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The sum of first n natural numbers 1, 2, 3, . . . , n is

S1(n) :=
n∑

m=1

m =
n(n+ 1)

2
=
n2

2
+
n

2
.

This formula can be derived by noting that

S1(n) = 1 + 2 + . . .+ n

S1(n) = n+ (n− 1) + . . .+ 1.

Therefore, summing term-by-term,

2S1(n) = (n+ 1) + . . .+ (n+ 1)︸ ︷︷ ︸
n−times

= n(n+ 1).

An alternate way of obtaining the above sum is by using the following two
identity:

(i) (m+ 1)2 −m2 = 2m+ 1 and, hence,

2
n∑

m=1

m =
n∑

m=1

[
(m+ 1)2 −m2

]
− n.

(ii)

n∑
m=1

[
(m+ 1)2 −m2

]
= [22 − 12] + [32 − 22] + . . .+

+[n2 − (n− 1)2] + [(n+ 1)2 − n2]

= (n+ 1)2 − 1.
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Thus,

S1(n) =
(n+ 1)2 − (n+ 1)

2
=
n(n+ 1)

2
.

More generally, the sum of k-th power of first n natural numbers is de-
noted as

Sk(n) := 1k + 2k + . . .+ nk.

Since a0 = 1, for any a, we have S0(n) = n. For k ∈ N, one can compute
Sk(n) using the identities:

(i)

(m+ 1)k+1 −mk+1 =
k∑

i=0

(
k + 1

i

)
mi

and, hence,

(k + 1)
n∑

m=1

mk =
n∑

m=1

[
(m+ 1)k+1 −mk+1

]
−

k−1∑
i=0

n∑
m=1

(
k + 1

i

)
mi.

(ii)
∑n

m=1

[
(m+ 1)k+1 −mk+1

]
= (n+ 1)k+1 − 1.

Thus,

(k + 1)
n∑

m=1

mk = (n+ 1)k+1 − 1−
k−1∑
i=0

(
k + 1

i

) n∑
m=1

mi

Sk(n) =
(n+ 1)k+1

k + 1
− (n+ 1)

k + 1
− 1

k + 1

k−1∑
i=1

(
k + 1

i

)
Si(n).

The formula obtained in RHS is a (k+ 1)-degree polynomial of n. Using the
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above formula, one can compute

S2(n) =
n3

3
+
n2

2
+
n

6
,

S3(n) =
n4

4
+
n3

2
+
n2

4
,

S4(n) =
n5

5
+
n4

2
+
n3

3
− n

30
,

S5(n) =
n6

6
+
n5

2
+

5n4

12
− n2

12
,

S6(n) =
n7

7
+
n6

2
+
n5

2
− n3

6
+

n

42
,

S7(n) =
n8

8
+
n7

2
+

7n6

12
− 7n4

24
+
n2

12
,

. . .

James/Jacques/Jakob Bernoulli observed that the sum of first n whole num-
bers raised to the k-th power can be concisely written as,

Sk(n) =
nk+1

k + 1
+

1

2
nk +

1

12
knk−1 + 0× nk−2 + . . . .

Note that the coefficients 1, 1/2, 1/12, 0, . . . are independent of k. Jakob
Bernoulli rewrote the above expression as

(k + 1)Sk(n) = nk+1 − 1

2
(k + 1)nk +

1

6

k(k + 1)

2
nk−1 + 0−

− 1

30

(k − 2)(k − 1)k(k + 1)

4!
+ . . .

and, hence,

Sk(n) =
1

k + 1

k∑
i=0

(
k + 1

i

)
Bin

k+1−i, (1)

where Bi are the i-th Bernoulli numbers and the formula is called Bernoulli
formula. An easier way to grasp the above formula for Sk(n) is to rewrite1

it as

Sk(n) =
(n+B)k+1 −Bk+1

k + 1

1Umbral Calculus
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where B is a notation used to identify the i-th power of B with the i-th
Bernoulli number Bi and

(n+B)k+1 :=
k+1∑
i=0

(
k + 1

i

)
Bin

k+1−i.

This notation also motivates the definition of Bernoulli polynomial of degree
k as

Bk(t) :=
k∑

i=0

(
k

i

)
Bit

k−i

where Bi are the Bernoulli numbers. In terms of Bernoulli polynomials, the
k-th Bernoulli number Bk = Bk(0).

Two quick observation can be made from (1).

(i) There is no constant term in Sk(n) because i does not take k + 1.

(ii) The k-th Bernoulli number, Bk, is the coefficient of n in Sk(n). For in-
stance, B0 is coefficient of n in S0(n) = n and, hence, B0 = 1. Similarly,
B1 = 1/2, B2 = 1/6, B3 = 0, B4 = −1/30, B5 = 0, B6 = 1/42, B7 =
0, . . ..

The beauty about the sequence of Bernoulli numbers is that one can
compute them a priori and use it to calculate Sk(n), i.e., given n ∈ N and
k ∈ N ∪ {0} it is enough to know Bi, for all 0 ≤ i ≤ k, to compute Sk(n).
We already computed B0 = 1. Using n = 1 in the Bernoulli formula (1), we
get

1 =
1

k + 1

k∑
i=0

(
k + 1

i

)
Bi (2)

and, this implies that the k-th Bernoulli number, for k > 0, is defined as

Bk = 1− 1

k + 1

k−1∑
i=0

(
k + 1

i

)
Bi.

Recall that B3, B5, B7 vanish. In fact, it turns out that Bk = 0 for all
odd k > 1. The odd indexed Bernoulli numbers vanish because they have
no n-term. Since there are no constant terms in Sk(n), the vanishing of
Bernoulli numbers is equivalent to the fact that n2 is a factor of Sk(n). Some
properties of Bernoulli numbers:
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(i) For odd k > 1, Bk = 0.

(ii) For even k, Bk 6= 0.

(iii) Bk ∈ Q for all k ∈ N ∪ {0}.

(iv) B0 = 1 is the only non-zero integer.

(v) B4j is negative rational and B4j−2 is positive rational, for all j ∈ N.

(vi) |B6 = 1/42| < |B2k|, for all k ∈ N.

L. Euler gave a nice generating function for the Bernoulli numbers. He
seeked a function f(x) such that f (k)(0) = Bk where f (k) denotes the k-th
derivative of f with the convention that f (0) = f . If such an f exists then it
admits the Taylor series expansion, around 0,

f(x) =
∞∑
k=0

f (k)(0)
xk

k!
.

Therefore, for such a function

f(x) =
∞∑
k=0

Bk
xk

k!
.

Recall the Taylor series of ex,

ex =
∞∑
k=0

xk

k!

defined for all x ∈ R. Consider the product (discrete convolution/Cauchy
product) of the infinite series

f(x)ex =

(
∞∑
k=0

Bk
xk

k!

)(
∞∑
k=0

xk

k!

)

=
∞∑
k=0

(
k∑

i=0

Bi
xi

i!

xk−i

(k − i)!

)

=
∞∑
k=0

(
k∑

i=0

Bi

i!(k − i)!

)
xk

=
∞∑
k=0

(
k∑

i=0

(
k

i

)
Bi

)
xk

k!
.
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Let

ck :=
k∑

i=0

(
k

i

)
Bi =

k−1∑
i=0

(
k

i

)
Bi +Bk = k +Bk.

Then

f(x)ex =
∞∑
k=0

(k +Bk)
xk

k!
=
∞∑
k=1

xk

(k − 1)!
+ f(x) = xex + f(x).

Thus, the f we seek satisfies

f(x) =
xex

ex − 1

and is called the generating function. Since ex > 0 for all x ∈ R, we may
rewrite f(x) as

f(x) =
x

1− e−x
. (3)

The entire exercise of seeking f can be generalised to complex numbers and

f(z) =
z

1− e−z
∀z ∈ C with 0 ≤ =(z) < 2π.

A word of caution that idenitities (2) and (3) are different from the stan-
dard formulae because we have derived them for second Bernoulli numbers,
viz., with B1 = 1/2. The standard convention is to work with first Bernoulli
numbers, viz., with B1 = −1/2. The first Bernoulli numbers can be obtained
by following the approach of summing the k-th powers of first n− 1 natural
numbers, for any given n.

The Bernoulli numbers with appeared while computing Sk(n) is appears
in many crucial places.

(a) In the expansion of tan z.

tan z =
∞∑
k=1

(−1)k−1
22k(22k − 1)B2k

2n!
z2k−1.

for all |z| < π/2.
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(b) In computing the sum of Riemann-zeta function

ζ(s) =
∞∑
n=1

1

ns

for positive even integers s. The case s = 2 is the famous Basel problem
computed by Euler to be π2/6.

Theorem 1 (Euler). For all k ∈ N,

ζ(2k) = (−1)k+1 (2π)2k

2(2k)!
B2k.

Further, the relation ζ(−2k) = −B2k+1

2k+1
gives the trivial zeroes of the

Riemann zeta function.

(c) The Bernoulli numbers were also used as an attempt to prove Fermat’s
last theorem (already discussed in a previous article/blog).

Definition 1. An odd prime number p is called regular if p does not
divide the numerator of Bk, for all even k ≤ p−3. Any odd prime which
is not regular is called irregular.

The odd primes 3, 5, 7, . . . , 31 are all regular primes. The first irregular
prime is 37. It is an open question: are there infinitely many regular
primes? However, it is known that there are infinitely many irregular
primes.

Theorem 2 (Kummer, 1850). If p is a regular odd prime then the equa-
tion

ap + bp = cp

has no solution in N.
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