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The sum of first n natural numbers 1,2,3,...,n is
= nn+1) n* n
S = == — +—.
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This formula can be derived by noting that

Si(n) = 14+24+...4n

Si(n) = n+n—-1)+...+ 1
Therefore, summing term-by-term,

251 (n)=Mn+1)+...+(n+1)=n(n+1).
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An alternate way of obtaining the above sum is by using the following two
identity:
(i) (m+1)? —m? =2m + 1 and, hence,

n

2Zm:Z[(m+1)2—m2} —n.

m=1

Y [(m+1)?-m?] = [22-1"]+[3-2°]+... +
: i — (n— 1)+ [(n 4 1) — ]
= (n+1)7*-1.



Thus,
(n+1)2—=(n+1) n(n—i—l)‘

Si(n) = 2 -

More generally, the sum of k-th power of first n natural numbers is de-
noted as

Se(n) =15 +2F + . 4 nk

Since a® = 1, for any a, we have Sy(n) = n. For k € N, one can compute
Sk(n) using the identities:

(i)

Thus,
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Sk(n) = k+1 k+1 k+1z i Si(n).
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The formula obtained in RHS is a (k + 1)-degree polynomial of n. Using the



above formula, one can compute

Sa(n) = %3+”;+%,
s = AT

James/Jacques/Jakob Bernoulli observed that the sum of first n whole num-
bers raised to the k-th power can be concisely written as,
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Note that the coefficients 1,1/2,1/12,0,... are independent of k. Jakob
Bernoulli rewrote the above expression as

(et DSln) = 0 (ot PO D
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30 4!

and, hence,
k
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where B; are the i-th Bernoulli numbers and the formula is called Bernoulli
formula. An easier way to grasp the above formula for Si(n) is to rewrite'
it as

(n+ B)k+1 _ Bk+1

Sk(n) = k+1
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where B is a notation used to identify the ¢-th power of B with the i-th
Bernoulli number B; and

k1
(n+ B)F .= Z (k + 1) Bkt
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This notation also motivates the definition of Bernoulli polynomial of degree

- Bi(t) :== Xk: (f) Bth?

i=0
where B; are the Bernoulli numbers. In terms of Bernoulli polynomials, the
k-th Bernoulli number By, = B(0).
Two quick observation can be made from (1).

(i) There is no constant term in Si(n) because i does not take k + 1.

(ii) The k-th Bernoulli number, By, is the coefficient of n in Si(n). For in-
stance, By is coefficient of n in Sp(n) = n and, hence, By = 1. Similarly,
Bl - 1/2,32 - 1/6733 = 0,B4 - —1/30,35 - O,BG - 1/42,87 =
0,...

The beauty about the sequence of Bernoulli numbers is that one can
compute them a priori and use it to calculate Si(n), i.e., given n € N and
k € NU {0} it is enough to know B;, for all 0 < i < k, to compute Si(n).
We already computed By = 1. Using n = 1 in the Bernoulli formula (1), we

get
k
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and, this implies that the k-th Bernoulli number, for £ > 0, is defined as

1 = (k+1
B =1 k—HZO( Z, )Bz.

Recall that Bs, Bs, By vanish. In fact, it turns out that B, = 0 for all
odd k > 1. The odd indexed Bernoulli numbers vanish because they have
no n-term. Since there are no constant terms in Sk(n), the vanishing of
Bernoulli numbers is equivalent to the fact that n? is a factor of Sy(n). Some
properties of Bernoulli numbers:



(i) For odd k > 1, B = 0.
(ii) For even k, By # 0.
(iii) By € Q for all k € NU {0}.
(iv) Bp =1 is the only non-zero integer.
(v) Buj is negative rational and By;_» is positive rational, for all j € N.
(vi) |Bs = 1/42| < |Byy/, for all k € N.

L. Euler gave a nice generating function for the Bernoulli numbers. He
seeked a function f(z) such that f*)(0) = By, where f*) denotes the k-th
derivative of f with the convention that f(®©) = f. If such an f exists then it
admits the Taylor series expansion, around 0,

Recall the Taylor series of e*,

defined for all + € R. Consider the product (discrete convolution/Cauchy
product) of the infinite series
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Let

1=0 =0
Then
f(@)e® = > (k+ Bi)y = + fz) = ze” + f(2).
k=0 Ko (1)
Thus, the f we seek satisfies
re®
f(x) - et — 1

and is called the generating function. Since e* > 0 for all x € R, we may

rewrite f(x) as
x

fla)=1—= (3)

The entire exercise of seeking f can be generalised to complex numbers and

f(z) = < z@,z V2 € C with 0 < S(z) < 2r.

A word of caution that idenitities (2) and (3) are different from the stan-
dard formulae because we have derived them for second Bernoulli numbers,
viz., with B; = 1/2. The standard convention is to work with first Bernoulli
numbers, viz., with By = —1/2. The first Bernoulli numbers can be obtained
by following the approach of summing the k-th powers of first n — 1 natural
numbers, for any given n.

The Bernoulli numbers with appeared while computing Si(n) is appears
in many crucial places.

(a) In the expansion of tan z.

e 2% 22k — 1B
tanz:E :(_1)19—1 ( o ) ka%_l-
n:
k=1

for all |2| < 7/2.



(b)

In computing the sum of Riemann-zeta function

1
(s)=) —
n=1 n

for positive even integers s. The case s = 2 is the famous Basel problem
computed by Euler to be 72 /6.

Theorem 1 (Euler). For all k € N,

) (27T 2k
((2k) = (~1)FF W)wB

Further, the relation ((—2k) = —g%ﬁf gives the trivial zeroes of the
Riemann zeta function.

The Bernoulli numbers were also used as an attempt to prove Fermat’s
last theorem (already discussed in a previous article/blog).

Definition 1. An odd prime number p is called regular if p does not
diwvide the numerator of By, for all even k < p—3. Any odd prime which
1s not reqular is called irregular.

The odd primes 3,5,7,...,31 are all regular primes. The first irregular
prime is 37. It is an open question: are there infinitely many regular
primes? However, it is known that there are infinitely many irregular
primes.

Theorem 2 (Kummer, 1850). If p is a regular odd prime then the equa-
tion

a’ + b’ =cP

has no solution in N.



