, denoted as [U], to be the set of all finite linear
combinations of elements of U. Equivalently,

[U] :=

{
n∑

i=1

λixi | xi ∈ U, λi ∈ F, and ∀n ∈ N

}
.

Definition

We say a subset U of V is linearly independent if for any finite set of
elements {xi}n1 ⊂ U,

∑n
i=1 λixi = 0 implies that λi = 0 for all 1 ≤ i ≤ n.

A subset which is not linearly independent is said to be linearly dependent.
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Hamel Basis

Definition

A subset U ⊂ V is said to be a Hamel basis of V if [U] = V and U is
linearly independent.

Every element of V can be written as a finite linear combination of
elements from Hamel basis and the elements of Hamel basis are linearly
independent.

Exercise

Let R[x ] denote the set of all polynomials (finite degree) with real
coefficients in one variable. Show that R[x ] is a vector space over R.
Further, show that the subset

U := {1, x , x2, . . .}

is a Hamel basis of R[x ].
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Exercise

Let R[x1, x2, . . . , xn] denote the set of all polynomials (finite degree) with
real coefficients in n-variable. Show that R[x1, x2, . . . , xn] is a vector space
over R. Further, show that the subset

U := ∪α∈Zn
+
{xα}

is a Hamel basis of R[x1, x2, . . . , xn].

A natural question to ask is: Does every vector space V have a basis?
Obviously, if V = {0} then V has no basis because the only subsets of V
are ∅ and {0}. Both do not form basis because {0} is not linearly
independent and [∅] 6= V .
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Existence of Hamel basis

Theorem

For every non-zero vector space V there exists a Hamel basis for V .

Proof:

Since V 6= {0}, there is a non-zero x1 ∈ V .

Observe that x1 is linearly independent. If [{x1}] = V then we are
done.

If not choose x2 6= λx1, for all λ ∈ R. Note that by choice the set
{x1, x2} is linearly independent.

Extending the argument along similar line and progressively increasing
U, we may obtain a basis for V in finite steps, in which case we have
a basis with finite number of elements.

Otherwise, we have a chain C of linearly independent subsets of V
under the binary relation ⊆.

Thus, C is a chain in the partially ordered set A consisting of all
linearly independent subsets of V .
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Proof Continued...

Moreover, the union of all elements of C is an upper bound for C in A.

Therefore, by Zorn’s lemma, there is a maximal element U in A.

It now remains to show that [U] = V .

Suppose [U] 6= V , then there is a x ∈ V such that x 6∈ [U].

Then U ∪ {x} is linearly independent subset of V . Thus, we have an
element of A larger than U which contradicts the maximality of U in
A.

Thus [U] = V .
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Remark

The linear combination of a vector x ∈ V , in terms of Hamel basis, is
unique. For instance, if x =

∑
i∈J1

αiei and x =
∑

i∈J2
βiei then

0 =
∑

i∈J1∩J2

(αi − βi )ei +
∑

i∈J1\J2

αiei +
∑

i∈J2\J1

βiei .

By the linear independence of {ei}, we get αi = βi for all i ∈ J1 ∩ J2,
αi = 0 in J1 \ J2 and βi = 0 in J2 \ J1.

Exercise

If V0 is a subspace of V and U0 is a basis for V0, then there exists a basis
U of V such that U0 ⊂ U.
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Exercise (Refer N. Jacobson, Basic Algebra for proof)

There is a bijective map between any two bases of a vector space.

The above theorem motivates following definition.

Definition

We say V is finite dimensional if its basis set contains finite number of
elements and the dimension of V is the cardinality of U. If V is not a
finite dimensional, then V is said to be infinite dimensional.
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Example

The vector space R over Q is infinite dimensional!

Proof:

Let B be a Hamel basis of R over Q. Note that B is the maximal
linearly independent set that spans R.

We will show the existence of an infinite linearly independent set over
Q in R then its span is an infinite dimensional subspace of R and,
hence, R has to be infinite dimensional.

Consider the set {ln p} where p runs over all primes numbers. The set
is infinite because there are infinitely many primes.

For some finite index set I , if
∑

i∈I αi ln pi = 0 then

0 =
∑
i∈I

αi ln pi = ln

(∏
i∈I

pαi
i

)
,

i.e.,
∏

i∈I p
αi
i = 1.
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Proof Continued...

Note that some αi could be negative. If J ⊂ I is the collection such
that αi < 0 then ∏

i∈I\J

pαi
i =

∏
i∈J

p−αi
i .

This is a contradiction by the unique prime factorization theorem.
Thus, all αi = 0 for all i ∈ I .

Aliter: We know there are transcendental real numbers, viz., e, π etc.

Take a transcendental real number τ and consider the infinite set

{τ, τ2, . . . , τk , . . .}.

This set is linearly independent over Q. If not we have finite
collection of non-zero {αi} ⊂ Q such that

∑
i αiτ

i = 0 implying that
τ is solution to a polynomial with rational coefficients contradicting
the fact that it is transcendental.
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Recall that every vector space has a Hamel basis (cf. Theorem 43).

Thus, any normed space also has a Hamel basis. If the vector space is
finite dimensional there are finite number of basis elements.

We shall now show that an infinite dimensional Banach space cannot
have a countable/denumerable Hamel basis.

Theorem

An infinite dimensional Banach space always has a uncountable Hamel
basis.
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Non-existence of Countably Infinite Hamel Basis

Proof.

Suppose that a Banach space X has a countably infinite Hamel basis,
say, {x1, x2, . . .}.

Let Ym = [{x1, x2, . . . , xm}], for each m = 1, 2, . . ., be a finite
dimensional subspace of X . Then, Ym is closed in X (Exercise!).
Hence, Zm = X \ Ym is open in X .

Moreover, Ym being a subspace has empty interior (Exercise!),
therefore, Zm is dense in X .

Therefore, since X is complete, ∩∞m=1Zm is dense in X , by Baire’s
category theorem.

Therefore, ∪∞m=1Ym has empty interior which contradicts our
assumption that [x1, x2, . . .] = X .
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Non-Completeness of Space of Polynomials

A consequence of above result is that the space of all polynomials
R[x1, x2, . . . , xn] in n-variables cannot be equipped with a norm that
makes it complete.

Because such a norm makes R[x1, x2, . . . , xn] a Banach space and will
contradict above theorem because R[x1, x2, . . . , xn] has a countable
Hamel basis (cf. Exercise 10)

U := ∪ki∈Nn{xk1
1 , x

k2
2 , . . . , x

kn
n }.

Thus, a Banach space is either finite-dimensional or has an
uncountable Hamel basis.

In fact, one can show that a infinite dimensional separable Banach
space has a Hamel basis which is in one-to-one correspondence with
the set of real numbers.

The concept of Hamel basis has to be relaxed in an infinite
dimensional Banach space called the Schauder basis.
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k-th Order to System of First Order

Consider a k-th order ODE of the form y (k) = f (x , y , y ′, . . . y (k−1))

For 1 ≤ i ≤ k , introduce k unknowns ui := y (i−1) and the vector
u := (u1, . . . , uk).

We have the system of k first order ODEs u′ = f(x ,u) where
fi (x ,u) = ui+1 for 1 ≤ i ≤ k − 1 and
fk(x ,u) = f (x , u1, u2, . . . , u(k−1)).

Thus, the existence and uniqueness queries for the above k-th order
ODE can be reduced to similar queries for a first order system of
ODE.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 201 / 251



k-th Order to System of First Order

Consider a k-th order ODE of the form y (k) = f (x , y , y ′, . . . y (k−1))

For 1 ≤ i ≤ k , introduce k unknowns ui := y (i−1) and the vector
u := (u1, . . . , uk).

We have the system of k first order ODEs u′ = f(x ,u) where
fi (x ,u) = ui+1 for 1 ≤ i ≤ k − 1 and
fk(x ,u) = f (x , u1, u2, . . . , u(k−1)).

Thus, the existence and uniqueness queries for the above k-th order
ODE can be reduced to similar queries for a first order system of
ODE.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 201 / 251



k-th Order to System of First Order

Consider a k-th order ODE of the form y (k) = f (x , y , y ′, . . . y (k−1))

For 1 ≤ i ≤ k , introduce k unknowns ui := y (i−1) and the vector
u := (u1, . . . , uk).

We have the system of k first order ODEs u′ = f(x ,u) where
fi (x ,u) = ui+1 for 1 ≤ i ≤ k − 1 and
fk(x ,u) = f (x , u1, u2, . . . , u(k−1)).

Thus, the existence and uniqueness queries for the above k-th order
ODE can be reduced to similar queries for a first order system of
ODE.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 201 / 251



k-th Order to System of First Order

Consider a k-th order ODE of the form y (k) = f (x , y , y ′, . . . y (k−1))

For 1 ≤ i ≤ k , introduce k unknowns ui := y (i−1) and the vector
u := (u1, . . . , uk).

We have the system of k first order ODEs u′ = f(x ,u) where
fi (x ,u) = ui+1 for 1 ≤ i ≤ k − 1 and
fk(x ,u) = f (x , u1, u2, . . . , u(k−1)).

Thus, the existence and uniqueness queries for the above k-th order
ODE can be reduced to similar queries for a first order system of
ODE.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 201 / 251



Interpretation of Solution as a Fixed Point

If u is a solution of{
u′(x) = f (x , u) x ∈ (a, b)
u(x0) = u0,

(9.1)

where x0 ∈ (a, b), on some interval I ⊂ (a, b) containing x0 then the
graph of u lies in the strip I × (−∞,∞) passing through (x0, u0).

If we assume u is bounded then the graph is, in fact, lying in a
rectangle contained in the strip.

Suppose that f is continuous on the closure of this rectangle, then f
is Riemann integrable because f is bounded on the closure of the
rectangle.
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Interpretation of Solution as a Fixed Point

Now, integrating both sides of (9.1), we get the integral equation∫ x

x0

u′(t) dt =

∫ x

x0

f (t, u(t)) dt

u(x)− u(x0) =

∫ x

x0

f (t, u(t)) dt

u(x) = u0 +

∫ x

x0

f (t, u(t)) dt.

Thus, we have rewritten our differential equation in an integral
equation form.

A possible pitfall might be that (t, u(t)) may not be in the domain of
f and, consequently, the integral in RHS may not be well-defined.

We avoid this pitfall by assuming f is defined in the strip
(a, b)× (−∞,∞).
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Interpretation of Solution as a Fixed Point

If the integral is well-defined then the solution u of (9.1) is a fixed
point for the operator T : C (I )→ C (I ) defined as

Tu(x) := u0 +

∫ x

x0

f (t, u(t)) dt, (9.2)

where C (I ) is the space of continuous functions on I . Note that
Tu : I → R.

We equip C (I ) as ‖f ‖∞ := maxx∈I |f (x)| for all f ∈ C (I ) and, hence,

the distance between two functions f , g ∈ C (I ) is given as
d(f , g) := ‖f − g‖∞.

We have observe that u ∈ C (I ) is a fixed point of the operator T , as
defined in (9.2), then u ∈ C 1(I ) and solves (9.1). Conversely, if
u ∈ C 1(I ) solves (9.1) then u is a fixed point of T .
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Contraction Maps

Definition

Let X be a metric space with metric d. An operator f : X → X is said to
be a contraction if for some 0 ≤ α < 1,

d (f (x), f (y)) ≤ αd(x , y), ∀x , y ∈ X .

If α = 1, the map f is called non-expansive. If 0 ≤ α < +∞, the map f is
called Lipschitz continuous.

Exercise

Every contraction operator is Lipschitz and every Lipschitz map is
continuous.
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Contraction Mapping Theorem

Theorem (Contraction Mapping)

Let X be a complete metric space and f : X → X be a contraction
mapping. Then there exists a unique fixed point of f , i.e., there exists a
unique x ∈ X such that f (x) = x.

Proof: Choose any x0 ∈ X . Set xn+1 = f (xn), for n = 0, 1, 2, . . .. Let us
begin by showing {xn} is a Cauchy sequence. Consider,

d(xn, xn+1) = d(f (xn−1), f (xn)) ≤ αd(xn−1, xn)

≤ α2d(xn−2, xn−1)

≤ . . . ≤ αnd(x0, x1).
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Proof Continued...

By triangle inequality, we have

d(xn, xn+m) ≤ d(xn, xn+1) + d(xn+1, xn+2) + . . .+ d(xn+m−1, xn+m)

≤ (αn + αn+1 + . . .+ αn+m−1)d(x0, x1)

= αn(1 + α + . . .+ αm−1)d(x0, x1)

≤ αnΣ∞i=0α
id(x0, x1)

≤ αn(1− α)−1d(x0, x1).

Since α < 1, for a given ε > 0, one can choose a n0 ∈ N such that

αn

1− α
d(x0, x1) < ε ∀n ≥ n0.

Thus, for all n ≥ n0

d(xn, xn+m) ≤ αn(1− α)−1d(x0, x1) < ε.

Therefore, the sequence {xn} is Cauchy. Since X is a complete space
xn → x for some x ∈ X .
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Proof Continued...

Since every contraction map is continuous (cf. Exercise 13), f (xn)→ f (x)
in X .

Consider,

f (x) = lim
n→∞

f (xn) = lim
n→∞

xn+1 = x .

Thus, x is a fixed point of f . It now remains to show the uniqueness of x .
Suppose x = f (x) and y = f (y), then d(x , y) = d(f (x), f (y)) ≤ αd(x , y).
Since, α < 1, we have d(x , y) = 0 and thus, x = y .

Remark

The above theorem is generally not true when f is non-expansive. For
instance, a translation of a vector space in to itself does not admit a fixed
point, i.e., define f (x) = x + a for any fixed vector a ∈ X .
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Corollary

Let X be a complete metric space and f : X → X be a mapping such that
f n : X → X is contraction for some positive integer n. Then there exists a
unique fixed point of f , i.e., there exists a unique x ∈ X such that
f (x) = x.

Proof: Since f n is a contraction there is a unique x∗ ∈ X such that
f n(x∗) = x∗. Then

f (x∗) = f (f n(x∗)) = f n+1(x∗) = f n(f (x∗))

and, hence, f (x∗) is a fixed point of f n. By uniqueness of fixed point
f (x∗) = x∗. Thus, the fixed point of f n is also a fixed point of f . If y∗ is
any other fixed point of f , then

f n(y∗) = f n−1(f (y∗)) = f n−1(y∗).

Similarly, f n−1(y∗) = f n−2(y∗). Thus, f n(y∗) = f (y∗) and f n(y∗) = y∗.
Hence y∗ = x∗.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 209 / 251



Corollary

Let X be a complete metric space and f : X → X be a mapping such that
f n : X → X is contraction for some positive integer n. Then there exists a
unique fixed point of f , i.e., there exists a unique x ∈ X such that
f (x) = x.

Proof: Since f n is a contraction there is a unique x∗ ∈ X such that
f n(x∗) = x∗.

Then

f (x∗) = f (f n(x∗)) = f n+1(x∗) = f n(f (x∗))

and, hence, f (x∗) is a fixed point of f n. By uniqueness of fixed point
f (x∗) = x∗. Thus, the fixed point of f n is also a fixed point of f . If y∗ is
any other fixed point of f , then

f n(y∗) = f n−1(f (y∗)) = f n−1(y∗).

Similarly, f n−1(y∗) = f n−2(y∗). Thus, f n(y∗) = f (y∗) and f n(y∗) = y∗.
Hence y∗ = x∗.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 209 / 251



Corollary

Let X be a complete metric space and f : X → X be a mapping such that
f n : X → X is contraction for some positive integer n. Then there exists a
unique fixed point of f , i.e., there exists a unique x ∈ X such that
f (x) = x.

Proof: Since f n is a contraction there is a unique x∗ ∈ X such that
f n(x∗) = x∗. Then

f (x∗) = f (f n(x∗)) = f n+1(x∗) = f n(f (x∗))

and, hence, f (x∗) is a fixed point of f n.

By uniqueness of fixed point
f (x∗) = x∗. Thus, the fixed point of f n is also a fixed point of f . If y∗ is
any other fixed point of f , then

f n(y∗) = f n−1(f (y∗)) = f n−1(y∗).

Similarly, f n−1(y∗) = f n−2(y∗). Thus, f n(y∗) = f (y∗) and f n(y∗) = y∗.
Hence y∗ = x∗.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 209 / 251



Corollary

Let X be a complete metric space and f : X → X be a mapping such that
f n : X → X is contraction for some positive integer n. Then there exists a
unique fixed point of f , i.e., there exists a unique x ∈ X such that
f (x) = x.

Proof: Since f n is a contraction there is a unique x∗ ∈ X such that
f n(x∗) = x∗. Then

f (x∗) = f (f n(x∗)) = f n+1(x∗) = f n(f (x∗))

and, hence, f (x∗) is a fixed point of f n. By uniqueness of fixed point
f (x∗) = x∗. Thus, the fixed point of f n is also a fixed point of f .

If y∗ is
any other fixed point of f , then

f n(y∗) = f n−1(f (y∗)) = f n−1(y∗).

Similarly, f n−1(y∗) = f n−2(y∗). Thus, f n(y∗) = f (y∗) and f n(y∗) = y∗.
Hence y∗ = x∗.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 209 / 251



Corollary

Let X be a complete metric space and f : X → X be a mapping such that
f n : X → X is contraction for some positive integer n. Then there exists a
unique fixed point of f , i.e., there exists a unique x ∈ X such that
f (x) = x.

Proof: Since f n is a contraction there is a unique x∗ ∈ X such that
f n(x∗) = x∗. Then

f (x∗) = f (f n(x∗)) = f n+1(x∗) = f n(f (x∗))

and, hence, f (x∗) is a fixed point of f n. By uniqueness of fixed point
f (x∗) = x∗. Thus, the fixed point of f n is also a fixed point of f . If y∗ is
any other fixed point of f , then

f n(y∗) = f n−1(f (y∗)) = f n−1(y∗).

Similarly, f n−1(y∗) = f n−2(y∗). Thus, f n(y∗) = f (y∗) and f n(y∗) = y∗.
Hence y∗ = x∗.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 209 / 251



Corollary

Let X be a complete metric space and f : X → X be a mapping such that
f n : X → X is contraction for some positive integer n. Then there exists a
unique fixed point of f , i.e., there exists a unique x ∈ X such that
f (x) = x.

Proof: Since f n is a contraction there is a unique x∗ ∈ X such that
f n(x∗) = x∗. Then

f (x∗) = f (f n(x∗)) = f n+1(x∗) = f n(f (x∗))

and, hence, f (x∗) is a fixed point of f n. By uniqueness of fixed point
f (x∗) = x∗. Thus, the fixed point of f n is also a fixed point of f . If y∗ is
any other fixed point of f , then

f n(y∗) = f n−1(f (y∗)) = f n−1(y∗).

Similarly, f n−1(y∗) = f n−2(y∗). Thus, f n(y∗) = f (y∗) and f n(y∗) = y∗.
Hence y∗ = x∗.

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 209 / 251



Banach Fixed Point Theorem

Theorem (Banach Fixed Point Theorem)

Let I be any closed interval of R. Fix a g ∈ C (I ) and r > 0. Let
B := {f ∈ C (I ) | ‖f − g‖ ≤ r} and T : B → B be an operator which is a
contraction on B, i.e., for some 0 ≤ α < 1

‖T (f )− T (g)‖ ≤ α‖f − g‖ ∀f , g ∈ B.

Then T has a unique fixed point in B.

Since C (I ) is a Banach space and B is closed subspace of a complete
space, B is complete. This result is a particular case of the more general
result called the contraction mapping principle (cf. 45).
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Cauchy-Lipschitz or Picard-Lindelöf

Theorem (Cauchy-Lipschitz)

Let T > 0 and f ∈ [C ([0,T ]× Rn)]n admits a α > 0 such that

|f(t, ξ1)− f(t, ξ2)| ≤ α|ξ1 − ξ2| ∀t ∈ [0,T ], ξ1, ξ2 ∈ Rn.

Then, for a given vector u0 ∈ Rn, there is a unique solution
u ∈ (C 1[0,T ])n of the system of ODE{

u′(t) = f(t,u(t)) t ∈ [0,T ]
u(0) = u0.

(10.1)

Proof: We define T : (C [0,T ])n → (C [0,T ])n as

Tu(t) := u0 +

∫ t

0
f(s,u(s)) ds.
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Proof Continued...

If T has a fixed point u then we have already argued above that
u ∈ (C 1[0,T ])n and solves (10.1).

We first show that T is a contraction map. It is easier to prove the
contraction of T if we endow (C [0,T ])n with the norm

‖v‖α := sup
t∈[0,T ]

e−αt |v(t)|.

Since eαT‖ · ‖∞ ≤ ‖ · ‖α ≤ ‖ · ‖∞, the norm ‖ · ‖α is equivalent to
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Proof Continued...

Consider, for 0 ≤ t ≤ T ,

|(Tv − Tw)(t)| =

∫ t

0
eαse−αs f(s, v(s))− f(s,w(s)) ds

≤ sup
0≤s≤T

(
e−αs |f(s, v(s))− f(s,w(s))|

) ∫ t

0
eαs ds

≤ α‖w − v‖α
∫ t

0
eαs ds.

Since α
∫ t

0 eαs ds = eαt − 1 = eαt(1− e−αt) ≤ eαt(1− e−αT ), we
have

‖(Tv − Tw)‖α ≤ (1− e−αT )‖w − v‖α.

Hence, T is contraction. By Theorem 45, there is a unique fixed
point for T which is a solution for (10.1).
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Linear System of ODE

Corollary (Linear System of ODE)

Let T > 0, A be a n × n matrix with entries in C [0,T ] and
b ∈ (C [0,T ])n. Then, for a given vector u0 ∈ Rn, there is a unique
solution u ∈ (C 1[0,T ])n of the system of linear ODE{

u′(t) = A(t)u(t) + b(t) t ∈ [0,T ]
u(0) = u0.

Proof.

Set f(t, ξ) := A(t)ξ + b(t). Then

|f(t, ξ1)− f(t, ξ2)| = |A(t)||ξ1 − ξ2| ≤ α|ξ1 − ξ2|

where α = sup0≤t≤T |A(t)|.
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Necessity of Lipschitz Hypothesis

Example

If the Lipschitz condition on f is relaxed and only continuity is assumed
then we can expect only a local existence.

For instance, consider{
u′(t) = u2(t) t ∈ [0,∞)
u(0) = u0.

Note that u(t) = u0
1−u0t

satisfies the equation except at t = 1/u0, where
there is a blow-up of solution. Thus, if u0 < 0 then the blow-up point
1/u0 < 0 is not in the domain [0,∞). Hence, the solution is global.
However, if u0 > 0 then the domain includes the blow-up point 1/u0 > 0
then the solution is satisfied for t ∈ [0, h] for h < 1/u0. If u0 is very large
then h is very small. If u0 = 0 then u ≡ 0 is a unique solution.
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Relaxing Hypothesis

Example

The relaxation on the assumptions on f may also lead to non-uniqueness
of solution. For instance, consider{

u′(t) = 3u3/2(t) t ∈ [0,∞)
u(0) = u0.

The RHS function v 7→ v3/2 does not satisfy Lipschitz condition at v = 0.

If u0 6= 0 then u(t) = (t + u
3/2
0 )1/3 is a unique solution. If u0 = 0 then

there are infinitely many solutions, viz., u ≡ 0, u(t) = t3 and, for
arbitrarily chosen t0 > 0,

u(t) =

{
0 t ∈ [0, t0]

(t − t0)3 t ∈ [t0,∞).
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Cauchy-Peano Theorem

Theorem (Cauchy-Peano (Local Existence))

Given T > 0, r > 0, u0 ∈ Rn and f ∈ C ([0,T ]× Br (u0))n. Then there
exists a 0 < h ≤ T and, at least, one solution u ∈ (C 1[0, h])n of the
system of ODE {

u′(t) = f(t,u(t)) t ∈ [0, h]
u(0) = u0.

(10.2)

Proof: We shall choose h subsequently. We have already argued that, for
t ∈ [0, h], if

Tu(t) := u0 +

∫ t

0
f(s,u(s)) ds.

has a fixed point u then u ∈ (C 1[0, h])n and solves (10.2). Let us partition
the interval [0, h] in to m intervals of length h/m.
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Using a finite difference approximation of the IVP, we define vectors
ui ∈ Rn, for 0 ≤ i ≤ m − 1, by

ui+1 − ui
h
m

= f

(
ih

m
,ui

)
.

The above definition is valid only if ui ∈ Br (u0). Thus, u1 is well-defined.
Consider

|u1 − u0| =
h

m
|f(0,u0)| ≤ h

m
M ≤ hM ≤ r ,

where M := sup(t,ξ)∈[0,T ]×Br (u0) |f(t, ξ)| and h := min{ r
M ,T}. Similarly,

|u2 − u0| ≤ |u2 − u1|+ |u1 − u0| ≤
hM

m
+

hM

m
=

2hM

m
≤ hM ≤ r .

Proceeding inductively, we have ui well-defined for all 1 ≤ i ≤ m because

|ui −u0| ≤ |ui −ui−1|+ |ui−1−u0| ≤
hM

m
+

(i − 1)hM

m
=

ihM

m
≤ hM ≤ r .

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 218 / 251



Using a finite difference approximation of the IVP, we define vectors
ui ∈ Rn, for 0 ≤ i ≤ m − 1, by

ui+1 − ui
h
m

= f

(
ih

m
,ui

)
.

The above definition is valid only if ui ∈ Br (u0). Thus, u1 is well-defined.

Consider

|u1 − u0| =
h

m
|f(0,u0)| ≤ h

m
M ≤ hM ≤ r ,

where M := sup(t,ξ)∈[0,T ]×Br (u0) |f(t, ξ)| and h := min{ r
M ,T}. Similarly,

|u2 − u0| ≤ |u2 − u1|+ |u1 − u0| ≤
hM

m
+

hM

m
=

2hM

m
≤ hM ≤ r .

Proceeding inductively, we have ui well-defined for all 1 ≤ i ≤ m because

|ui −u0| ≤ |ui −ui−1|+ |ui−1−u0| ≤
hM

m
+

(i − 1)hM

m
=

ihM

m
≤ hM ≤ r .

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 218 / 251



Using a finite difference approximation of the IVP, we define vectors
ui ∈ Rn, for 0 ≤ i ≤ m − 1, by

ui+1 − ui
h
m

= f

(
ih

m
,ui

)
.

The above definition is valid only if ui ∈ Br (u0). Thus, u1 is well-defined.
Consider

|u1 − u0| =
h

m
|f(0,u0)| ≤ h

m
M ≤ hM ≤ r ,

where M := sup(t,ξ)∈[0,T ]×Br (u0) |f(t, ξ)| and h := min{ r
M ,T}.

Similarly,

|u2 − u0| ≤ |u2 − u1|+ |u1 − u0| ≤
hM

m
+

hM

m
=

2hM

m
≤ hM ≤ r .

Proceeding inductively, we have ui well-defined for all 1 ≤ i ≤ m because

|ui −u0| ≤ |ui −ui−1|+ |ui−1−u0| ≤
hM

m
+

(i − 1)hM

m
=

ihM

m
≤ hM ≤ r .

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 218 / 251



Using a finite difference approximation of the IVP, we define vectors
ui ∈ Rn, for 0 ≤ i ≤ m − 1, by

ui+1 − ui
h
m

= f

(
ih

m
,ui

)
.

The above definition is valid only if ui ∈ Br (u0). Thus, u1 is well-defined.
Consider

|u1 − u0| =
h

m
|f(0,u0)| ≤ h

m
M ≤ hM ≤ r ,

where M := sup(t,ξ)∈[0,T ]×Br (u0) |f(t, ξ)| and h := min{ r
M ,T}. Similarly,

|u2 − u0| ≤ |u2 − u1|+ |u1 − u0| ≤
hM

m
+

hM

m
=

2hM

m
≤ hM ≤ r .

Proceeding inductively, we have ui well-defined for all 1 ≤ i ≤ m because

|ui −u0| ≤ |ui −ui−1|+ |ui−1−u0| ≤
hM

m
+

(i − 1)hM

m
=

ihM

m
≤ hM ≤ r .

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 218 / 251



Using a finite difference approximation of the IVP, we define vectors
ui ∈ Rn, for 0 ≤ i ≤ m − 1, by

ui+1 − ui
h
m

= f

(
ih

m
,ui

)
.

The above definition is valid only if ui ∈ Br (u0). Thus, u1 is well-defined.
Consider

|u1 − u0| =
h

m
|f(0,u0)| ≤ h

m
M ≤ hM ≤ r ,

where M := sup(t,ξ)∈[0,T ]×Br (u0) |f(t, ξ)| and h := min{ r
M ,T}. Similarly,

|u2 − u0| ≤ |u2 − u1|+ |u1 − u0| ≤
hM

m
+

hM

m
=

2hM

m
≤ hM ≤ r .

Proceeding inductively, we have ui well-defined for all 1 ≤ i ≤ m because

|ui −u0| ≤ |ui −ui−1|+ |ui−1−u0| ≤
hM

m
+

(i − 1)hM

m
=

ihM

m
≤ hM ≤ r .

T. Muthukumar tmk@iitk.ac.in AnalysisMTH-753A November 25, 2020 218 / 251



Note that, for each m ∈ N, we have m + 1 distinct equi-distant points
ih/m of [0, h] and m distinct vectors ui , for 0 ≤ i ≤ m.

We shall now
define a continuous function Um : [0, h]→ Rn such that Um(ih/m) = ui
for 0 ≤ i ≤ m. This is done by piecewise joining the line (ih/m,ui ) and
((i + 1)h/m,ui+1). Hence, for each t ∈ [0, h] and all 0 ≤ i ≤ m − 1,

Um(t) := ui +
m

h

(
t − ih

m

)
(ui+1 − ui ) when

ih

m
≤ t ≤ (i + 1)h

m
.

Note that Um ∈ (C [0, h])n, for all m ∈ N. Now,

‖Um‖∞ = sup
t∈[0,h]

|Um(t)| = sup
0≤i≤m

|ui |.

The last equality is clear by the piecewise linear construction of Um. Also,
|ui | ≤ |u0|+ |ui − u0| ≤ |u0|+ r . Thus, the sequence is uniformly bounded
in (C [0, h])n.
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The sequence {Um} is also equicontinuous because, for each
0 ≤ i ≤ m − 1 and ih/m ≤ t ≤ (i + 1)h/m,

|Um(t)−Um(ih/m)| = |Um−ui | ≤ (t − ih/m)|f(ih/m,ui )| ≤ (t − ih/m)M

implies, for all s, t ∈ [0, h],

|Um(t)− Um(s)| ≤ |t − s|M.

Therefore, by Ascoli-Arzela result, the sequence is compact and admits a
convergent subsequence {Uk} uniformly converging to u ∈ (C [0, h])n.We
will show that the u obtained is a fixed point of T . Observe that

Um(t) := u0 +

∫ t

0
U ′m(s) ds

because Um is continuous. Because Um, by definition, piecewise linear U ′m
must be piecewise constant.
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Using the recursive relation of ui , we get

ui+1 = u0 +
h

m

 i∑
j=0

f(jh/m,uj)

 = u0 +

∫ ih/m

0
fm(s) ds

where fm(s) := f(ih/m,ui ), for ih/m ≤ s ≤ (i + 1)h/m and 0 ≤ i ≤ n− 1,
is piecewise constant.

Thus, for 0 ≤ t ≤ h,

Um(t) = u0 +

∫ t

0
fm(s) ds.

Consider

lim
m→∞

‖Tu− Um‖ = lim
m

sup
t

∫ t

0
|f(s, u(s))− fm(s)| ds.

Note that f is uniformly continuous in both variables because it is a
continuous function on a compact set and the uniform convergence of Um

to u implies that the above limit in RHS is zero. Thus Tu = u.
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Two Point Boundary Value Problem

Let f ∈ C ([0, 1]× R). For any two given constants u0, u1 ∈ R, consider
the second order nonlinear boundary value problem

−u′′(x) = f (x , u(x)) x ∈ (0, 1)
u(0) = u0

u(1) = u1.
(10.3)

Lemma

If u ∈ C [0, 1] ∩ C 2(0, 1) solves (10.3) then u ∈ C 2[0, 1].

Proof: For any x ∈ (0, 1) and fixed x0 ∈ (0, 1), integrate both sides of
(10.3) in the range x0 and x , then

−
∫ x

x0

u′′(t) dt =

∫ x

x0

f (t, u(t)) dt
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Proof Continued

or, equivalently,

u′(x) = u′(x0)−
∫ x

x0

f (t, u(t)) dt.

Since f ∈ C ([0, 1]× R) and u ∈ C [0, 1], by above equality,
u′ ∈ C (0, 1) can be continuously extended to [0, 1].
By Mean value theorem, for each 0 < x < 1, there exists a c ∈ (0, x)
such that

u(x)− u(0)

x
= u′(c).

Thus, u is differentiable at 0 and, by continuity at boundary,
u′(0) = limc→0 u

′(c).
Arguing similarly, one can show that u is differentiable at 1 and
u′(1) = limc→1 u

′(c). Hence u ∈ C 1[0, 1].
It follows from the ODE that u ∈ C 2[0, 1] because the RHS f and u
can be continuously extended to boundary.
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Lemma

u ∈ C 2[0, 1] is a solution of (10.3) iff u ∈ C [0, 1] solves the integral
equation

u(x) = u0(1− x) + u1x +

∫ 1

0
G (x , s)f (s, u(s)) ds x ∈ [0, 1] (10.4)

where the Green’s function G ∈ C ([0, 1]× [0, 1]) is defined as

G (x , s) :=

{
s(1− x) 0 ≤ s ≤ x ≤ 1

x(1− s) 0 ≤ x < s ≤ 1.

Proof: If u ∈ C 2[0, 1] is a solution of (10.3) then, for any fixed x ∈ [0, 1],∫ 1

0
G (x , s)f (s, u(s)) ds = −(1− x)

∫ x

0
su′′(s) ds − x

∫ 1

x
(1− s)u′′(s) ds

= u(x)− u0(1− x)− u1x .
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Proof Continued...

Conversely, let u ∈ C [0, 1] and solve (10.4).

From (10.4), we easily see that u(0) = u0 and u(1) = u1.

Since the RHS of (10.4) is differentiable we get, for x ∈ [0, 1],

u′(x) = −u0 + u1 −
∫ x

0
sf (s, u(s)) ds +

∫ 1

x
(1− s)f (s, u(s)) ds

and

−u′′(x) = xf (x , u(x)) + (1− x)f (x , u(x)) = f (x , u(x)).

Thus, u is a solution to (10.3).
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Existence of Solution

Theorem

Let f ∈ C ([0, 1]× R) admit a 0 ≤ α < 8 such that, for all x ∈ [0, 1],

|f (x , r)− f (x , s)| ≤ α|r − s|.

For any two given constants u0, u1 ∈ R there is a unique solution
u ∈ C [0, 1] ∩ C 2(0, 1) of (10.3).

Proof: Note that C [0, 1] is a Banach space. We define
T : C [0, 1]→ C [0, 1] as the RHS of (10.4). We claim that T is a
contraction and, hence, admits a unique fixed point which is the required
solution. Note that, by definition, G (x , s) ≥ 0 for all x , s ∈ [0, 1].
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Proof Continued...

Consider

|(Tv − Tw)(x)| ≤
∫ 1

0
G (x , s)|f (s, v(s))− f (s,w(s))| ds

≤ sup
s∈[0,1]

|f (s, v(s))− f (s,w(s))|
(∫ 1

0
G (x , s) ds

)
≤ α sup

s∈[0,1]
|v(s)− w(s)|

(
x − x2

2

)
≤ α

8
‖v − w‖∞.

Note that 1/4 is the maximum of x − x2. Since α < 8, T is a contraction.
Thus, by Lemma 17, the fixed point u of T is in C 2[0, 1] and solves (10.3).
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Open Map

Definition

Let X and Y be topological spaces. We say a map T : X → Y is an open
map if the image of every open subset of X under T is an open subset of
Y .

Lemma

Let X be a Banach space and Y be a normed space. Let T ∈ B(X ,Y ) be

such that T (BX
r (0)) ⊃ BY

s (0), then T (BX
r (0)) ⊃ BY

s (0).

Proof: Note that it is enough to prove the result for r = s = 1. Let
y ∈ BY

1 (0). We claim that y ∈ T (BX
1 (0)). Choose ε > 0 such that

‖y‖ < 1− ε < 1 and set z = (1− ε)−1y . Set

E := T (BX
1 (0)) ∩ BY

1 (0)

which is non-empty because 0 ∈ E .
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Proof Continued...

Moreover E = B
Y
1 (0) using the hypothesis.

Set z0 = 0. Since z ∈ BY
1 (0)

and E is dense in BY
1 (0), we can choose a z1 ∈ E such that ‖z1 − z‖ < ε.

Note that z ∈ BY
ε (0) + z1 and εE + z1 is dense in BY

ε (0) + z1. Thus, we
choose a z2 ∈ Y such that z2 − z1 ∈ εE and ‖z2 − z‖ < ε2. Inductively,
we can choose a sequence {zn} ⊂ Y such that zn − zn−1 ∈ εn−1E and
‖zn − z‖ < εn because z ∈ BY

εn−1(0) + zn−1 and εn−1E is dense in
BY
εn−1(0). By definition of E , there are sequence {xn} ⊂ BX

1 (0) such that

Txn =
1

εn−1
(zn − zn−1).

Now, set x =
∑∞

n=1 ε
n−1xn and, hence,

‖x‖ ≤
∞∑
n=1

εn−1‖xn‖ <
∞∑
n=1

εn−1 = (1− ε)−1.

Further, Tx =
∑∞

n=1 ε
n−1Txn =

∑
n(zn − zn−1) = z . Therefore,

z ∈ (1− ε)−1T (BX
1 (0)) and y ∈ T (BX

1 (0)). Thus, BY
1 (0) ⊂ T (BX

1 (0)).
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Theorem (Open Mapping)

Let X and Y be Banach spaces and let T ∈ B(X ,Y ) be a surjective map,
i.e., T (X ) = Y . Then T is an open map.

Proof.

Let Ω := T (BX
1 (0)). We claim that Ω is open in Y .Due to linearity of T ,

it is enough to show that Ω contains open ball around 0. We first observe
that Ω is convex and symmetric about 0 because BX

1 (0) is convex and
symmetric about 0. Note that T (BX

n (0)) = nΩ and nΩ = nΩ. Since T is
surjective, for every y ∈ Y there is a x ∈ X such that Tx = y . Since
x ∈ nBX

1 (0), for some n, we have y ∈ nΩ. Thus, Y = ∪nnΩ and, by
Baire’s category theorem, there is a n such that nΩ has non-empty
interior. Hence Ω has non-empty interior. Thus, there is a point y0 ∈ Ω
and r > 0 such that BY

r (y0) ⊂ Ω. By symmetricity of Ω, BY
r (−y0) ⊂ Ω.

Similarly, by convexity of Ω, BY
r (0) ⊂ Ω. Then, by Lemma 18, we get

BY
r (0) ⊂ Ω and Ω is open.
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Corollary (Inverse Mapping)

Let X and Y be Banach spaces and let T ∈ B(X ,Y ) be a bijective map.
Then T−1 ∈ B(Y ,X ).

Proof.

Since T is bijection, T−1 exists and is in L(X ,Y ). By open mapping
theorem, T−1 is continuous and, hence, T−1 ∈ B(X ,Y ). Further, there is
a r > 0 such that BY

r (0) ⊂ T (BX
1 (0)). Therefore, for all y ∈ BY

1 (0), we
have ‖T−1(ry)‖ ≤ 1 and, hence, ‖T−1‖ ≤ 1/r .
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1 (0), we
have ‖T−1(ry)‖ ≤ 1 and, hence, ‖T−1‖ ≤ 1/r .
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Equivalent Norms

Theorem

Let X be a vector space with two different norms ‖ · ‖ and ||| · ||| such that
it is complete with respect to both the norms. If there exists a constant
C > 0 such that |||x ||| ≤ C‖x‖, for all x ∈ X, then the two norms are
equivalent.

Proof.

To observe this note that the identity map from (X , ‖ · ‖) to (X , ||| · |||),
which is linear and bijective, is continuous, by the assumption.

Thus,
inverse map is continuous by open mapping theorem, i.e., there is a
constant C1 > 0 such that ‖x‖ ≤ C1|||x |||, for all x ∈ X . Thus, the two
norms are equivalent.
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Stability of two-point Boundary Value Problem

Theorem

For given functions a, b, c ∈ C [0, 1], let the boundary value problem{
a(x)u′′(x) + b(x)u′(x) + c(x)u(x) = f (x) in (0, 1)

u(0) = u(1) = 0

admit a unique solution u ∈ C 2[0, 1] for every given f ∈ C [0, 1]. Then
there exists a constant C > 0 such that

‖u‖∞ + ‖u′‖∞ + ‖u′′‖∞ ≤ C‖f ‖∞ ∀f ∈ C [0, 1].

Proof: To see this consider X := {v ∈ C 2[0, 1] | v(0) = v(1) = 0}
endowed with the norm |||v ||| := ‖v‖∞ + ‖v ′‖∞ + ‖v ′′‖∞. Thus,
(X , ||| · |||) is a Banach space. Define T : X → C [0, 1] as

Tv(x) := a(x)v ′′(x) + b(x)v ′(x) + c(x)v(x).
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Proof Continued...

Note that T is continuous (or bounded) because

‖T‖ ≤ max{‖a‖∞, ‖b‖∞, ‖c‖∞}.

By hypothesis T is surjective because there is a unique solution for every
f ∈ C [0, 1]. The uniqueness of solution also implies injectivity. Thus, T−1

exists and is continuous (cf. Corollary 12) because T is an open map. The
continuity of T is, precisely, the stability estimate we seek.
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Solutions in Finite Dimensions

Every mathematical modelling reduces to the question of seeking
solutions to equation of the form f (x) = p.

If f : Rn → Rm and is linear then solving f (x) = p is same as solving
the associated matrix equation Ax = p. It has a unique solution if A
is a invertible square matrix.

Since fi (x) =
∑n

j=1 aijxj , if f admits first order partial derivatives
then invertibility of A is same as the invertibility of the Jacobian of f ,
Dj fi := ∂fi

∂xj
= aij .

To solve f (x) = p when f is nonlinear, it is significant to note that f
has a linear approximation as follows: f (x) ≈ f (a) + Df (a) · (x − a).

Thus, we expect f to admit a ‘local’ inverse if the linear
aprroximation is invertible, i.e. Df (a) is invertible. This is the Inverse
Function Theorem.

The inverse function theorem gives the necessary condition for solving
f (x) = p, locally, for a system of n nonlinear equations in n unknowns.
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Properties of Non-zero Jacobian Matrix

Theorem (For Open Ball)

Let B := Br (a) ⊂ Rn be an open ball of radius r centred at a ∈ Rn, ∂B
denotes the boundary of B, i.e., ∂B := {x ∈ Rn | |x − a| = r} and B be
the closure of B in Rn. Let

(i) f : B → Rn be continuous,

(ii) all partial derivatives Dj fi (x) of f exists, for all x ∈ B,

(iii) f (x) 6= f (a) for all x ∈ ∂B,

(iv) Jf (x) 6= 0 for all x ∈ B.

Then f (B) contains an open ball centred at f (a).

Proof: Define g : ∂B → (0,∞) as g(x) := |f (x)− f (a)|.Hence g > 0,
since f (x) 6= f (a), and g is continuous on ∂B (being composition of two
functions). Therefore, g will achieve its minimum m > 0 on ∂B. We will
show that the open ball U := Bm/2(f (a)) is contained f (B).
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Proof Continued...

Let y ∈ U. We will show y ∈ f (B), i.e., there is a point c ∈ B such that
f (c) = y .

To do so, we define a function h : B → [0,∞) as
h(x) := |f (x)− y |. Note that, as argued above, h is continuous on B and
hence attains its minimum at some point c ∈ B. Moreover,
h(a) = |f (a)− y | < m/2 and hence h(c) < m/2. For each x ∈ ∂B,

h(x) = |f (x)− y | ≥ |f (x)− f (a)| − |f (a)− y | > g(x)− m

2
≥ m

2
.

Thus, h(x) ≥ m/2, for all x ∈ ∂B, and hence c ∈ B and not in ∂B. Note
that c ∈ B is also a minimum of h2 : B → [0,∞), where
h2(x) =

∑n
i=1(fi (x)− yi )

2. Therefore, each partial derivative Djh
2(c) is

zero at c ∈ B. Thus, for each j = 1, 2, . . . , n,

n∑
i=1

(fi (c)− yi )Dj fi (c) = 0.

This is same as [Df (c)](f (c)− y) = 0. Since c ∈ B, we have Jf (c) 6= 0.
Therefore, f (c) = y and y ∈ f (B). Thus, U ⊆ f (B).
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h(x) := |f (x)− y |. Note that, as argued above, h is continuous on B and
hence attains its minimum at some point c ∈ B. Moreover,
h(a) = |f (a)− y | < m/2 and hence h(c) < m/2.

For each x ∈ ∂B,

h(x) = |f (x)− y | ≥ |f (x)− f (a)| − |f (a)− y | > g(x)− m

2
≥ m

2
.

Thus, h(x) ≥ m/2, for all x ∈ ∂B, and hence c ∈ B and not in ∂B. Note
that c ∈ B is also a minimum of h2 : B → [0,∞), where
h2(x) =

∑n
i=1(fi (x)− yi )

2. Therefore, each partial derivative Djh
2(c) is

zero at c ∈ B. Thus, for each j = 1, 2, . . . , n,

n∑
i=1

(fi (c)− yi )Dj fi (c) = 0.

This is same as [Df (c)](f (c)− y) = 0. Since c ∈ B, we have Jf (c) 6= 0.
Therefore, f (c) = y and y ∈ f (B). Thus, U ⊆ f (B).
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Properties of Non-zero Jacobian Matrix

Theorem (For Open Set)

Let U be an open subset of Rn and

(i) f : U → Rn be continuous,

(ii) all partial derivatives Dj fi (x) of f exists, for all x ∈ U,

(iii) f is injective on U,

(iv) Jf (x) 6= 0 for all x ∈ U.

Then f (U) is open subset of Rn.

Proof: Let y ∈ f (U), then y = f (a) for some a ∈ U. Since U is open
there is an open ball B := Br (a) ⊆ U. Now, f restricted to B satisfies the
hypothesis of Theorem 53. The condition f (x) 6= f (a) on the boundary of
B is due to the injective property of f . Thus, f (B) contains an open ball
centered at f (a) = y . Hence f (U) is open.
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Properties of Non-zero Jacobian Matrix

Theorem

Let U be an open subset of Rn and f : U → Rn has continuous partial
derivatives Dj fi on U. Also, Jf (a) 6= 0 for some a ∈ U. Then there exists
an open ball B centred at a on which f is injective.

Proof: For any choice of n points, x1, x2, x3, . . . , xn in U one can associate
a point z ∈ Rn2

, where z := {x1; x2; x3; . . . ; xn} such that the first n
components of z is same as that of x1, the next n components are that of
x2 and so on. We define a real valued function h on a subset of Rn2

(wherever defined) as h(z) = det(Dj fi (xi )). Note that the matrix involved
in the definition is not the Jacobian. The evaluating point of the matrix
changes in each row. The function h is continuous because determinant is
a polynomial and each Dj fi is continuous on U. Let us choose A ∈ Rn2

such that xi = a for all i = 1, 2, . . . , n. Then h(A) = Jf (a) 6= 0.
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Proof Continued...

Thus, by continuity of h, there is an open ball Ω centered at A ∈ Rn2
such

that h(z) 6= 0 for all z ∈ Ω.

Therefore, det(Dj fi (xi )) 6= 0 for all xi ∈ B,
where B is an open ball centred at a. We claim that f is injective on B.
Suppose f is not injective on B, then for some x , y ∈ B such that x 6= y
we have f (x) = f (y).Let [x , y ] denote all the points on the line joining x
and y . Now since f is differentiable on U, by Mean Value theorem, for
each i = 1, 2, . . . , n, there is a xi ∈ [x , y ] such that

fi (y)− fi (x) = ∇fi (xi ) · (y − x).

Since B is convex (an open ball), we have [x , y ] ∈ B and hence xi ∈ B for
all i = 1, 2, . . . , n. By the choice of x and y , LHS is zero and hence we
have the system of linear equations

n∑
j=1

Dj fi (xi )(yj − xj) = 0.

But det(Dj fi (xi )) 6= 0, hence y = x , a contradiction. Hence f is injective
on B.
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Not a Global Property

If, in the above result, we replace Jf (a) 6= 0 for some a ∈ U with
Jf (x) 6= 0 for all x ∈ U then we cannot conclude that f is injective on
U.

The injective property is local.

For instance f (z) = exp(z) is not injective on C. It is periodic with
periodicity 2π. However, Jf (z) = |f ′(z)|2 = |ez |2 = e2x 6= 0 for all
z ∈ C. The identification Jf (z) = |f ′(z)|2 is typical of holomorphic
function due to Cauchy-Riemann equations.
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Open Mapping Theorem

The following result gives the global property of functions with non-zero
Jacobian determinant.

Theorem (Open Mapping Theorem)

Let U be an open subset of Rn and f : U → Rn has continuous partial
derivatives Dj fi on U. If Jf (x) 6= 0 for all x ∈ U, then f is an open
mapping, i.e., for every open subset Ω ⊂ U, f (Ω) is open in Rn.

Proof.

Let Ω be any open subset of U. We claim f (Ω) is open. Let y ∈ f (Ω)
then there is a x ∈ Ω ⊂ U such that f (x) = y . Since Jf (x) 6= 0, by
Theorem 55, there is an open ball By (x) ⊂ Ω centred at x on which f is
injective. Therefore, by Theorem 54, f (By (x)) ⊂ f (Ω) is open containing
the point y . Note that f (Ω) = ∪y∈f (Ω)f (By (x)) is arbitrary union of open
sets and hence is open.
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Inverse Function Theorem

Theorem (Inverse Function Theorem)

Let Ω ⊂ Rn be an open subset and f : Ω→ Rn such that f has continuous
partial derivatives in Ω. If, for some point a ∈ Ω, Jf (a) 6= 0, then there are
neighbourhoods U and V of a and f (a), respectively, such that f : U → V
is bijective, i.e., for all p ∈ V the equation f (x) = p has a unique solution
in U. Further, the inverse of f −1 : V → U is in C 1.

Proof: Since Jf is continuous (determinant map) on Ω and Jf (a) 6= 0,
there is an open ball B1 centred at a such that Jf (x) 6= 0 for all x ∈ B1.
Now, by Theorem 55, choose an open ball B2 ⊂ B1 with centre at a such
that f is injective on B2. Then, on B2, f satisfies the hypothesis of
Theorem 54 and hence f (B2) is an open ball containing f (a). Set U := B2

and V := f (B2). Thus, by our construction f : U → V is bijective. It
remains to show that f −1 : V → U is continuously differentiable. We first
show f −1 is continuous on V .
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Proof Continued...

By Theorem 56, f is an open map on U and hence f −1 is continuous on
V . By construction f −1 is unique.

It now only remains to show that f −1 is C 1 on V . As done in
Theorem 55, for any choice of n points, x1, x2, x3, . . . , xn in Ω one can
associate a point z ∈ Rn2

, where z := {x1; x2; x3; . . . ; xn} such that the
first n components of z is same as that of x1, the next n components are
that of x2 and so on. We define a real valued function h on a subset of
Rn2

(wherever defined) as h(z) = det(Dj fi (xi )). The function h is
continuous because determinant is a polynomial and each Dj fi is

continuous on Ω. Let us choose A ∈ Rn2
such that xi = a for all

i = 1, 2, . . . , n. Then h(A) = Jf (a) 6= 0. Thus, by continuity of h, there is
an open ball O centered at A ∈ Rn2

such that h(z) 6= 0 for all z ∈ O.
Therefore, Dj fi (xi ) 6= 0 for all xi ∈ B, where B is some open ball centred
at a. We could have chosen B2 above (on which f was injective) to be
contained in B, then B2 ⊆ B and hence Dj fi (xi ) 6= 0 for all xi ∈ B2.
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(wherever defined) as h(z) = det(Dj fi (xi )). The function h is
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continuous on Ω. Let us choose A ∈ Rn2
such that xi = a for all

i = 1, 2, . . . , n. Then h(A) = Jf (a) 6= 0. Thus, by continuity of h, there is
an open ball O centered at A ∈ Rn2

such that h(z) 6= 0 for all z ∈ O.
Therefore, Dj fi (xi ) 6= 0 for all xi ∈ B, where B is some open ball centred
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Proof Continued...

For simplicity let us denote g := f −1 on V .

Since V is open, for any
v ∈ V and very small t, v + tej ∈ V . Let u = g(v) ∈ U and
u′ = g(v + tej) ∈ U. Thus, f (u′)− f (u) = tej . Therefore, for each
i = 1, 2, . . . , n,

fi (u
′)− fi (u)

t
=

{
0 i 6= j

1 i = j

By mean value theorem, for each i = 1, 2, . . . , n, there is a xi ∈ [u, u′], line
joining u and u′,

fi (u
′)− fi (u)

t
= ∇fi (xi ) ·

u′ − u

t
.

Thus, we have the system of equations

[Dk fi (xi )]

[
u′ − u

t

]
= ej .
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Proof Continued...

The above system of equations is solvable because Dk fi (xi ) = h(z) 6= 0.

By Cramer‘s rule, solving for the `-th unknown, we get

g`(v + tej)− g`(v)

t
=

u′` − u`
t

=
det(A`)

det(Dk fi (xi ))
,

where A` is the matrix [Dj fi (xi )] where the `-th column is replaced by ej .
Taking limits, as t → 0, we get

Djg`(v) =
det(A`(u))

Jf (u)

where A`(u) is the matrix [Dj fi (u)] where the `-th column is replaced by
ej . Therefore, partial derivatives of g exists and is continuous because it is
quotient of continuous functions.
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Functions Locally as Graph

Recall that a curve in a plane is not always the graph of some function.
For instance, the unit circle S1 in a plane has the equation x2 + y2 = 1
and the form y = ±

√
1− x2 is multi-valued.

Example

Let f : R2 → R be defined as f (x , y) = x2 + y2 − 1. Then f (x , y) = 0 is
an equation of S1 in R2. Consider any point (x0, y0) ∈ S1 such that
y0 > 0. Set g(x) =

√
1− x2 and y0 = g(x0) for all y0 > 0. Thus, this

expression is valid for very small neighbourhoods U and V of x0 and y0,
respectively. Similar argument holds true for y0 < 0 with
g(x) = −

√
1− x2. Note that in both these cases fy (x0, y0) = 2y0 6= 0.

Consider the case when y0 = 0, i.e., (x0, y0) is either (−1, 0) or (1, 0).
Observe that fy (x0, y0) = 0 and there is no function g in any
neighbourhood of x0 such that y0 = g(x0).
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Zero Case is Inconclusive

The previous example suggests that one may have local explicit form at a
point (x0, y0) provided fy (x0, y0) 6= 0, a fact we shall prove in more
generality in the implicit function theorem.

However, the situation
fy (x0, y0) = 0 is usually inconclusive as seen in examples below.

Example

Consider the curve f (x , y) = 0 in R2 where f (x , y) = x − y3.Consider
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Implicit Function Theorem

Theorem (Implicit Function Theorem)

Let Ω ⊂ Rm × Rn be an open subset and f : Ω→ Rn such that f is
continuously differentiable in Ω. Let (x0, y0) ∈ Ω be such that
f (x0, y0) = 0 and the n × n matrix

Dy f (x0, y0) :=


∂f1
∂y1

(x0, y0) · · · ∂f1
∂yn

(x0, y0)
...

. . .
...

∂fn
∂y1

(x0, y0) · · · ∂fn
∂yn

(x0, y0)


is non-singular, then there is a neighbourhood U ⊂ Rm of x0 and a unique
function g : U → Rn such that g(x0) = y0 and, for all x ∈ U,
f (x , g(x)) = 0. Further g is continuously differentiable in U.
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Proof

Let us define a function F : Ω→ Rm × Rn as F (x ; y) := (Ix ; f (x , y)),
where I : Rm → Rm is the identity map.

Note that the determinant of the
(m + n)× (m + n) Jacobian of F , JF (x ; y) at (x0; y0),

JF (x0, y0) =

∣∣∣∣ I 0
Dx f (x0, y0) Dy f (x0, y0)

∣∣∣∣
is same as the determinant of the n × n matrix Dy f (a).Hence,
JF (x0; y0) 6= 0. Further F (x0; y0) = (x0; 0), since f (x0, y0) = 0. Therefore,
by inverse function theorem, there exists open sets W and V containing
(x0; y0) and (x0; 0), respectively, such that the inverse of F in W ,
G : V →W , is in C 1 and G (F (x ; y)) = (x ; y). Let G := (G1,G2) be
components of G such that G1 : Rm ×Rn → Rm and G2 : Rm ×Rn → Rn.
Therefore, G1(F (x ; y)) = x and G2(F (x ; y)) = y .
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Proof Continued...

Let U := {x ∈ Rm | (x , 0) ∈ V } and is an open set containing x0 and
define g : U → Rn as g(x) := G2(x ; 0).

Thus, by definition, g is C 1 on U.
Further, g(x0) = G2(x0; 0) = G2(F (x0; y0)) = y0.
For every (v1; v2) ∈ V there is a unique (w1;w2) ∈W such that
F (w1;w2) = (v1; v2) because F is bijective from W to V .But we know, by
definition, that (v1; v2) = F (w1;w2) = (w1; f (w1;w2)). This implies that
w1 = v1 and hence G (v1; v2) = (v1;w2). Therefore, G1(v1; v2) = v1 and
(v1, v2) = F (G (v1; v2)) = F (v1;G2(v1; v2)). For all (x ; y) ∈ V , we have
F (G (x ; y)) = (x ; y) and hence for all x ∈ U, we have F (G (x ; 0)) = (x ; 0).
This implies that
(x ; 0) = F (G1(x ; 0);G2(x ; 0)) = F (x ; g(x)) = (x ; f (x , g(x)). Thus,
f (x , g(x)) = 0. The uniqueness of g follows from the uniqueness of the
inverse map G of F .
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