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The topic of this article, the idea of attaching a finite value to divergent
series, is no longer a purely mathematical exercise. These finite values of
divergent series have found application in string theory and quantum field
theory (Casimir effect).

The finite sum of real/complex numbers is always finite. The infinite sum
of real/complex numbers can be either finite or infinite. For instance,

n∑
k=1

k = 1 + 2 + . . .+ n =
n(n+ 1)

2

is finite and
∞∑
k=1

k = 1 + 2 + 3 + . . . = +∞.

If an infinite sum has finite value it is said to converge, otherwise it is said
to diverge. Divergence do not always mean it grows to ±∞. For instance,

∞∑
k=1

k,
∞∑
k=1

1

k
and

∞∑
k=0

(−1)k

are diverging, while
∞∑
k=1

1

ks
s ∈ C and <(s) > 1,

is converging. The convergence of a series is defined by the convergence of
its partial sum. For instance,

∞∑
k=1

k

1



diverges because its partial sum

sn :=
n∑
k=1

k =
n(n+ 1)

2

diverges, as n→∞. The geometric series

∞∑
k=0

zk =
1

1− z
, (1)

for all |z| < 1, because its partial sum

sn :=
zn − 1

z − 1

n→∞−→ −1

z − 1
.

Note that the map T (z) = 1
1−z is well-defined between T : C \ {1} → C.

In fact, T is a holomorphic (complex differentiable) functions and, hence,
analytic. The analytic function T exists for all complex numbers except
z = 1 and, inside the unit disk {z ∈ C | |z| < 1}, T is same as the power
series in (1). Thus, T may be seen as an analytic continuation of

∞∑
k=0

zk

outside the unit disk, except at z = 1. A famous unique continuation result
from complex analysis says that the analytic continuation is unique. Thus,
one may consider the value of T (z), outside the unit disk, as an ‘extension’
of the divergent series

∞∑
k=0

zk.

In this sense, setting z = 2 in T (z), the divergent series may be seen as taking
the finite value

∞∑
k=0

2k = 1 + 2 + 4 + 8 + 16 + . . . = −1.

Similarly, setting z = −1 in T (z), the oscillating divergent series may be seen
as taking the finite value

∞∑
k=0

(−1)k =
1

1− (−1)
=

1

2
.
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This sum coincides with the Cesàro sum which is a special kind of convergence
for series which do not diverge to ±∞. For instance,

∞∑
k=1

k

diverges in Cesàro sum too. The Cesàro sum of a series

∞∑
k=1

ak

is defined as the

lim
n→∞

1

n

n∑
i=1

(
i∑

k=1

ak

)
.

Observe that the sequence

1

n

n∑
i=1

(
i−1∑
k=0

(−1)k

)
−→ 1

2
.

Since T is not defined on 1, we have not assigned any finite value to the
divergent series

1 + 1 + 1 + . . . .

The Riemann zeta function

ζ(z) :=
∞∑
k=1

1

kz

converges for z ∈ C with <(z) > 1. Note that for z ∈ C, kz = ez ln(k), where
ln is the real logarithm. If z = σ+ it then kz = kσeit ln(k) and |kz| = kσ since
|eit ln(n)| = 1. Therefore, the infinite series converges for all z ∈ C such that
<(z) > 1 (i.e. σ > 1) because it is known that

∑∞
k=1 k

−σ converges for all
σ > 1 and diverges for all σ ≤ 1.

The Riemann zeta function is a special case of the Dirichlet series

D(z) :=
∞∑
k=1

ak
kz
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with ak = 1 for all k. Note that for z = 2, we get the Basel series

ζ(2) :=
∞∑
k=1

1

k2
=
π2

6

and ζ(3) = 1.202056903159594 . . . called the Apéry’s constant. In fact, the
following result of Euler gives the value of Riemann zeta function for all even
positive integers.

Theorem 1 (Euler). For all k ∈ N,

ζ(2k) = (−1)k+1 (2π)2k

2(2k)!
B2k

where B2k is the 2k-th Bernoulli number.

If ζ(z) is well-defined for <(z) > 1 then 21−zζ(z) is also well-defined for
<(z) > 1. Therefore,

ζ(z)(1− 21−z) =
∞∑
k=1

(−1)k−1n−z =: η(z).

Observe that η(z) is also a Dirichlet series. It can be shown that (1−21−z)η(z)
is analytic for all <(z) > 0 and <(z) 6= 1. Thus, we have analytically
continued ζ(z) for all <(z) > 0 and <(z) 6= 1. There is a little work to be
done on the zeroes of 1−21−z but is fixable. In the strip 0 < <(z) < 1, called
the critical strip, the Riemann zeta function satisfies the relation

ζ(z) = 2z(π)z−1 sin
(zπ

2

)
Γ(1− z)ζ(1− z).

This relation is used to extend the Riemann zeta function to z with non-
positive real part, thus, extending to all complex number z 6= 1. Setting
z = −1 in the relation yields

ζ(−1) =
1

2π2
sin

(
−π
2

)
Γ(2)ζ(2) =

1

2π2
(−1)

π2

6
=
−1

12
.

Since ζ(−1) is extension of the series

∞∑
k=1

1

kz
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one may think of ζ(−1) as the finite value corresponding to 1 + 2 + 3 + . . ..
The value of ζ(0) is obtained limiting process because it involves ζ(1) which
is not defined. However, there is an equivalent formulation of Riemann zeta
function for all z ∈ C \ {1} as

ζ(z) =
1

1− 21−z

∞∑
k=0

1

2k+1

k∑
i=0

(−1)i
(
k

i

)
(i+ 1)−z

with a simple pole and residue 1 at z = 1.
Recall that the analytic continuation T of the geometric series is not

defined for z = 1 and, hence, we could not assign a finite value to

T (1) = 1 + 1 + 1 + . . . .

But, setting z = 0 above,

T (1) = ζ(0) = −
∞∑
k=0

1

2k+1

k∑
i=0

(−1)i
(
k

i

)
= −

∞∑
k=0

δ0k
2k+1

= −1

2

where δ0k is the Kronecker delta defined as

δ0k =

{
1 k = 0

0 k 6= 0.

The harmonic series
∞∑
n=1

1

n

corresponds to ζ(1) which is not defined. The closest one can conclude about
ζ(1) is that

lim
n→∞

(
n∑
k=1

1

k
− ln(n)

)
= γ

where γ is the Euler-Mascheroni constant which has the value γ = 0.57721566 . . ..
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