Bernoulli Numbers and Polynomials

T. Muthukumar
tmk@iitk.ac.in

17 Jun 2014

The sum of first n natural numbers $1,2,3, \ldots, n$ is

$$
S_{1}(n):=\sum_{m=1}^{n} m=\frac{n(n+1)}{2}=\frac{n^{2}}{2}+\frac{n}{2} .
$$

This formula can be derived by noting that

$$
\begin{aligned}
& S_{1}(n)=1+2+\ldots+n \\
& S_{1}(n)=n+(n-1)+\ldots+1
\end{aligned}
$$

Therefore, summing term-by-term,

$$
2 S_{1}(n)=\underbrace{(n+1)+\ldots+(n+1)}_{n \text {-times }}=n(n+1) .
$$

An alternate way of obtaining the above sum is by using the following two identity:
(i) $(m+1)^{2}-m^{2}=2 m+1$ and, hence,

$$
2 \sum_{m=1}^{n} m=\sum_{m=1}^{n}\left[(m+1)^{2}-m^{2}\right]-n .
$$

(ii)

$$
\begin{aligned}
\sum_{m=1}^{n}\left[(m+1)^{2}-m^{2}\right]= & {\left[2^{2}-1^{2}\right]+\left[3^{2}-2^{2}\right]+\ldots+} \\
& +\left[n^{2}-(n-1)^{2}\right]+\left[(n+1)^{2}-n^{2}\right] \\
= & (n+1)^{2}-1
\end{aligned}
$$

Thus,

$$
S_{1}(n)=\frac{(n+1)^{2}-(n+1)}{2}=\frac{n(n+1)}{2}
$$

More generally, the sum of k-th power of first n natural numbers is denoted as

$$
S_{k}(n):=1^{k}+2^{k}+\ldots+n^{k} .
$$

Since $a^{0}=1$, for any a, we have $S_{0}(n)=n$. For $k \in \mathbb{N}$, one can compute $S_{k}(n)$ using the identities:
(i)

$$
(m+1)^{k+1}-m^{k+1}=\sum_{i=0}^{k}\binom{k+1}{i} m^{i}
$$

and, hence,

$$
(k+1) \sum_{m=1}^{n} m^{k}=\sum_{m=1}^{n}\left[(m+1)^{k+1}-m^{k+1}\right]-\sum_{i=0}^{k-1} \sum_{m=1}^{n}\binom{k+1}{i} m^{i} .
$$

(ii) $\sum_{m=1}^{n}\left[(m+1)^{k+1}-m^{k+1}\right]=(n+1)^{k+1}-1$.

Thus,

$$
\begin{aligned}
(k+1) \sum_{m=1}^{n} m^{k} & =(n+1)^{k+1}-1-\sum_{i=0}^{k-1}\binom{k+1}{i} \sum_{m=1}^{n} m^{i} \\
S_{k}(n) & =\frac{(n+1)^{k+1}}{k+1}-\frac{(n+1)}{k+1}-\frac{1}{k+1} \sum_{i=1}^{k-1}\binom{k+1}{i} S_{i}(n) .
\end{aligned}
$$

The formula obtained in RHS is a $(k+1)$-degree polynomial of n. Using the
above formula, one can compute

$$
\begin{aligned}
& S_{2}(n)=\frac{n^{3}}{3}+\frac{n^{2}}{2}+\frac{n}{6} \\
& S_{3}(n)=\frac{n^{4}}{4}+\frac{n^{3}}{2}+\frac{n^{2}}{4}, \\
& S_{4}(n)=\frac{n^{5}}{5}+\frac{n^{4}}{2}+\frac{n^{3}}{3}-\frac{n}{30}, \\
& S_{5}(n)=\frac{n^{6}}{6}+\frac{n^{5}}{2}+\frac{5 n^{4}}{12}-\frac{n^{2}}{12}, \\
& S_{6}(n)=\frac{n^{7}}{7}+\frac{n^{6}}{2}+\frac{n^{5}}{2}-\frac{n^{3}}{6}+\frac{n}{42}, \\
& S_{7}(n)=\frac{n^{8}}{8}+\frac{n^{7}}{2}+\frac{7 n^{6}}{12}-\frac{7 n^{4}}{24}+\frac{n^{2}}{12},
\end{aligned}
$$

James/Jacques/Jakob Bernoulli observed that the sum of first n whole numbers raised to the k-th power can be concisely written as,

$$
S_{k}(n)=\frac{n^{k+1}}{k+1}+\frac{1}{2} n^{k}+\frac{1}{12} k n^{k-1}+0 \times n^{k-2}+\ldots
$$

Note that the coefficients $1,1 / 2,1 / 12,0, \ldots$ are independent of k. Jakob Bernoulli rewrote the above expression as

$$
\begin{aligned}
(k+1) S_{k}(n)= & n^{k+1}-\frac{1}{2}(k+1) n^{k}+\frac{1}{6} \frac{k(k+1)}{2} n^{k-1}+0- \\
& -\frac{1}{30} \frac{(k-2)(k-1) k(k+1)}{4!}+\ldots
\end{aligned}
$$

and, hence,

$$
\begin{equation*}
S_{k}(n)=\frac{1}{k+1} \sum_{i=0}^{k}\binom{k+1}{i} B_{i} n^{k+1-i} \tag{1}
\end{equation*}
$$

where B_{i} are the i-th Bernoulli numbers and the formula is called Bernoulli formula. An easier way to grasp the above formula for $S_{k}(n)$ is to rewrite ${ }^{1}$ it as

$$
S_{k}(n)=\frac{(n+B)^{k+1}-B_{k+1}}{k+1}
$$

[^0]where B is a notation used to identify the i-th power of B with the i-th Bernoulli number B_{i} and
$$
(n+B)^{k+1}:=\sum_{i=0}^{k+1}\binom{k+1}{i} B_{i} n^{k+1-i}
$$

This notation also motivates the definition of Bernoulli polynomial of degree k as

$$
B_{k}(t):=\sum_{i=0}^{k}\binom{k}{i} B_{i} t^{k-i}
$$

where B_{i} are the Bernoulli numbers. In terms of Bernoulli polynomials, the k-th Bernoulli number $B_{k}=B_{k}(0)$.

Two quick observation can be made from (1).
(i) There is no constant term in $S_{k}(n)$ because i does not take $k+1$.
(ii) The k-th Bernoulli number, B_{k}, is the coefficient of n in $S_{k}(n)$. For instance, B_{0} is coefficient of n in $S_{0}(n)=n$ and, hence, $B_{0}=1$. Similarly, $B_{1}=1 / 2, B_{2}=1 / 6, B_{3}=0, B_{4}=-1 / 30, B_{5}=0, B_{6}=1 / 42, B_{7}=$ $0, \ldots$.

The beauty about the sequence of Bernoulli numbers is that one can compute them a priori and use it to calculate $S_{k}(n)$, i.e., given $n \in \mathbb{N}$ and $k \in \mathbb{N} \cup\{0\}$ it is enough to know B_{i}, for all $0 \leq i \leq k$, to compute $S_{k}(n)$. We already computed $B_{0}=1$. Using $n=1$ in the Bernoulli formula (1), we get

$$
\begin{equation*}
1=\frac{1}{k+1} \sum_{i=0}^{k}\binom{k+1}{i} B_{i} \tag{2}
\end{equation*}
$$

and, this implies that the k-th Bernoulli number, for $k>0$, is defined as

$$
B_{k}=1-\frac{1}{k+1} \sum_{i=0}^{k-1}\binom{k+1}{i} B_{i} .
$$

Recall that B_{3}, B_{5}, B_{7} vanish. In fact, it turns out that $B_{k}=0$ for all odd $k>1$. The odd indexed Bernoulli numbers vanish because they have no n-term. Since there are no constant terms in $S_{k}(n)$, the vanishing of Bernoulli numbers is equivalent to the fact that n^{2} is a factor of $S_{k}(n)$. Some properties of Bernoulli numbers:
(i) For odd $k>1, B_{k}=0$.
(ii) For even $k, B_{k} \neq 0$.
(iii) $B_{k} \in \mathbb{Q}$ for all $k \in \mathbb{N} \cup\{0\}$.
(iv) $B_{0}=1$ is the only non-zero integer.
(v) $B_{4 j}$ is negative rational and $B_{4 j-2}$ is positive rational, for all $j \in \mathbb{N}$.
(vi) $\left|B_{6}=1 / 42\right|<\left|B_{2 k}\right|$, for all $k \in \mathbb{N}$.
L. Euler gave a nice generating function for the Bernoulli numbers. He seeked a function $f(x)$ such that $f^{(k)}(0)=B_{k}$ where $f^{(k)}$ denotes the k-th derivative of f with the convention that $f^{(0)}=f$. If such an f exists then it admits the Taylor series expansion, around 0 ,

$$
f(x)=\sum_{k=0}^{\infty} f^{(k)}(0) \frac{x^{k}}{k!}
$$

Therefore, for such a function

$$
f(x)=\sum_{k=0}^{\infty} B_{k} \frac{x^{k}}{k!} .
$$

Recall the Taylor series of e^{x},

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

defined for all $x \in \mathbb{R}$. Consider the product (discrete convolution/Cauchy product) of the infinite series

$$
\begin{aligned}
f(x) e^{x} & =\left(\sum_{k=0}^{\infty} B_{k} \frac{x^{k}}{k!}\right)\left(\sum_{k=0}^{\infty} \frac{x^{k}}{k!}\right) \\
& =\sum_{k=0}^{\infty}\left(\sum_{i=0}^{k} B_{i} \frac{x^{i}}{i!} \frac{x^{k-i}}{(k-i)!}\right) \\
& =\sum_{k=0}^{\infty}\left(\sum_{i=0}^{k} \frac{B_{i}}{i!(k-i)!}\right) x^{k} \\
& =\sum_{k=0}^{\infty}\left(\sum_{i=0}^{k}\binom{k}{i} B_{i}\right) \frac{x^{k}}{k!} .
\end{aligned}
$$

Let

$$
c_{k}:=\sum_{i=0}^{k}\binom{k}{i} B_{i}=\sum_{i=0}^{k-1}\binom{k}{i} B_{i}+B_{k}=k+B_{k} .
$$

Then

$$
f(x) e^{x}=\sum_{k=0}^{\infty}\left(k+B_{k}\right) \frac{x^{k}}{k!}=\sum_{k=1}^{\infty} \frac{x^{k}}{(k-1)!}+f(x)=x e^{x}+f(x) .
$$

Thus, the f we seek satisfies

$$
f(x)=\frac{x e^{x}}{e^{x}-1}
$$

and is called the generating function. Since $e^{x}>0$ for all $x \in \mathbb{R}$, we may rewrite $f(x)$ as

$$
\begin{equation*}
f(x)=\frac{x}{1-e^{-x}} . \tag{3}
\end{equation*}
$$

The entire exercise of seeking f can be generalised to complex numbers and

$$
f(z)=\frac{z}{1-e^{-z}} \quad \forall z \in \mathbb{C} \text { with } 0 \leq \Im(z)<2 \pi
$$

A word of caution that idenitities (2) and (3) are different from the standard formulae because we have derived them for second Bernoulli numbers, viz., with $B_{1}=1 / 2$. The standard convention is to work with first Bernoulli numbers, viz., with $B_{1}=-1 / 2$. The first Bernoulli numbers can be obtained by following the approach of summing the k-th powers of first $n-1$ natural numbers, for any given n.

The Bernoulli numbers with appeared while computing $S_{k}(n)$ is appears in many crucial places.
(a) In the expansion of $\tan z$.

$$
\tan z=\sum_{k=1}^{\infty}(-1)^{k-1} \frac{2^{2 k}\left(2^{2 k}-1\right) B_{2 k}}{2 n!} z^{2 k-1} .
$$

for all $|z|<\pi / 2$.
(b) In computing the sum of Riemann-zeta function

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

for positive even integers s. The case $s=2$ is the famous Basel problem computed by Euler to be $\pi^{2} / 6$.

Theorem 1 (Euler). For all $k \in \mathbb{N}$,

$$
\zeta(2 k)=(-1)^{k+1} \frac{(2 \pi)^{2 k}}{2(2 k)!} B_{2 k}
$$

Further, the relation $\zeta(-2 k)=-\frac{B_{2 k+1}}{2 k+1}$ gives the trivial zeroes of the Riemann zeta function.
(c) The Bernoulli numbers were also used as an attempt to prove Fermat's last theorem (already discussed in a previous article/blog).

Definition 1. An odd prime number p is called regular if p does not divide the numerator of B_{k}, for all even $k \leq p-3$. Any odd prime which is not regular is called irregular.

The odd primes $3,5,7, \ldots, 31$ are all regular primes. The first irregular prime is 37 . It is an open question: are there infinitely many regular primes? However, it is known that there are infinitely many irregular primes.

Theorem 2 (Kummer, 1850). If p is a regular odd prime then the equation

$$
a^{p}+b^{p}=c^{p}
$$

has no solution in \mathbb{N}.

[^0]: ${ }^{1}$ Umbral Calculus

