'Convergence' of Some Divergent Series!

T. Muthukumar
tmk@iitk.ac.in

19 Jun 2014

The topic of this article, the idea of attaching a finite value to divergent series, is no longer a purely mathematical exercise. These finite values of divergent series have found application in string theory and quantum field theory (Casimir effect).

The finite sum of real/complex numbers is always finite. The infinite sum of real/complex numbers can be either finite or infinite. For instance,

$$
\sum_{k=1}^{n} k=1+2+\ldots+n=\frac{n(n+1)}{2}
$$

is finite and

$$
\sum_{k=1}^{\infty} k=1+2+3+\ldots=+\infty
$$

If an infinite sum has finite value it is said to converge, otherwise it is said to diverge. Divergence do not always mean it grows to $\pm \infty$. For instance,

$$
\sum_{k=1}^{\infty} k, \sum_{k=1}^{\infty} \frac{1}{k} \text { and } \sum_{k=0}^{\infty}(-1)^{k}
$$

are diverging, while

$$
\sum_{k=1}^{\infty} \frac{1}{k^{s}} \quad s \in \mathbb{C} \text { and } \Re(s)>1
$$

is converging. The convergence of a series is defined by the convergence of its partial sum. For instance,

$$
\sum_{k=1}^{\infty} k
$$

diverges because its partial sum

$$
s_{n}:=\sum_{k=1}^{n} k=\frac{n(n+1)}{2}
$$

diverges, as $n \rightarrow \infty$. The geometric series

$$
\begin{equation*}
\sum_{k=0}^{\infty} z^{k}=\frac{1}{1-z} \tag{1}
\end{equation*}
$$

for all $|z|<1$, because its partial sum

$$
s_{n}:=\frac{z^{n}-1}{z-1} \xrightarrow{n \rightarrow \infty} \frac{-1}{z-1} .
$$

Note that the map $T(z)=\frac{1}{1-z}$ is well-defined between $T: \mathbb{C} \backslash\{1\} \rightarrow \mathbb{C}$. In fact, T is a holomorphic (complex differentiable) functions and, hence, analytic. The analytic function T exists for all complex numbers except $z=1$ and, inside the unit disk $\{z \in \mathbb{C}||z|<1\}$, T is same as the power series in (1). Thus, T may be seen as an analytic continuation of

$$
\sum_{k=0}^{\infty} z^{k}
$$

outside the unit disk, except at $z=1$. A famous unique continuation result from complex analysis says that the analytic continuation is unique. Thus, one may consider the value of $T(z)$, outside the unit disk, as an 'extension' of the divergent series

$$
\sum_{k=0}^{\infty} z^{k}
$$

In this sense, setting $z=2$ in $T(z)$, the divergent series may be seen as taking the finite value

$$
\sum_{k=0}^{\infty} 2^{k}=1+2+4+8+16+\ldots=-1
$$

Similarly, setting $z=-1$ in $T(z)$, the oscillating divergent series may be seen as taking the finite value

$$
\sum_{k=0}^{\infty}(-1)^{k}=\frac{1}{1-(-1)}=\frac{1}{2}
$$

This sum coincides with the Cesàro sum which is a special kind of convergence for series which do not diverge to $\pm \infty$. For instance,

$$
\sum_{k=1}^{\infty} k
$$

diverges in Cesàro sum too. The Cesàro sum of a series

$$
\sum_{k=1}^{\infty} a_{k}
$$

is defined as the

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left(\sum_{k=1}^{i} a_{k}\right)
$$

Observe that the sequence

$$
\frac{1}{n} \sum_{i=1}^{n}\left(\sum_{k=0}^{i-1}(-1)^{k}\right) \longrightarrow \frac{1}{2}
$$

Since T is not defined on 1 , we have not assigned any finite value to the divergent series

$$
1+1+1+\ldots
$$

The Riemann zeta function

$$
\zeta(z):=\sum_{k=1}^{\infty} \frac{1}{k^{z}}
$$

converges for $z \in \mathbb{C}$ with $\Re(z)>1$. Note that for $z \in \mathbb{C}, k^{z}=e^{z \ln (k)}$, where \ln is the real logarithm. If $z=\sigma+i t$ then $k^{z}=k^{\sigma} e^{i t \ln (k)}$ and $\left|k^{z}\right|=k^{\sigma}$ since $\left|e^{i t \ln (n)}\right|=1$. Therefore, the infinite series converges for all $z \in \mathbb{C}$ such that $\Re(z)>1$ (i.e. $\sigma>1$) because it is known that $\sum_{k=1}^{\infty} k^{-\sigma}$ converges for all $\sigma>1$ and diverges for all $\sigma \leq 1$.

The Riemann zeta function is a special case of the Dirichlet series

$$
D(z):=\sum_{k=1}^{\infty} \frac{a_{k}}{k^{z}}
$$

with $a_{k}=1$ for all k. Note that for $z=2$, we get the Basel series

$$
\zeta(2):=\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

and $\zeta(3)=1.202056903159594 \ldots$ called the Apéry's constant. In fact, the following result of Euler gives the value of Riemann zeta function for all even positive integers.

Theorem 1 (Euler). For all $k \in \mathbb{N}$,

$$
\zeta(2 k)=(-1)^{k+1} \frac{(2 \pi)^{2 k}}{2(2 k)!} B_{2 k}
$$

where $B_{2 k}$ is the $2 k$-th Bernoulli number.
If $\zeta(z)$ is well-defined for $\Re(z)>1$ then $2^{1-z} \zeta(z)$ is also well-defined for $\Re(z)>1$. Therefore,

$$
\zeta(z)\left(1-2^{1-z}\right)=\sum_{k=1}^{\infty}(-1)^{k-1} n^{-z}=: \eta(z) .
$$

Observe that $\eta(z)$ is also a Dirichlet series. It can be shown that $\left(1-2^{1-z}\right) \eta(z)$ is analytic for all $\Re(z)>0$ and $\Re(z) \neq 1$. Thus, we have analytically continued $\zeta(z)$ for all $\Re(z)>0$ and $\Re(z) \neq 1$. There is a little work to be done on the zeroes of $1-2^{1-z}$ but is fixable. In the strip $0<\Re(z)<1$, called the critical strip, the Riemann zeta function satisfies the relation

$$
\zeta(z)=2^{z}(\pi)^{z-1} \sin \left(\frac{z \pi}{2}\right) \Gamma(1-z) \zeta(1-z)
$$

This relation is used to extend the Riemann zeta function to z with nonpositive real part, thus, extending to all complex number $z \neq 1$. Setting $z=-1$ in the relation yields

$$
\zeta(-1)=\frac{1}{2 \pi^{2}} \sin \left(\frac{-\pi}{2}\right) \Gamma(2) \zeta(2)=\frac{1}{2 \pi^{2}}(-1) \frac{\pi^{2}}{6}=\frac{-1}{12} .
$$

Since $\zeta(-1)$ is extension of the series

$$
\sum_{k=1}^{\infty} \frac{1}{k^{z}}
$$

one may think of $\zeta(-1)$ as the finite value corresponding to $1+2+3+\ldots$. The value of $\zeta(0)$ is obtained limiting process because it involves $\zeta(1)$ which is not defined. However, there is an equivalent formulation of Riemann zeta function for all $z \in \mathbb{C} \backslash\{1\}$ as

$$
\zeta(z)=\frac{1}{1-2^{1-z}} \sum_{k=0}^{\infty} \frac{1}{2^{k+1}} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(i+1)^{-z}
$$

with a simple pole and residue 1 at $z=1$.
Recall that the analytic continuation T of the geometric series is not defined for $z=1$ and, hence, we could not assign a finite value to

$$
T(1)=1+1+1+\ldots
$$

But, setting $z=0$ above,

$$
T(1)=\zeta(0)=-\sum_{k=0}^{\infty} \frac{1}{2^{k+1}} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i}=-\sum_{k=0}^{\infty} \frac{\delta_{0 k}}{2^{k+1}}=-\frac{1}{2}
$$

where $\delta_{0 k}$ is the Kronecker delta defined as

$$
\delta_{0 k}= \begin{cases}1 & k=0 \\ 0 & k \neq 0\end{cases}
$$

The harmonic series

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

corresponds to $\zeta(1)$ which is not defined. The closest one can conclude about $\zeta(1)$ is that

$$
\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{1}{k}-\ln (n)\right)=\gamma
$$

where γ is the Euler-Mascheroni constant which has the value $\gamma=0.57721566 \ldots$.

