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The stability of pressure-driven flow in a rectangular channel with deformable
neo-Hookean viscoelastic solid walls is analysed for a wide range of Reynolds
numbers (from Re � 1 to Re � 1) by considering both sinuous and varicose modes
for the perturbations. Pseudospectral numerical and asymptotic methods are
employed to uncover the various unstable modes, and their stability boundaries are
determined in terms of the solid elasticity parameter Γ =V η/(ER) and the Reynolds
number Re = RVρ/η; here V is the maximum velocity of the laminar flow, R is the
channel half-width, η and ρ are respectively the viscosity and density of the fluid and
E is the shear modulus of the solid layer. We show that for small departures from
a rigid solid, wall deformability could have a destabilizing or stabilizing effect on the
Tollmien–Schlichting (TS) instability (a sinuous mode) depending on the solid-layer
thickness. Upon further increase in solid deformability, the TS mode coalesces with
another unstable mode (absent in rigid channels) giving rise to a single unstable
mode which extends to very low Reynolds number (<1) for highly deformable walls.
There are other types of instabilities that exist only due to wall deformability. In
the absence of inertia (Re = 0), there is a short-wave instability of both sinuous and
varicose modes arising due to the discontinuity of the first normal stress difference
across the fluid–solid interface. For both sinuous and varicose modes, it is shown
that inclusion of inertia is important even for Re � 1, wherein a new class of
long-wavelength unstable modes are predicted which are absent at Re =0. These
unstable modes are a type of shear waves in an elastic solid which are destabilized by
the flow. These long- and short-wave instabilities are absent if a simple linear elastic
model is used for the solid. At intermediate and high Re, upstream and downstream
travelling waves of both sinuous and varicose modes become unstable. We show that
sinuous and varicose modes become critical in different parameter regimes, thereby
demonstrating the importance of capturing all the unstable modes. Inclusion of
dissipative effects in the neo-Hookean model is generally shown to play a stabilizing
role on the instabilities due to both sinuous and varicose modes. The predicted
instabilities will be important for the flow of liquids (with viscosity �10−3 Pa s) in
deformable channels of width �1 mm, and with shear modulus �105 Pa.
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1. Introduction
Fluid flow through channels made of deformable walls is encountered in a wide

class of biological systems (Grotberg & Jensen 2004) and more recently in microfluidic
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applications (Squires & Quake 2005). Owing to their small dimensions, the Reynolds
number of fluid flow in microfluidic devices is often O(1) or smaller. At such low
Reynolds number, flow in rigid-walled channels and tubes is laminar and has poor
mixing characteristics, which is a major limitation in the design of microfluidic
devices. Turbulent flows with better mixing characteristics often ensue as a result of
an instability of the laminar flow, which occurs in rigid-walled channels only at large
Reynolds numbers of O(103). In contrast, for flows in channels with deformable walls,
the elasticity of the solid wall also plays a role in destabilizing the flow in addition
to fluid inertia (Krindel & Silberberg 1979). Because of the deformation of the solid
interface by fluid stresses, the stability of the flow could be altered due to the creation
of interfacial waves thereby leading to a complicated time-dependent flow in such
systems. The resulting unsteady, non-laminar flows have better mixing characteristics
compared to laminar flows, and could result in improved heat and mass transfer
rates in microfluidic devices. A recent experimental work by Shrivastava, Cussler
& Kumar (2008) has found evidence for enhancement of mass transfer due to a
hydrodynamic instability induced by a soft elastic boundary. This feature could be
potentially exploited in improving mixing in microfluidic devices fabricated using ‘soft’
platforms like polydimethyl siloxane (PDMS) (McDonald & Whitesides 2002; Squires
& Quake 2005), which can be tailor-made with desired elastic properties. To this end,
it is important to have a precise quantitative understanding of the onset of instability
of the laminar flow in deformable channels as a function of the elastic modulus of
the channel walls. There has also been enormous interest in the stability of flow past
deformable solids at higher Reynolds numbers of O(103), wherein soft solid coatings
were investigated as potential candidates for delay of the Tollmien–Schlicting (TS)
instability present in flow past rigid walls (see Gad-el-Hak 2003 for a recent review).
The boundary-layer flow is the most studied configuration in this context owing to
its practical relevance. However, the TS instability is also present in pressure-driven
flow in a rigid channel, and a study on the effect of wall deformability on flow in
this simpler geometry with a truly parallel laminar velocity profile will lead to a
better understanding of the role of deformable walls on the TS instability. With these
main motivations, we present a comprehensive study of the stability characteristics of
fully developed pressure-driven flow in a rectangular channel whose walls are lined
with deformable solid layers for Reynolds numbers ranging from Re � 1 to Re � 1,
by considering both sinuous and varicose modes for the perturbations. The overall
objective is to investigate the existence of qualitatively new instabilities in regimes
that have not been addressed thus far in the literature. Below, we first give a brief
account of relevant earlier work on this subject, and motivate the importance of the
present work in the context of the existing literature.

2. Background and earlier work
The stability of pressure-driven flow in a deformable channel has been addressed

in many previous studies (Hains & Price 1962; Green & Ellen 1972; Rotenberry
& Saffman 1990; Gajjar & Sibanda 1996; Davies & Carpenter 1997; LaRose &
Grotberg 1997; Huang 1998), and the focus of these earlier studies was on the effect
of solid deformability on the TS instability. Prior to these studies, Benjamin (1960)
and Landahl (1962) pioneered the research on the stability of flow past compliant
surfaces by focusing on boundary-layer flow over a compliant wall. These studies
employed a thin spring-backed membrane as a model for the deformable solid where
the deflection of the wall is governed by an equation that is linear in the forcing
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due to fluid stresses. At a Reynolds number of 5771, fully developed plane Poiseuille
flow in a rigid channel becomes linearly unstable due to the TS instability (Drazin
2002). Hains & Price (1962) first showed that wall flexibility has a stabilizing effect on
the TS instability in a rigid channel. Green & Ellen (1972) showed numerically that
for sufficiently deformable walls the neutral stability curve for the TS mode could
be significantly affected such that an additional region of instability (subsequently
identified as ‘travelling wave flutter’) appears at higher wavenumbers. Gajjar &
Sibanda (1996) studied the stability of flow in a channel with one rigid wall and
one flexible wall, and showed that the effect of wall damping is destabilizing on the
TS mode. Their analysis further pointed to another instability called flutter, which
is absent in rigid surfaces. Davies & Carpenter (1997) carried out a detailed study
on the stability of channel flow, and showed that in addition to the TS instability,
there exists a class of ‘flow-induced surface instabilities’ which are modes that are
destabilized by wall flexibility, and are absent in rigid channels. They also showed that
the TS mode and the flow-induced surface instabilities interact in certain parametric
regimes to give rise to a powerful possibly absolute instability. Davies & Carpenter
(1997), however, considered only sinuous modes that have the same symmetry as
the TS modes. Huang (1998) considered varicose modes and reported a new inviscid
flow-induced surface instability. Nagata & Cole (1999) studied both sinuous and
varicose modes of instabilities in a symmetric flexible-walled channel. LaRose &
Grotberg (1997) studied the stability of developing flow in a flexible channel, and
predicted a new long-wave instability and a finite-wavelength flutter instability. Very
recently, Stewart, Walters & Jensen (2010) and Mandre & Mahadevan (2010) have
studied new types of instabilities in the flow between a rigid wall and a tensioned
membrane. An important limitation of all these studies is that the channel walls were
constrained to move only in normal direction. In addition, it is difficult to relate the
phenomenological parameters in the model to measurable material properties of a
solid such as the shear modulus.

Yeo (1988) used a continuum linear viscoelastic solid of finite thickness as a model
for the deformable wall to analyse the stability of laminar boundary-layer flow over a
deformable wall. It was shown there that the TS mode is stabilized by increase in wall
deformability, but this also introduces a host of new instabilities. Using a continuum
linear viscoelastic model for the deformable wall, Kumaran and co-workers (Kumaran
1995, 1998; Srivatsan & Kumaran 1997; Shankar & Kumaran 2001) have extensively
analysed the stability of pressure-driven flow in a circular pipe which is lined by a
linear viscoelastic material, as well as plane Couette flow past a linear viscoelastic
solid. However, it has recently been pointed out (Gkanis & Kumar 2003, 2005) that in
order to accurately capture the stability behaviour in flow past deformable solids, it
is necessary to use a frame-indifferent nonlinear continuum model for the solid. Even
earlier, Yeo, Khoo & Chong (1994) have similarly pointed out the inconsistencies
associated with the linear elastic model in the context of boundary-layer stability, by
using a neo-Hookean model for the solid. Gkanis & Kumar (2005) considered the
problem of stability of plane Poiseuille flow in a deformable channel in the creeping-
flow limit using the neo-Hookean model, but considered only varicose perturbations.
They showed that for pressure-driven flow, there are two types of instability for
Re = 0: (i) a finite-wavelength mode which becomes unstable for thicker solids, and
which is akin to the instability found for plane Couette flow (Gkanis & Kumar 2003),
and (ii) a short-wavelength mode that arises due to the discontinuity of the first
normal stress difference in the solid–fluid interface in the base state. We demonstrate
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in § 3.4 that their formulation of the tangential and normal stress conditions needs
a minor modification relating to the treatment of the stress continuity conditions at
the perturbed interface when the solid is treated within a Lagrangian description. In
addition, the work of Gkanis & Kumar (2005) was restricted to creeping-flow limit
(Re = 0), and to purely elastic neo-Hookean solids. Their analysis also considered
only varicose perturbations.

The present study complements the work of Gkanis & Kumar (2005) by removing
all the above restrictions, by extending their results to (i) both sinuous and varicose
perturbations, (ii) finite and high Re and (iii) viscoelastic neo-Hookean solids.
Consideration of perturbations with both the symmetries is essential for experimental
comparisons. Further, inertial effects, however small, will always be present in real
systems and it is instructive to examine the effect of inertia on the stability of
pressure-driven flow in deformable channels. For non-zero Reynolds number, the
characteristic equation for the coupled fluid–solid system admits multiple solutions
for the eigenvalue, and it is possible that some of these solutions may become unstable
in addition to the creeping-flow modes: there could be unstable modes for Re � 1
which cannot be captured by setting Re = 0. Physically, the additional modes at small
but non-zero Re correspond to a class of shear waves in a solid (Achenbach 1973)
which could be modified and destabilized by the fluid flow. Even at Re � 1, there
exist multiple downstream and upstream travelling waves which become unstable
in flow through deformable tubes and channels (Shankar & Kumaran 2001, 2002;
Gaurav & Shankar 2009). Finally, real elastomers and polymer gels usually exhibit
some viscous dissipation upon deformation, and it is important to include this aspect
in the constitutive model for the solid. The present work also supplements the earlier
studies on the role of wall deformability on the TS instability in a channel (Hains &
Price 1962; Gajjar & Sibanda 1996; Davies & Carpenter 1997), by considering a more
realistic neo-Hookean model for the solid to address the role of solid deformability
on the stability of the TS mode.

The rest of this paper is structured as follows: the base state, linearized equations
governing the stability of the system and boundary conditions are presented in § 3.
The results of the analysis in various regimes are discussed in § 4 and finally the
conclusions of the present study are given in § 5. Appendices A and B provide
details concerning linearization of conditions at the fluid–solid interface and the
low-wavenumber low-Re asymptotic analysis.

3. Problem formulation
3.1. Governing equations for the fluid and solid

We consider the pressure-driven flow of an incompressible Newtonian fluid of density
ρ and viscosity η in a rectangular channel lined with a deformable solid layer as shown
in figure 1. The solid layer is of thickness HR and is strongly bonded to rigid surface
at z∗ = R(2 + H ) on top and z∗ = −HR at bottom, and the fluid occupies the region
0 � z∗ � 2R in the base state. The deformable solid is modelled as an impermeable
and incompressible neo-Hookean (Malvern 1969; Holzapfel 2000) viscoelastic solid
of density ρ, shear modulus E and viscosity ηs . Various physical quantities are
non-dimensionalized at the outset by using the following scales: R for lengths and
deformations, the maximum base flow velocity V for velocities and ηV/R for pressure
and stresses. The steady fully developed velocity profile whose stability is of interest
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Figure 1. Schematic diagram showing the configuration and (non-dimensional) coordinate
system considered in this paper: pressure-driven flow of a Newtonian fluid in a channel lined
with neo-Hookean viscoelastic solid.

is the pressure-driven flow inside the channel

vx(z) = 2

(
z − z2

2

)
, vz = 0. (3.1)

The non-dimensional governing equations for the fluid are Navier–Stokes continuity
and momentum balance equations:

∇ · v = 0, Re[∂tv + v · ∇v] = −∇p + ∇2v, (3.2)

where v and p are the velocity and pressure fields in the fluid layer and Re = ρV R/η

is the Reynolds number based on maximum fluid velocity.
The governing equations for the fluid are written, as is customary, in terms of

spatial (Eulerian) coordinates (x = x, y, z). It is possible to express the dynamical
quantities and governing equations in the solid also in a consistent Eulerian fashion
(Chokshi 2007; Choskshi & Kumaran 2008). Equivalently (following Gkanis & Kumar
2003), we find it convenient to refer the governing equations for the solid in terms
of a reference (Lagrangian) configuration, where the independent variables are the
positions X = (X, Y, Z) of material particles in the reference (i.e. unstressed solid)
configuration. Chokshi (2007) has shown that the Eulerian–Eulerian and Eulerian–
Lagrangian approaches are equivalent, and yield the same result for the eigenvalues.
In a recent work, Ma & Ng (2009) have used an entirely Lagrangian approach for
both the fluid and solid to analyse the propagation of waves in an elastic tube, when
there is no base flow in the fluid. However, their approach is not easily applicable to
the case when there is a base flow in the fluid, as is the case in this study.

The spatial (x, y, z) coordinate system used here for fluid motion is identical to
the reference coordinate system in the unstressed configuration (X, Y, Z) for the
deformable solid. In the deformed state of the solid, the current position of a material
particle is denoted in the Lagrangian description by w(X). The deformable solid
is modelled as an incompressible neo-Hookean viscoelastic solid and the mass and
momentum conservation equations governing the dynamics of solid are given as
(Malvern 1969; Holzapfel 2000):

det(F) = 1, (3.3)

Re

[
∂2w

∂t2

]
X

= ∇X · P. (3.4)
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In the above equations, F is the deformation gradient tensor defined as F = ∇Xw and
P is the first Piola–Kirchhoff stress tensor. The first Piola–Kirchhoff stress tensor
is related to Cauchy stress tensor by P = F−1 · σ . The Cauchy stress tensor for the
neo-Hookean viscoelastic solid is split into an elastic part, σ e, and a dissipative part,
σ d (Beatty & Zhou 1991; Fosdick & Yu 1996; Destarde & Saccomandi 2004; Ma &
Ng 2009):

σ = σ e + σ d, (3.5)

σ e = −ps I +
1

Γ
F · FT , σ d = ηr (L + LT ). (3.6)

Here, the non-dimensional parameter Γ = V η/(ER) is the ratio of viscous stress in
the fluid to elastic stresses in the solid, and signifies the extent of deformability of the
solid. If Γ → 0, this represents the limit of a rigid solid layer, and as Γ increases,
the solid becomes more deformable; ps is the pressure-like function related to actual
pressure, p̂s , in the neo-Hookean solid as ps = p̂s + 1/Γ ; L = Ḟ · F−1 is the spatial
velocity gradient and ηr = ηs/η is the ratio of solid to fluid viscosity. To simplify
our calculations, we assume a frequency-independent viscosity to describe dissipative
effects in the solid medium. The neutral stability curves obtained in the present
study can be extended to a solid with frequency-dependent viscosity by following
an iterative procedure described in Muralikrishnan & Kumaran (2002). A simple
single-mode Maxwellian model for the viscoelastic response of the solid has been
used in Choskshi & Kumaran (2008). In the above governing equations for solid
layer, the density of the solid is assumed to be equal to the fluid density because the
densities of commonly used polymeric materials are usually not very different from
those of various liquids. Thus, the ratio of solid to fluid density ρs/ρ will be close to
one and for small differences in densities we expect that the qualitative prediction of
the present study will remain unchanged. However, for ρs/ρ � 1 or �1, the density
differences could modify the modes explored in the present study and may introduce
new modes of instabilities.

When numerical results are presented later in this work, it is often convenient to
express how the Reynolds number required for instability varies as the deformability
of the solid wall is changed. To this end, we will mainly use the variation of Γ as
a function of Re. We will also display some of our results in the form of Re as a
function of Σ = Re/Γ = ρER2/η2, which illustrates how a flow-dependent quantity
(Re) varies as a function of a flow-independent quantity (Σ) which measures how
rigid the solid is. For a truly rigid solid, Σ → ∞.

3.2. Base state

In the base state, the fluid–solid interface is flat and unperturbed, and is denoted in
the Eulerian description by x, z = 0, and in the Lagrangian description by X, Z = 0.
Upon introduction of perturbations to the system, the interface is described in the
Eulerian description by x, z = h(x), while a material point on the interface is still
labelled in the Lagrangian description by X(x), Z = 0. The boundary conditions at
the fluid–solid interface (denoted by z =h(x) in the Eulerian scheme, or by X, Z =0
in the Lagrangian scheme) are continuity of velocities and stresses. At Z = −H , the
deformable solid wall is fixed onto a rigid surface and hence the boundary conditions
are those of no deformations (w =0) at the rigid surface. The steady-state base
velocity profile for fluid and the base-state deformation field for solid layers are
obtained by solving the governing equations (3.2) and (3.3)–(3.4) respectively, along
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with the appropriate boundary conditions. The base velocity profile in a fluid layer
is given by (3.1). The fluid–solid interface (Z =0) remains flat and the solid is at
rest with a non-zero displacement in x direction due to shear stress exerted by fluid
at the fluid–solid interface. The steady base deformation and pressure fields for a
deformable solid layer (in the domain −H < Z < 0) are given by

wX = X + Γ [H 2 − Z2] + 2Γ (Z + H ), wZ = Z, (3.7)

ps = p(X) + 4Γ

(
Z2

2
− Z

)
, (3.8)

where the overbar denotes various base-state physical quantities. The neo-Hookean
solid also exhibits a first normal stress difference in the base state: σXX − σZZ = 4Γ (Z−
1)2, which is known to give rise to a short-wave instability (Gkanis & Kumar 2003).

3.3. Linearized governing equations

The temporal linear stability of the system is studied by imposing small perturbations
to the base state and linearizing the resulting governing equations and boundary
conditions about the base-state solution. Following previous work on channel
flows, the perturbations are assumed to be two-dimensional. In the study of rigid
channel flows, this is normally justified within the classical eigenvalue-oriented
analysis by invoking Squire’s theorem (Drazin & Reid 1981) which states that
two-dimensional perturbations are the most unstable. However, it is not possible
to derive a Squire’s theorem for deformable channels, and it is in principle possible
for three-dimensional perturbations to be more unstable for these systems. The two-
dimensional perturbations are expressed using the normal mode decomposition as:
f ′ = f̃ (z) exp[ik(x −ct)] for fluid perturbation quantities and f ′ = f̃ (Z) exp[ik(X−ct)]
for solid quantities, where f ′ is the perturbation to any physical variable, f̃ (z) is the
complex amplitude (eigenfunction) of the disturbance, k is the (real) streamwise
wavenumber of perturbations and c = cr + ici is the complex wave speed. If ci > 0
(or ci < 0), flow will be unstable (or stable). In this connection, it must be noted that
a stability analysis based only on the eigenvalues does not always yield a complete
picture of the system’s stability. The conclusions based on the individual eigenvalues
are only related to the long-time asymptotic growth or decay of perturbations. It is
possible that the flow could experience transient growth (Schmid & Henningson 2001;
Schmid 2007) at a Reynolds number lower than that predicted in our analysis due to
the underlying non-normality of the differential operators. However, the inclusion of
non-normal effects is beyond the scope of the present work.

The linearized governing equations for fluid layers are

dzṽz + ikṽx = 0, (3.9)

Re[ikṽx(vx − c) + ṽz(dzvx)] = −ikp̃ +
(
d2

z − k2
)
ṽx, (3.10)

Re[ik(vx − c)ṽz] = −dzp̃ +
(
d2

z − k2
)
ṽz. (3.11)

In the following, the terms enclosed in boxes in the linearized governing equations for
deformable solid (3.12)–(3.14) and in the interfacial conditions (3.17)–(3.18) represent
the different couplings between the base state and perturbation variables that arise due
to the nonlinearities present in the constitutive relation for neo-Hookean viscoelastic
solid. These boxed terms will be absent if the solid layer is modelled as a linear
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viscoelastic solid. The linearized equations for solid layers are

dw̃Z

dZ
+ ikw̃X + 2ikΓ (Z − 1)w̃Z = 0, (3.12)

2
dw̃Z

dZ
+ 4ikΓ (Z − 1)w̃Z − ikp̃s +

(
1

Γ
− ikcηr

)(
d2

dZ2
− k2

)
w̃X

+ ikcηr

(
4k2Γ 2(Z − 1)2w̃X + 4ikΓ (1 − Z)

dw̃X

dZ
− 2ikΓ w̃X

)
= −k2c2Re w̃X,

(3.13)

−2
dw̃X

dZ
+ 2ikΓ (1 − Z)p̃s − 4ikΓ (Z − 1)w̃X

− dp̃s

dZ
+

(
1

Γ
− ikcηr

)(
d2

dZ2
− k2

)
w̃Z

+ ikcηr

(
4k2Γ 2(Z − 1)2w̃Z + 4ikΓ (1 − Z)

dw̃Z

dZ
− 2ikΓ w̃Z

)
= −k2c2Rew̃Z.

(3.14)

3.4. Linearized interface conditions

The perturbed interface shown in figure 25 (Appendix A) is represented by (x, h(x)) in
the Eulerian description. The material point P0 present at (X, Z = 0) in the unstressed
configuration is displaced to P in the base state, and is further displaced to P ′

upon introduction of perturbations. Importantly, the material point is still labelled by
(X, Z =0) within the Lagrangian description of the solid. In Appendix A, we show
that the application of the velocity and stress conditions within the linear stability
analysis does not require Taylor expansion of solid dynamical quantities in the vertical
Lagrangian coordinate. The perturbed interface is in fact described by X(x), Z =0 in
the Lagrangian description of the solid. If an Eulerian framework is used (Chokshi
2007; Choskshi & Kumaran 2008), the expansion about z = 0 is justified for the solid.
Following the procedure discussed in Appendix A, the linearized interfacial conditions
at the fluid–solid interface are

ṽz = −ikc w̃Z, (3.15)

ṽx + 2w̃Z = −ikc w̃X, (3.16)

−4ikΓ w̃Z + 2
dw̃Z

dZ
− 2k2cηrΓ w̃X

+

(
1

Γ
− ikcηr

)(
dw̃X

dZ
+ ikw̃Z

)
= (dzṽx + ikṽz) − 2w̃Z, (3.17)

−p̃s + 2

(
1

Γ
− ikcηr

)
dw̃Z

dZ
− 4k2cηrΓ w̃Z = −p̃ + 2dzṽz − γ

Γ
k2w̃Z, (3.18)

where γ = γ ∗/ER is the non-dimensional surface tension with γ ∗ being the
dimensional fluid–solid interfacial tension. The term 2w̃Z on the right-hand side
of the tangential stress balance (3.17) arises due to the coupling between normal
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displacement fluctuation and mean flow (w′
Zd2

zvx), and this was absent in the analysis
of Gkanis & Kumar (2005). This term is identically zero in plane Couette flow because
of its linear velocity profile. Gkanis & Kumar (2005) also included an extra coupling
term in normal stress balance (w′

Z(dps/dZ)) which is absent in the present analysis.
These differences arise precisely due to the Taylor expansion of the (Lagrangian) solid
quantities about z =0 in earlier works (Gkanis & Kumar 2005; Gaurav & Shankar
2009). Interestingly, these differences are absent in the case of plane Couette flow
past a deformable solid (Gkanis & Kumar 2003), and they appear only in pressure-
driven plane and pipe Poiseuille flows. We show later in this paper that the suggested
modifications lead to some qualitative differences in the results at Re = 0.

3.5. Conditions at channel centreline

When the thickness and moduli of the upper and lower linings are identical (in
figure 1), there is a symmetry of the configuration about the channel centreline, since
the base flow is also symmetric about the channel centreline z =1. The equations
governing the fluid and solid are linear and homogeneous; consequently, the solution
for ṽz can be separated into even and odd functions of ṽz about the channel centreline
(Drazin & Howard 1966). The conditions at the centreline are different for the two
modes, as follows.

(i) When ṽz is an odd function of z about the centreline, the value of ṽz and its
second derivative d2

z ṽz are zero. Such modes are called ‘varicose modes’, which satisfy
(at z =1):

ṽz = 0, dzṽx =
i

k
d2

z ṽz = 0. (3.19)

For such disturbances, the two fluid–solid interfaces oscillate out of phase with each
other, thus giving rise to a varicose shape to the deformable channel walls with no
crossflow at the centreline of the channel.

(ii) When ṽz is an even function of z, then its first and third derivatives are zero at
the centreline. These modes are called ‘sinuous modes’, which satisfy (at z = 1):

ṽx =
i

k
dzṽz = 0, d2

z ṽx =
i

k
d3

z ṽz = 0. (3.20)

For these disturbances, the two fluid–solid interfaces oscillate in phase with each
other, and this gives rise to a sinuous shape to the deformable channel walls, with
no axial flow at the centreline of the channel. It must be noted that there is some
ambiguity in the literature on the nomenclature of these modes as ‘symmetric’ or
‘antisymmetric’, and this arises purely based on the choice of the variable upon
which the nomenclature is based. For example, Drazin (2002) calls the sinuous modes
‘antisymmetric’ based on the axial perturbation velocities and streamlines. In contrast,
Huerre & Rossi (1998) refer to the sinuous modes as ‘symmetric’ based on cross-
stream perturbations. In this study, we simply refer to the modes as sinuous and
varicose as discussed above, and use the respective conditions at z =1. Finally, the
boundary conditions at rigid-bottom plate (z = −H ) are

w̃X = 0, w̃Z = 0. (3.21)

3.6. Numerical methodology

The linear stability of the composite fluid–solid system under consideration is
determined by solving (3.9)–(3.21) for eigenvalue c, as a function of k, Re, Γ , H ,
ηr and γ . We employed a combination of asymptotic analysis (in the limit Re � 1)
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and numerics to investigate the stability characteristics of the present configuration.
A pseudospectral collocation method (Boyd 1989; Weideman & Reddy 2000) and a
numerical shooting procedure with orthonormalization (Drazin & Reid 1981) were
used to numerically evaluate the eigenvalues and neutral stability boundaries. In the
numerical shooting procedure (Shankar & Kumaran 2000), a Runge–Kutta integrator
was employed to determine the linearly independent solutions in the solid and liquid
layers, and the interfacial conditions were used to set up a characteristic matrix,
whose determinant was set to zero in order to determine the complex wave speed.
A Newton–Raphson iterative technique was employed to solve the characteristic
equation, which requires a good initial guess to converge to the desired eigenvalue.
This is provided by the pseudospectral method, which gives the complete spectrum
of eigenvalues c for specified values of other parameters. In the pseudospectral
method, the unknown variables (e.g. velocity field in the fluid and displacement field
in the solid) are expanded in a truncated series of N Chebyshev polynomials. These
expansions are substituted in the linearized governing equations, and the resulting
equations are set to zero on N −8 Gauss–Lobatto (Boyd 1989) collocation points. The
remaining eight equations are generated from the boundary and linearized interface
conditions. This yields a N ×N matrix eigenvalue problem for N eigenvalues c, which
are obtained using the ‘polyeig’ eigenvalue solver in Matlab. To filter out the spurious
eigenmodes that may arise, the truncation level N is increased until the genuine
modes are accurately identified. To further check the veracity of the eigenmodes, we
provide these as an initial guess to the orthonormal shooting procedure discussed
above, and it is ensured that the eigenvalue obtained from the spectral code is indeed
genuine. These numerical results were validated by comparing the eigenvalues with
(i) the analytical asymptotic results (described in Appendix B) obtained at low Re
and low k, (ii) the results obtained for arbitrary k in the creeping-flow limit, where
there are only two solutions to c which can be found exactly, and (iii) the results in
the limit of a rigid channel, which can be recovered from our study by setting Γ → 0.
In all the comparisons, we found the agreement between the asymptotic predictions
and the spectral and orthonormal shooting results.

4. Results and discussion
4.1. Results in the zero-Re limit

Gkanis & Kumar (2005) studied the linear stability of pressure-driven flow of a
Newtonian fluid in a neo-Hookean deformable channel in the creeping-flow limit
(Re = 0) by considering only varicose modes. They demonstrated that depending
on solid thickness H and solid deformability parameter Γ , the flow could become
unstable for finite- and/or high-wavenumber fluctuations. The finite-wavenumber
instability is similar in nature to that in plane Couette flow (Gkanis & Kumar
2003). It was shown that for sufficiently thick solids (H � 10), finite-wavenumber
perturbations (with k ∼ O(0.1)) become unstable first, while for H � 10, high-
wavenumber perturbations (with k > 3) become unstable first. However, as we
mentioned in § 3, their analysis did not include a term arising due to the coupling
between the normal displacement fluctuation and mean flow (w′

Zd2
zvx) in the tangential

stress balance (3.17), but included an extra coupling term (w′
Z(dps/dZ)) in the normal

stress balance (3.18). In order to determine the consequences of these differences, we
first revisit the problem of stability of Poiseuille flow in a neo-Hookean deformable
channel in the creeping-flow limit; the effect of inertia is analysed in detail in
subsequent sections. In the Re = 0 limit, the characteristic equation is quadratic in
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Figure 2. ci versus k curves showing the absence of finite-k viscous mode instability in the
creeping-flow limit for flow in a neo-Hookean deformable channel. Only the high-k instability
is present for k � 3 for both sinuous and varicose modes as Γ is increased. (a) Varicose
modes: data for H = 10,Re = 0, γ = 0; (b) sinuous modes: data for H = 10,Re =0, γ = 0.

wave speed c. One of the two roots for c becomes unstable at high wavenumbers
when Γ is increased above a critical value, while the second root always remains
highly damped for all values of k and Γ . Figure 2 depicts ci versus k data for the
first root and it shows that the short-wave perturbations (k � 3) become unstable for
higher values of Γ for both sinuous and varicose modes. This short-wave instability
is essentially the instability driven by the first normal stress difference predicted by
Gkanis & Kumar (2003, 2005) for different configurations. The stability characteristics
of the normal-stress-driven short-wave fluctuations predicted here remain similar to
the unstable short-wave mode described in Gkanis & Kumar (2005) for the present
configuration and other different configurations. For example, the critical Γ remains
independent of H and interfacial tension has a stabilizing effect on this instability
driven by normal stress difference. Even the numerical data for critical values of Γ

with the modified stress boundary conditions (used in the present study) changes very
little as compared to the ones reported in Gkanis & Kumar (2005). It could further
be expected that the instability for perturbations with wavelengths small compared
to channel width would be independent of the nature of the symmetry of the modes
(sinuous or varicose), as seen in figure 2.

However, an important feature to note in figure 2 is that the finite-wavenumber
perturbations (with k ∼ O(1)) do not become unstable for the values of Γ up to 10
for both sinuous and varicose modes. This is at variance with the earlier predictions
(Gkanis & Kumar 2005) where it was shown that the Poiseuille flow in a neo-
Hookean deformable channel becomes unstable at finite wavenumbers for sufficiently
thick solids when Γ increases above a critical value. We attribute this difference to the
modified stress continuity conditions implemented in this study, which are different
from the ones used earlier (Gkanis & Kumar 2005). The results in figure 2 are shown
for H = 10, but we have verified that the finite-k mode is always stable for any
combination of H and Γ . Thus, the present study shows that the finite-wavenumber
instability is absent for pressure-driven flow in a neo-Hookean deformable channel
in the creeping-flow limit. A similar prediction was recently made for the case of
pressure-driven flow in a deformable pipe (Gaurav & Shankar 2009). The unstable
normal-stress-driven short-wave mode is the critical mode of instability for any value
of solid thickness in the creeping-flow limit. It is also important to mention here
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that the predictions for Couette flow past a neo-Hookean solid (Gkanis & Kumar
2003) will not be altered due to the modifications in boundary conditions suggested
in this work. This is because both the coupling terms, w′

Zd2
zvx (included in this work,

and absent from the work of Gkanis & Kumar 2005) and w′
Z(dps/dZ) (included in

Gkanis & Kumar 2005, but removed in this work) in the tangential and normal stress
balance, respectively, are identically zero for Couette flow due to its linear velocity
profile.

4.2. Results at low Reynolds number

Owing to the modifications suggested for the interfacial stress conditions in this study,
we find that there is no finite- or low-wavenumber instability in the creeping-flow
limit in channel flow. But the limit of Re � 1 is not the same as Re = 0. Physically,
this is because of the existence of shear waves in an elastic solid, which are a class of
transversely propagating waves with wave speeds ∼(E/ρ)1/2 (Achenbach 1973), and
which exist only for finite inertia in the solid. These shear waves in an elastic solid can
be destabilized by the fluid flow, and consequently, it is important to investigate the
effect of inertia (Re 
= 0) on the stability of the system under consideration. The char-
acteristic equation for Re 
= 0 admits multiple solutions to c unlike in the creeping-flow
limit where the characteristic equation admits only two solutions to the wave speed. It
is instructive to examine whether any of the roots of characteristic equation other than
the ones corresponding to creeping-flow limit become unstable for Re 
= 0. To this
end, we first discuss the results in the limit of small but finite Reynolds number and
explore the intermediate and high-Re regime later. In our discussion below, we treat
varicose and sinuous modes separately, as the qualitative nature of their instabilities is
different.

4.2.1. Varicose modes

At Re =0, we showed before that only the normal-stress-driven short-wave
perturbations become unstable. This high-wavenumber instability continues to finite
Reynolds number and the critical Γ required to destabilize the system remains an
O(1) quantity (as shown later in figure 9). Using the pseudospectral code which
resolves the complete eigenspectrum, we explored different wavenumber regimes
at low Reynolds number in order to investigate the possibility of unstable modes
other than the unstable normal-stress-driven short-wave mode. Figure 3 shows the
eigenvalue spectrum for H = 5, Re = 0.1 and k = 0.1 for different values of Γ . It
shows that there are multiple solutions for the eigenvalue c, approximately half
of which are downstream travelling waves (eigenvalues with positive real part cr )
and other half are upstream travelling waves (eigenvalues with negative real part
cr ). The eigenspectrum in figure 3 shows that for lower values of Γ =0.4 and 0.5,
all the eigenmodes remain stable. As Γ is increased to 0.6, one of the upstream
travelling modes becomes unstable. It must be noted here that modes are designated
as ‘upstream’ or ‘downstream’ based on the sign of their phase speeds.

With further increase in Γ , more number of upstream travelling modes become
unstable. It is also observed that the slowest upstream travelling wave (eigenvalue with
smallest magnitude of real part) becomes unstable first as Γ is increased followed
by the upstream modes with higher wave speeds. The slowest upstream travelling
varicose mode is labelled ‘Var-1u’ and other upstream varicose modes are designated
as ‘Var-2u’, ‘Var-3u’ etc., in increasing order of their wave speeds. Figure 3 also shows
that none of the downstream travelling modes become unstable for any value of Γ .



330 Gaurav and V. Shankar

Real part of wave speed cr

0

–2

–400 –200 200 4000

–1

1

Im
ag

in
ar

y 
pa

rt
 o

f 
w

av
e 

sp
ee

d 
c i

Γ = 0.4
Γ = 0.5
Γ = 0.6
Γ = 1.5

Figure 3. Eigenvalue spectrum illustrating instability of upstream varicose modes at low
Reynolds number and low wavenumber: data for H = 5,Re = 0.1, k = 0.1, γ = 0 and ηr = 0.
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Figure 4. Varicose modes: neutral stability diagrams for unstable upstream mode at low Re
and low k. Data for H =5, ηr = 0 and γ = 0.

In fact, increasing Γ is found to have a stabilizing effect on downstream travelling
waves.

Figure 4 shows the neutral stability curves in Γ − k plane for the first upstream
travelling varicose mode (Var-1u) for H = 5 at different values of Re. These neutral
curves show that the flow becomes unstable for different bands of wavenumbers
ranging from O(0.001) to O(0.1) depending on the value of Re. The neutral curves
keep shifting towards the low-wavenumber regime with decrease in Reynolds number.
The critical Γ (minimum of a given neutral curve) remains independent of Re while
the critical wavenumber kc decreases with decrease in Reynolds number. The critical
conditions (Γcrit , kcrit and cr ) corresponding to figure 4 are plotted in figure 5 as a
function of Reynolds number. This figure illustrates that Γcrit ∼ O(1), kc ∼ Re1/2

and wave speed cr ∼ Re−1 in the limit of Re � 1. We have verified that the second
upstream mode (Var-2u) also exhibits similar qualitative trends for Γ − k neutral
curves and show identical scalings as mentioned above. Recently, Gaurav & Shankar
(2009) observed a very similar instability of upstream travelling modes at low Re and
low k for Poiseuille flow in a neo-Hookean deformable tube. To elucidate the nature
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Figure 5. Varicose modes: scalings of Γ , k and c with Re for upstream low-Re instability.
Data for H = 5, ηr =0 and γ =0.

Solid thickness H

10–2

10–1

0.1 1 10 100

1

10

102

103

Γ
cr

it

Var-1u, asymptotic
Var-2u, asymptotic
Short-wave mode
Numerics Re = 0.01
Numerics Re = 0.0001
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showing the agreement between asymptotic and numerical results. The critical Γ for the
normal-stress-driven short-wave mode is also shown for comparison. Data for ηr = 0 and
γ = 0.05 for the short-wave mode. The asymptotic and numerical results for Var-1u and
Var-2u are independent of γ .

of these unstable modes at Re � 1 and k � 1, we sketch in Appendix B the outlines
of an asymptotic analysis which predicts these modes. The analysis also helps clarify
questions related to the existence of these unstable modes in other planar shear flows
like the plane Couette flow past a deformable neo-Hookean solid. For example, it
can be inferred from the asymptotic analysis that these low-k unstable modes cannot
exist if one of the walls is rigid.

Figure 6 shows the variation of critical Γ with solid thickness H , obtained from
asymptotic analysis as well as numerical solutions, for first two upstream modes.
Both asymptotic and numerical predictions agree very well with each other. This
figure shows that the critical Γ decreases progressively with increase in solid thickness.
Figure 6 also compares the critical Γ for upstream travelling modes with the unstable
short-wave mode in the limit of low Reynolds number. It shows that the Var-1u
mode becomes unstable first for thick solids while the normal-stress-driven short-
wave mode becomes unstable first for sufficiently thin solids (H � O(1)). While this
conclusion holds only for varicose modes, it is possible that the critical Γ for sinuous
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Figure 7. Sinuous modes: neutral curves in the Γ –k plane for H = 5 illustrating instability
at low Re and low k; γ = 0, ηr = 0.

modes could be smaller than that for varicose modes, and this issue is addressed in
the following subsection. Even though the critical Γ for short-wave mode are shown
for Re =0.1 and γ = 0.05 while the asymptotic results for upstream mode shown in
figure 6 are valid for Re � 1, the comparison between the two modes can be made
for Re � 1 because of the following reasons. The critical Γ for short-wave mode
remains independent of Reynolds number for Re < O(1) (see figure 9) and thus, the
results for the normal-stress-driven short-wave mode for Re = 0.1 in figure 6 will also
remain valid for Re � 1. Also, the low-k asymptotic analysis shows that the surface
tension parameter does not affect the low-Re upstream modes and thus the results
for upstream modes will be identical for both γ = 0 and γ =0.05.

It is also appropriate here to comment on the divergence of cr with Re in the
limit of Re � 1. This divergent behaviour arises because the dimensional wave speed
of the unstable fluctuations scale as the shear wave speed in the solid for k � 1:
c∗
r ∝ (E/ρ)1/2k−1. Since k ∝ Re−1/2, we obtain cr = c∗

r /V ∝ Re−1. This divergence is
a consequence of dividing a flow-independent wave speed with V , and since V → 0
as Re → 0 (with all other parameters fixed), we obtain a divergence of cr with Re.
However, to obtain the instability we also require Γ = V η/(ER) ∼ O(1) and for fixed
values of R, ρ and η, if Re → 0 this implies V → 0, which means that E must also tend
to zero in order to keep Γ ∼ O(1) constant. This implies that this class of unstable
modes will be realized for Re � 1 only in the case of ultra soft solids. For solids with
larger shear moduli, for Re � 1, these modes with cr ∝ 1/Re remain stable. Thus,
from a practical viewpoint the results in the Re � 1 limit are not very relevant. The
utility of the Re � 1 limit is that it allows for analytical asymptotic solutions, which
are used to ensure the accuracy and veracity of the numerical solutions. Further, the
asymptotic analysis also allows us to develop some insight into the nature of the
instability by showing that this instability is absent in (i) flows between one rigid wall
and one deformable wall, and (ii) when the wall is modelled as a linear elastic solid.
We also show below in § 4.4 that the presence of a small amount dissipation in the
solid also removes the instability at Re � 1.

4.2.2. Sinuous modes

Using the spectral code, we identified a similar low-k instability for sinuous modes,
but here the downstream waves are the most unstable modes. Figure 7 shows the
neutral stability curves in the Γ –k plane for different Re. The instability extends to
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Figure 8. Sinuous modes: scalings of Γc , kc and cr with Re for upstream low-Re instability.
Data for H = 5, ηr =0 and γ =0.

very low Re, and the critical value of Γ approaches an O(1) constant as Re decreases.
However, the critical k decreases as Re decreases. Figure 8 illustrates the scaling of
Γc, kc and cr with Re for Re � 1. The sinuous modes show very different scaling
behaviour compared to varicose modes, with kc ∝ Re1/6 and cr ∝ Re−2/3. We have
not attempted an asymptotic analysis for this class of modes, but a preliminary scaling
analysis suggests that these also belong to a class of shear waves in the solid wherein
inertial effects in the solid are important. The inertial terms in the solid (3.13) are
of O(Rek2c2). With the scalings inferred from our numerical results, it can be easily
verified that the inertial terms are of the same order as the elastic terms in the solid,
even for Re � 1. A comparison of figures 4 and 7 show that sinuous modes are more
unstable at least for H = 5. The issue of which mode (sinuous or varicose) becomes
unstable first is addressed in detail in § 4.4.

4.3. Unstable modes at high Reynolds number

4.3.1. Varicose modes

It was demonstrated in previous section that for Re � 1, the low-k, upstream
travelling waves (Var-1u, Var-2u, etc.) and the normal-stress-driven short-wave mode
become unstable as the solid elasticity parameter Γ increases beyond a critical value.
It is of interest to know whether these unstable modes in low-Re limit continue to
intermediate and higher Reynolds number. Earlier studies on stability of fluid flow past
a linear elastic deformable solid (Srivatsan & Kumaran 1997; Shankar & Kumaran
2001, 2002) have shown that there exists a set of multiple downstream travelling
‘wall modes’ which become unstable in the limit of high Reynolds number. These
downstream wall modes continue to intermediate- and low-Reynolds-number limits
within the linear elastic model for the deformable wall. However, it was shown in § 4.2
that the downstream travelling varicose modes do not become unstable in low-Re limit
for Poiseuille flow in a neo-Hookean deformable channel. In this section, we explore
different Reynolds number regimes to examine whether downstream travelling waves
become unstable for pressure-driven flow in a neo-Hookean deformable channel.

We first focus our attention on the continuation of upstream travelling modes
to high Reynolds number. Figure 9 shows the variation of critical Γ with Re for
the first upstream mode (Var-1u) for two different values of solid thickness. There
are, of course, other unstable upstream modes, but we have verified that they all
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Figure 9. Varicose modes: continuation of first upstream mode to higher Reynolds number.
Data for γ = 0 and ηr = 0.

show similar qualitative behaviour and thus the results are shown only for the first
upstream travelling mode. We have further verified that Var-1u is the most unstable of
the upstream travelling varicose modes at all Reynolds numbers. The figure shows that
the critical Γ remains independent of Reynolds number for Re � 1, in agreement
with low-Re asymptotic analysis (Appendix B). This upstream mode continues to
intermediate and high-Re limit and Γ decreases as Re−1/3 for Re � 1. The scaling
behaviour of Γ with Re for these upstream modes is identical to the scaling shown by
unstable downstream wall modes for Poiseuille flow in a linear elastic deformable tube
(Shankar & Kumaran 2001). By plotting the eigenfunctions for these upstream modes
for Re � 1, we inferred that the upstream modes indeed correspond to the class of
wall modes described in Shankar & Kumaran (2001). In particular, there is a wall
layer of thickness O(Re−1/3) where viscous effects are confined near the fluid–solid
interface (discussed below in figure 12). However, it must be mentioned here that the
upstream travelling modes do not become unstable for flow past linear elastic solid for
any Reynolds number. Figure 9 also shows that the effect of decreasing solid thickness
is stabilizing for upstream travelling modes in both low- and high-Reynolds-number
limits. Figure 9 also depicts the continuation of normal-stress-driven short-wave mode
to intermediate Reynolds number. It illustrates that the critical Γ is independent of
Reynolds number for Re <O(1) and decreases slightly for Re ∼ O(100). As expected,
the critical Γ for short-wave fluctuations does not vary with solid thickness, and the
data for H =1 and H = 5 lie on top of each other. We found it numerically difficult
to continue the neutral curve for the short-wave mode beyond Re ∼ 100.

Figure 10 shows the eigenspectrum for H = 5, k = 0.8 and Re = 100 for different
values of Γ . The eigenvalue spectrum shows that for Γ = 0.002, all the eigenmodes
remain stable. As Γ is increased to 0.01, one of the downstream travelling modes
becomes unstable. With further increase in Γ to 0.03 or higher, other downstream
travelling modes become unstable. When Γ is increased to sufficiently high values,
both downstream and upstream travelling waves become unstable (unstable upstream
modes are not shown in figure 10). It is also observed that the slowest downstream
travelling wave (eigenvalue with smallest magnitude of real part of c) becomes
unstable first with increase in Γ , followed by the downstream waves with next
higher wave speeds. The downstream varicose modes are labelled as Var-1d, Var-2d,
etc. in increasing order of their wave speeds, which is similar to the nomenclature
adopted earlier for upstream travelling waves. These downstream travelling modes
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Figure 10. Varicose modes: eigenvalue spectrum for intermediate-Reynolds-number regime.
Data for H = 5, k = 0.8,Re = 100, ηr = 0 and γ = 0.
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Figure 11. Varicose modes: variation of critical Γ with Re for downstream modes for two
different values of solid thickness. Data for γ = 0 and ηr = 0.

were continued to both high and low Reynolds number. Figure 11 shows the variation
of critical Γ with Re for the first two downstream modes for H = 5. It is observed that
critical Γ decreases as Re−1 in the high-Reynolds-number limit. The scaling Γ ∼ Re−1

for Re � 1 suggests that these downstream modes correspond to the class of modes
termed as ‘inviscid modes’ by Shankar & Kumaran (2000) for Hagen–Poiseuille flow
in a linear elastic deformable tube. For these inviscid modes, the flow in the core is
inviscid (but for the presence of a O(Re−1/3) critical layer where the base flow velocity
equals the wave speed cr ) and there is a wall layer of thickness O(Re−1/2) smaller than
the tube radius where the viscous effects are important. We have verified, by plotting
the eigenfunctions and wall layer thickness as a function of Reynolds number that
the downstream modes analysed in the present study indeed correspond to the class
of inviscid modes described in Shankar & Kumaran (2000). In figure 12, we show the
eigenfunctions for both wall modes and inviscid modes for varicose disturbances. For
wall modes, the perturbation velocity is non-zero only near the fluid–solid boundary,
while for inviscid modes, there is a sharp gradient near the fluid–solid boundary and
also near the critical point, which is the point where the base flow velocity equals
the wave speed for perturbations. The downstream travelling modes do not become
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unstable in the low-Reynolds-number limit. For example, for H = 5 Var-1d remains
stable below Re ∼ O(1). It is also observed that Var-1d is the most unstable of the
downstream travelling varicose modes. Figure 11 also shows the variation of critical
Γ with Re for Var-1d for a smaller value of solid thickness (H = 1). The effect of
decreasing solid thickness is found to be stabilizing for downstream travelling waves.

Figure 13 compares the critical Γ for different unstable varicose modes (upstream,
downstream and short-wave modes) for two different values of solid thickness. This
figure shows that the Var-1d mode is most easily destabilized for Re >O(10) for
any value of solid thickness. However, for Re <O(1), the critical mode of instability
depends on thickness of the solid layer. For example, for H = 5, the Var-1u mode
becomes unstable first while for H =1, the normal-stress-driven short-wave mode
becomes unstable first. Thus, in the limit of low Reynolds number (typically Re �
O(1)), the first upstream mode (Var-1u) is the most unstable varicose mode for thick
solids while the short-wave mode is most easily destabilized for sufficiently thin solids.
Note that the data for short-wave mode is shown for non-zero interfacial tension
(γ = 0.05) while the data for upstream and downstream modes is shown for γ =0.
We have verified that the interfacial tension has little stabilizing effect on upstream
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Figure 14. Eigenvalue spectrum for sinuous modes as a function of Γ showing the effect
of wall deformability. (a) Full eigenvalue spectrum. (b) Enlarged portion of the spectrum
where the eigenmodes for a rigid channel are usually located, illustrating the effect of wall
deformability on the A, P and S types of modes in a rigid channel. Data for H = 1, Re = 10 000,
k =1 and γ = 0.

and downstream travelling waves and critical Γ does not change significantly with
increase in surface tension for upstream or downstream modes.

4.3.2. Sinuous modes: effect of wall deformability on the Tollmien–Schlichting
instability in a channel

In this section, we discuss the instability of sinuous modes in a deformable channel
at higher Reynolds numbers of O(1000) and its relation to the TS instability in a
rigid channel and the low-Re, low-k instability of sinuous modes discussed earlier in
§ 4.2. We first examine the effect of wall deformability on the TS instability in a rigid
channel, which is also a sinuous mode. The limit of a rigid channel is obtained by
taking Γ → 0 first, and letting Re be arbitrary. Upon increasing Γ for a fixed non-zero
H , the channel walls become more deformable. We first illustrate in figure 14 how
the eigenvalue spectrum changes due to increase in wall deformability. In rigid-walled
channels (Schmid & Henningson 2001) it is well known that the eigenvalues are
located on three main branches labelled as A (cr → 0), P (cr → 1) and S (cr ≈ 2/3).
The eigenmodes in the A branch correspond to wall modes, and the modes in the
P branch correspond to centre modes. In the case of a deformable channel, even
when Γ is very low (∼10−6 in figure 14a, corresponding to a nearly rigid channel),
there will be a set of travelling waves with positive and negative phase speeds, which
remain stable. The usual Y-shaped spectrum of the truly rigid channel is evident upon
enlarging the region (figure 14b) where the rigid-wall spectrum is normally located,
and this part of the spectrum agrees very well with the spectrum for rigid-walled
channels reported in Schmid & Henningson (2001). Upon increase in Γ to 10−3 and
further to 10−2, we find that only the A-type modes are affected, while the other two
types of modes (P and S) remain unaffected. Apart from this effect of deformability
on modes that already exist in a rigid-walled channel, modes that exist only in a
deformable wall also become unstable upon increase in Γ .

In order to illustrate the effect of wall deformability on the TS mode, we plot the
neutral curves in the Re–k plane. Figure 15 shows the effect of wall deformability on
the TS mode for two different values of H = 1 and H = 5. For H = 5 (a), when Γ → 0,
the TS neutral curve in a rigid channel is recovered from our numerical results. Upon
increase in Γ , the critical Re for the TS mode increases and the area of the unstable
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Figure 15. Sinuous modes: effect of wall deformability on the TS instability for two different
wall thicknesses. Deformability has a destabilizing effect on the TS instability for H = 1
(b), while it has a stabilizing effect for H = 5 (a).
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Figure 16. Sinuous modes: with increase in wall deformability, the TS mode ‘coalesces’ with
a wall-induced instability, to give rise to a single unstable mode that continues to low Re.

region shrinks, thus indicating that the TS mode is stabilized by wall deformability.
This prediction is in general agreement with many earlier studies reviewed in § 2.
However, for H = 1 (figure 15b), the critical Reynolds number decreases with increase
in Γ without a significant decrease of the area of the unstable region, thus showing a
destabilizing effect of wall deformability. To our knowledge, a destabilizing effect of
wall deformability on the TS mode in a channel flow has not been predicted before.
However, most of the earlier studies on channel flow (Hains & Price 1962; Davies
& Carpenter 1997; LaRose & Grotberg 1997) have used a simple spring-backed
membrane model for wall deformability, and it is likely that such a simplistic model
for wall is not sufficient to capture the destabilizing effect.

Earlier works (Davies & Carpenter 1997) on channel flow have also predicted
the coalescence of the TS instability with another instability which is induced by
wall deformability for deformable walls modelled as spring-backed membranes. In
figures 16 and 17, we present results which show very similar behaviour even in
deformable walls modelled as a neo-Hookean solid, both for H =5 and H =1. Let
us first discuss the H = 5 case in figure 16(a). At small but non-zero values of Γ

(upto Γ =6×10−4), the TS mode remains distinct as in figure 15. In addition, there is
another mode (termed ‘sinuous mode’ in figure 16a) which is unstable at Re ∼ 2000
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Figure 17. Sinuous modes: demonstration of mode coalescence of the TS mode with a
wall-induced instability for H =1.

for Γ = 6 × 10−4. Thus, while the TS mode is stabilized for this value of Γ , wall
deformability has induced another more powerful unstable mode which becomes
unstable at a much smaller Re compared to the critical Re of the TS mode in a rigid
channel. Upon further increase in Γ to 10−3, the two neutral curves merge into one
single curve, and with further increase in Γ to 3×10−3, the critical Re for this unstable
mode is about 600. This clearly demonstrates a sort of ‘mode coalescence’ between
the TS mode and the other unstable mode induced by wall deformability. Further, it
could be concluded that with a single-layer neo-Hookean solid, it is not possible to
delay the TS instability because of the presence of a more powerful unstable mode
induced by wall deformability.

In a manner very similar to the above discussion, figure 17 demonstrates the mode
coalescence of the TS mode with a wall-deformability-induced instability (termed
‘sinuous mode’) for H = 1. The main difference between figures 16(a) and 17 is that
for H = 5 wall deformability (i.e. increase in Γ ) stabilizes the TS mode, but for H = 1,
wall deformability has a destabilizing effect. Regardless of the effect of deformability
on the TS mode, there exists another more unstable mode at non-zero Γ which
is induced by wall deformability, and the TS mode coalesces with this mode for
both H =5 and H = 1 to give rise to a single and more powerful instability with
Rec ∼ O(200) for Γ ∼ 0.01. Thus, the phenomenon of mode coalescence makes the
issue of stabilization of TS instability somewhat irrelevant, as the coalesced mode
is highly unstable upon increase in wall deformability, as illustrated subsequently in
figure 20.

Figure 18 illustrates the mode coalescence phenomenon in detail in the ci–k plane
for H = 1. When Γ → 0, the only possible instability is the TS instability in a rigid
channel, and this is shown in terms of ci (proportional to growth rate) as a function of
k. This curve shows that for a small band of wavenumbers k ∼ 1, the flow is unstable
(ci > 0). For k � 1, and k � 1, the flow is stable. When Γ is increased to 0.003, the TS
mode is destabilized (with ci values greater than those for Γ = 0, though at smaller
wavenumbers), but for k � 1 and k � 1, the curve for Γ = 0.003 approaches that of
Γ = 0. There is another instability due to wall deformability (‘sinuous mode’), which
has much larger values of ci , and has distinctly different behaviour for k � 1 and
k � 1. When Γ is increased further to 0.005, we find that the two modes ‘mix’ at
some intermediate value of k. Beyond a critical Γ , while for k � 1 a given mode
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Figure 19. Eigenfunction plots for the TS mode and the other wall-deformability-induced
sinuous mode. Data for Re = 6000, k = 0.9, H = 1, Γ = 0.003, ηr =0, γ = 0.

will approach the low-k behaviour characteristic of that mode, but for k � 1, it will
approach the high-k behaviour of the other mode. Thus labelling a given mode as
‘TS’ or ‘sinuous’ is arbitrary after the modes have coalesced, since the labelling will
not be applicable in some regime of wavenumbers. Interestingly, similar mode-mixing
behaviour has previously been observed for free-surface flow past a deformable layer
by Gaurav & Shankar (2007), and in two-layer viscoelastic flows by Shankar (2004).

Figure 19 shows the eigenfunctions for the TS mode and the unstable mode induced
only by wall deformability for the same set of parameters. The only difference between
the two modes is their real part of the wave speed cr . Both the modes show a wall
layer close to fluid–solid interface, and presence of variations in perturbation velocity
near the critical point (where U = cr ) is more prominent in the TS mode compared
to the sinuous mode.

Figure 20 shows that the neutral modes in figure 16(a) continue to very low Re
upon increase in wall deformability Γ , and eventually merge with the low-k instability
discussed in § 4.2 for sinuous modes. These modes show a scaling of Re ∝ k6 or
k ∝ Re1/6 for Re � 1 and k � 1. Another issue of interest is the effect of dissipative
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Figure 21. Effect of ηr on the instability due to sinuous modes at higher Reynolds numbers.
Data for H = 5.

stresses in the solid on the instability. Previous studies (Yeo 1988; Davies & Carpenter
1997) have shown that dissipation has a slight destabilizing effect on the TS mode,
but has generally has a stabilizing role on the instability, except in the case of static
divergence which is destabilized by dissipation in the wall. Figure 21 shows that, even
with the neo-Hookean model, we find that dissipation in the wall (ηr 
= 0) has a very
small destabilizing effect on the TS mode, and has a mild stabilizing effect on the
sinuous mode.

4.4. Comparison of varicose and sinuous modes

While the previous discussion has focused on the nature of the instabilities in
specific regimes for varicose and sinuous modes separately, it is useful from the
practical/experimental viewpoint to combine all the results in a single plot which
yields the critical Reynolds number (Rec) as a function of the wall elasticity parameter
Σ = ρER2/η2. Figure 22 shows the neutral curves for all the modes in the Re-Σ plane
for H = 5. It must be noted that Σ can be calculated by fixing the channel width, fluid
density and viscosity and wall shear modulus E. For a value of Σ thus calculated for
a given fluid–solid system, figure 22 shows the critical Re required for the instability.
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Figure 22. Comparison of sinuous, varicose and short-wave instabilities for H = 5, ηr = 0.
Variation of critical Reynolds number Rec with the solid elasticity parameter Σ .
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Figure 23. Comparison of sinuous, varicose and short-wave instability neutral curves for
H = 1, ηr = 0: variation of critical Reynolds number Rec with solid elasticity parameter Σ .

The limit of Σ → ∞ represents a rigid channel, and Rec = 5771 for the TS mode in a
rigid channel. In a deformable channel, this mode continues to finite but large values
of Σ ∼ 108 as shown in the figure. However, the TS mode coalesces with a sinuous
mode as Σ is decreased further, and this is shown in this figure by merely plotting
the corresponding two neutral curves. The most unstable mode for Σ ≈ 104–108 is
the downstream varicose mode, which was identified as an ‘inviscid mode’ in § 4.3.
For Σ > 108, the TS mode is the most unstable mode with Rec ∼ 5771. For Σ < 103,
the continuation of the sinuous mode (which coalesced with the TS mode) is the
most unstable mode. The short-wave instability is never critical for any value of Σ

for H = 5. For small values of Σ , Rec scales as Rec ∝ Σ , while for Σ in the range
104–108, Rec ∝ Σ1/2, and for Σ > 108 Rec → 5771. The key feature that emerges from
this figure is that modes of different symmetry are critical at different regimes of Σ ,
and hence it is important to consider both sinuous and varicose modes in order to
accurately predict instabilities in a deformable channel.

Figure 23 compares both the sinuous and varicose modes along with the short-
wave instability for H = 1. This shows that for smaller values of Σ < 100, the
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Figure 24. Effect of ηr on sinuous and varicose modes for H = 5: variation of critical
Reynolds number Rec with solid elasticity parameter Σ .

normal-stress-driven short-wave instability is most critical, while both the downstream
sinuous and varicose modes are the most critical for Σ > 104. For Σ > 107, the
continuation of the TS instability is the most critical mode. The effect of dissipation
in the solid is analysed for both sinuous and varicose modes in figure 24. In general,
the instabilities at low Σ (hence, also low Re) are removed by dissipative stresses in
the solid. For example, by increasing ηr from 0 to 0.1, the instability sets in only after
a Σ ∼ 100 for varicose modes, but it sets in at Σ ∼ 1 for sinuous modes. At higher
Σ > 1000, the presence of non-zero ηr has negligible effect on the neutral curves.
Dissipative effects tend to have a more severe stabilizing effect on varicose modes
compared to sinuous modes.

Our numerical results show that when the solid elasticity parameter Σ is greater
than a threshold value Σmax , then Rec → 5771, the value corresponding to the TS
instability in a rigid channel. From an experimental standpoint, it is useful to ask
when will the critical Reynolds number for flow in a deformable channel be smaller
than 5771. In order for the instabilities induced by the wall deformability to be
present, it is necessary to have the parameters that determine Σ , i.e. elastic modulus,
fluid viscosity, channel half-width and fluid density such that Σ < Σmax . For H = 5,
our numerical results show that Σmax ≈ 108, and if we choose water as the liquid
with η = 10−3 Pa s, ρ = 103 kg m−3, and channel half-width as 10−3 m, we estimate
the shear modulus E of the deformable wall to be � 105 Pa. Instead of water, if we
choose air as the fluid (ρ = 1 kgm−3, η ≈ 10−5 Pa s), and the channel half-width to be
10−2 m, then the shear modulus E must be smaller than 100 Pa for the instabilities to
be induced by wall deformability. This would correspond to an extremely soft solid,
which is unlikely to be of practical importance. Thus, the instabilities predicted in
this work would be relevant for deformable channels with half-width of O(1 mm)
and smaller, and for viscous liquids (with viscosities equal to or greater than that
of water). Only for such systems Rec will be significantly lower than 5771, and the
shear modulus of the wall to realize these new instabilities is in the realistic range of
E ∼ O(105) Pa and larger.

While it would be desirable to compare our predictions with experiments, we are
not aware of systematic experimental studies documenting the onset of instability in
(rectangular) deformable channels. The work of Shrivastava et al. (2008) addressed
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this issue in an indirect manner by showing enhancement of mass transfer in a channel
with a single deformable wall. In the low-Re limit, for plane Couette flow between a
rigid wall and a deformable wall, experiments of Kumaran & Muralikrishnan (2000)
and Eggert & Kumar (2004) predict an instability which confirms the theoretical
predictions of Kumaran, Fredrickson & Pincus (1994) and Gkanis & Kumar (2003).
In the higher-Re regime, the majority of experimental and theoretical studies in the
area of flow past deformable walls has been devoted to boundary-layer flows. Even in
that context, there is no consensus (Gad-el-Hak 2003) on whether the TS mode can
be suppressed completely without making other modes unstable in boundary-layer
flow past a deformable wall. Within the parameter regimes explored, our study shows
that it is not possible to raise critical Re of the flow above the rigid-wall value of
5771 because of the destabilization of other (deformability-induced) modes in the
system.

5. Conclusions
Using a nonlinear neo-Hookean model for the solid walls, we have analysed

the stability of pressure-driven flow in a deformable channel for a wide variety of
parametric regimes, considering both sinuous and varicose perturbations. The present
study shows the importance of considering perturbations with both the symmetries,
as either of them could become the critical mode depending on the parametric
regime. In the creeping-flow limit, we predict the existence of only the short-wave
instability, and the finite-wavelength instability is absent. At low (but non-zero) Re,
we find that a class of shear waves in the solid are destabilized by the flow for both
sinuous and varicose perturbations. These unstable modes continue to intermediate
and high Re. At high Re, for sinuous modes, we find that the TS instability in a rigid
channel coalesces with another instability induced by wall deformability, and this
mode continues to very low Re as the wall becomes highly deformable. Thus, using
only a single neo-Hookean solid layer, it is not possible to stabilize the TS mode
in a channel flow without introducing additional unstable modes. In addition, at
high Re, we find generally two class of unstable modes that are destabilized by solid
deformability, i.e. the inviscid modes for which Rec ∝ Σ1/2 and wall modes for which
Rec ∝ Σ3/4. In all the regimes considered, the wall modes are not relevant, and the
inviscid modes are the most critical for 104 < Σ < 108. For Σ > 108 the continuation
of the TS mode in the rigid channel is the most unstable mode.

Finally, we provide some dimensional estimates of parameters for which the
instabilities predicted here can be realized in experiments. Assuming H = 5, E =103 Pa,
R =100 µm, ρ = 103 kg m−3, η =10−3 Pa s, we obtain Σ = ρER2/η2 ∼ 104. From
figure 22, the corresponding value of Rec ∼ 10, from which the velocity of the flow
in the channel must be at least 10 cm s−1. For R = 1 µm, while keeping E, η and
ρ the same as above, we obtain Σ =1, for which Rec ∼ 10−2 from figure 22. For this
Rec, the dimensional velocity is 1 cm s−1. Both the estimated values of velocities are
typical of microfluidic applications (Thomas et al. 2010; Verma et al. 2008). Thus, the
instabilities predicted here could be realized and potentially exploited in deformable
channels encountered in microfluidic applications, but are not likely to be relevant in
applications with channel widths of O(1 cm) or larger.

Acknowledgement is made to the Department of Science and Technology, New
Delhi, India, for partial support of this research through an Intensification of Research
in High Priority Areas (IRPHA) grant.



Stability of pressure-driven flow through deformable channels 345

z

x

P′(w–X+ w′
X, w′

Z)

Po(X, Z = 0)

P(w–X,wZ = 0)

Figure 25. Schematic diagram illustrating the application of boundary conditions over the
perturbed fluid–solid interface.

Appendix A. Linearization of continuity conditions at the fluid–solid interface
In this appendix, we provide the details of the linearization of the interfacial

continuity conditions at the fluid–solid interface leading to the linearized conditions
(3.15)–(3.18) in the main text of the paper. In this work, an Eulerian framework
is used to describe the fluid dynamics, while a Lagrangian approach is used for the
deformation in the solid. The basis underlying the derivation is the fact that a material
particle’s Lagrangian label remains unchanged upon introduction of perturbations to
the fluid–solid interface. If a material point on the unperturbed interface (figure 25)
is located at (X, Z = 0) in the unstressed configuration, its label remains the same
even in the perturbed interface. As shown in figure 25, a material particle P0 with
Lagrangian label (X, Z =0) in the unstressed state is displaced to point P (wX, 0) in
the deformed base state. Upon introduction of perturbations to the interface, the point
P moves to P ′ (wX +w′

X, w′
Z), where w′

X and w′
Z are the Lagrangian displacements of

the material particle P from the deformed base state of the solid. The conditions at
the perturbed fluid–solid interface (X, Z =0) are continuity of velocities and stresses.
Denoting F and S to be the fluid and solid dynamical quantities, respectively, the
continuity conditions at the perturbed interface can be schematically written as

F (x, z, t)|P ′ = S(X, Z, t)|P ′ . (A 1)

The current position of the point P ′ is unknown a priori and since Eulerian coordinates
are used for liquid layers, any fluid dynamical quantity on the left-hand side of (A 1)
is expressed by Taylor expansion about the known position of the unperturbed flat
interface (z = 0). Thus, the left-hand side of (A 1) is given as

F (x, z, t)|P ′ = F |P (z =0) + h(x)

(
∂F

∂z

)
P (z =0)

, (A 2)

where h(x) = w′
Z(X, Z =0) is the vertical displacement of the material particle P0 at

its current position P . The current coordinates of the material particle P0 at the
point P ′ can also be expressed in terms of the displacements as x = wX(X, Z = 0) +
w′

X(X, Z = 0). Defining the displacement in the base state about the unstressed state
as uX(Z) ≡ Γ [H 2 −Z2]+2Γ (Z +H ) (see (3.7)), the x-coordinate of material point P0

can be written as x = X+uX(Z = 0)+w′
X(X, Z = 0). For a specified current position x,

the Lagrangian coordinate of the material point P0 is obtained from the fundamental
definition X = x − uX(Z =0) − w′

X(X, Z =0). When the solid dynamical quantities are
evaluated at this Lagrangian coordinate, this would be tantamount to evaluating the
quantities at the perturbed interface. Therefore, the right-hand side of (A 1) is simply
given as

S(X(x), Z, t)|P ′ = S(X = x − uX(Z = 0) − w′
X(X, Z = 0), Z = 0, t). (A 3)

In other words, a Taylor expansion (in the vertical Lagrangian coordinate) about the
unperturbed interface for the solid is not required, as the perturbed interface is in fact
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described by X(x), Z =0 in the Lagrangian description of the solid. If an Eulerian
framework is used (Chokshi 2007; Choskshi & Kumaran 2008), the expansion about
z = 0 is justified for the solid.

Following the above procedure, the continuity of normal velocity at perturbed
fluid–solid interface is given exactly by

vz(x, z)|P ′ =

(
∂wZ

∂t

)
X=x−uX(Z=0)−w′

X(X,Z=0),Z=0

. (A 4)

Using Taylor expansion to express the left-hand side of (A 4) and retaining the terms
that are linear in perturbation quantities, (A 4) can be written as

v′
z(x, z = 0) =

(
∂w′

Z

∂t

)
X=x−uX(Z=0)−w′

X(X,Z=0),Z=0

. (A 5)

Expressing the perturbation variables in terms of Fourier modes, i.e. on
substituting v′

z(x, z = 0) = ṽz(z = 0) exp[ik(x − ct)] and w′
Z = w̃Z(Z = 0) exp[ik(X − ct)]

and rearranging, we obtain

ṽz(z =0)E = −ikcw̃Z(Z =0), (A 6)

where E ≡ exp[ik(uX(Z = 0) + w′
X(X, Z = 0))]. The remaining three interfacial condi-

tions (tangential velocity and the normal and tangential stress continuity conditions)
can be similarly derived and the factor E multiplies all the fluid perturbation
variables in each of the three remaining conditions. For example, the linearized
tangential velocity balance is

ṽx(z = 0)E + w̃Z(Z = 0)dzvx |z=0 = −ikcw̃X(Z = 0). (A 7)

The factor E multiplies fluid perturbation variables in all the four interfacial
conditions, and hence must be linearized within a linear stability analysis. This
can be achieved by noting that w′

X � uX , thus yielding within a linear analysis
E ≈ E1 = exp[ik(uX(Z = 0)]. The base-state displacement uX(Z =0) of the wall at the
unperturbed interface is independent of X, and hence is a constant for a fixed value
of Γ (see (3.7)). All the four interfacial conditions have E1 multiplying the fluid
quantities, and the differential equations governing the fluid (defined in (3.9)–(3.11))
are linear and homogeneous. The perturbation fluid velocities and pressure in the
governing equations can then be multiplied by the quantity E1, and that will leave the
Orr–Sommerfeld equation for the fluid invariant. Thus, the presence of a constant
scaling factor E1 multiplying the fluid dynamical quantities in the linearized interface
conditions does not alter the eigenvalue c. Following the procedure described above,
we obtain the linearized conditions at the interface given in (3.15)–(3.18) of the main
text, where the factor E1 is omitted without loss of generality because the governing
Orr–Sommerfeld equation is linear and homogeneous.

Appendix B. Asymptotic analysis of varicose modes in the low-Re

and low-k limit
In this appendix, we briefly sketch the asymptotic analysis used to compute the

unstable varicose modes at low Re and low k. The analysis is similar to the one
employed earlier for tube flow (Gaurav & Shankar 2009). Based on the discussion
in § 4.2, we choose ε = (Re/Γ )1/2 as the small parameter of the asymptotic analysis.
This is equivalent to assuming Re � 1 because Γ ∼ O(1) for the unstable modes
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mentioned in preceding discussion. As per the numerical scalings shown in figure 4,
we assume that Γ ∼ O(1), k = k0ε where k0 ∼ O(1) is the scaled non-dimensional
wavenumber and the complex wave speed is expanded in a series as

c =
1

ε2

(
c(0) + εc(1) + · · ·

)
. (B 1)

If we set ṽz ∼ O(1), then ṽx ∼ O(ε−1) and p̃ ∼ O(ε−2) according to the fluid continuity
equation (3.9) and x-momentum balance (3.10), respectively. Thus, the velocities and
pressure in fluid are expanded as

ṽz = ṽ(0)
z + εṽ(1)

z + ε2ṽ(2)
z + · · · , (B 2)

ṽx = ε−1
(
ṽ(0)

x + εṽ(1)
x + ε2ṽ(2)

x + · · ·
)
, (B 3)

p̃ = ε−2
(
p̃(0) + εp̃(1) + ε2p̃(2) + · · ·

)
. (B 4)

The normal velocity continuity condition indicate that w̃Z ∼ O(ε) at z = 0. We assume
w̃Z ∼ O(ε) in the bulk of solid medium as well, and thus solid continuity (3.12) and
x-momentum balance (3.13) imply that w̃X ∼ O(1) and p̃s ∼ O(ε−1), respectively.
The deformation and pressure fields in solid are then expanded as

w̃Z = ε
(
w̃

(0)
Z + εw̃

(1)
Z + · · ·

)
, (B 5)

w̃X =
(
w̃

(0)
X + εw̃

(1)
X + · · ·

)
, (B 6)

p̃s = ε−1
(
p̃s

(0) + εp̃s
(1) + · · ·

)
. (B 7)

The above expansions for fluid eigenfunctions (B 2)–(B 4), solid eigenfunctions (B 5)–
(B 7) and k = k0ε are substituted in the governing equations (3.9)–(3.14) and the
boundary conditions (3.15)–(3.21) to obtain a set of equations governing the problem
at different orders in ε.

Subsequent analysis reveals that we require fluid eigenfunctions correct to O(ε2) and
solid eigenfunctions correct to O(ε) in order to determine the stability of the system.
The eigenfunctions for fluid at different orders in ε, i.e. O(ε0), O(ε1) and O(ε2), are
obtained by substituting the expansions (B 2)–(B 4) in the governing equations of fluid
(defined in (3.9)–(3.11)) and solving the resulting equations at respective orders in ε.
Similarly, the solid eigenfunctions correct to O(ε) are obtained by substituting the
expansions (B 5)–(B 7) in the solid governing equations (defined in (3.12)–(3.14)) and
solving the resulting equations at O(ε0) and O(ε). The fluid and solid eigenfunctions,
thus obtained, are substituted in boundary conditions (3.15)–(3.21). This results in a
system of linear homogeneous equations which can be represented as

M · CT = 0, (B 8)

where C is the vector of constants: {A1, A2, A3, A4, G1, G2, G3, G4}. Ai and Gi

(i = 1–4) are the constants occurring in fluid and solid eigenfunctions, respectively.
The characteristic equation is obtained by setting det[M] = 0 and this determinant is
expanded in series of ε as follows:

f0

(
c(0)

)
+ εf1

(
c(0), c(1)

)
+ · · · = 0, (B 9)

where f0 is the leading-order term in the determinant and f1 is the first correction.
The leading-order term, first correction and higher-order terms must be separately
zero for the determinant to be zero. The condition of vanishing of leading-order
determinant i.e. f0(c

(0)) = 0 determines the leading-order wave speed and it shows that
there are multiple solutions for c(0) all of which are real, and could be positive or
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negative. This indicates that, to the leading-order approximation, the perturbations are
neutrally stable waves travelling in both upstream (with c(0) negative) and downstream
directions (with c(0) positive).

Because the system is neutrally stable up to this order of approximation, it is
necessary to calculate the next correction to the wave speed c(1) in order to determine
the stability of the system. The O(ε) correction of determinant is used to evaluate
c(1) and it turns out that c(1) is purely imaginary. The flow is stable (unstable) if
c(1) < 0 (c(1) > 0). As mentioned above, there are multiple solutions for c(0) and these
can be either with positive (downstream modes) or negative signs (upstream modes).
For each of these c(0), there is a unique first correction c(1) which determines the
stability of that particular mode. The expression for c(1) shows that the upstream
travelling waves become unstable when Γ is increased above a critical value. On
the other hand, the downstream travelling modes do not become unstable for any
value of Γ . In fact, increasing Γ has a stabilizing effect on downstream travelling
waves. The condition c(1) = 0 (for upstream travelling modes) can be used to solve
for Γ required for destabilizing the flow. We have compared the results obtained
from the asymptotic analysis with the numerical results presented in figure 4 and
found that they are in excellent agreement with each other for Re � 1. We have
further verified that the scaling assumptions made in the asymptotic analysis for
various dynamical quantities are consistent with the numerical solution. Recall that
the upstream modes were labelled ‘Var-1u’, ‘Var-2u’ and so on, in increasing order of
their wave speeds, and the slowest upstream travelling mode becomes unstable first
with increase in Γ . The asymptotic results also confirm that the first upstream mode
is most easily destabilized with increase in fluid velocity Γ . It is important to remark
here that the instability of upstream travelling modes for low Reynolds number and
low wavenumber was not observed in earlier works related to the stability of flow past
a deformable surface (Kumaran et al. 1994; Kumaran 1995; Srivatsan & Kumaran
1997; Shankar & Kumaran 2000) where the deformable wall was modelled as linear
viscoelastic solid. Thus, the low-Re and low-k upstream mode instability analysed
here is a consequence of the additional coupling terms between the base state of solid
and perturbation variables (boxed terms in (3.12)–(3.14) and (3.17)–(3.18)) present for
a neo-Hookean solid model.

Importantly, the asymptotic analysis indicates that the leading-order perturbation
velocity in the fluid has a plug-flow velocity profile. This perturbation velocity is
possible only if both the walls allow for a non-zero tangential fluid velocity, as is the
case here as well as in the tube flow of Gaurav & Shankar (2009). If one of the walls
is rigid, then the fluid disturbance velocity must be zero there, and this precludes
the possibility of the low-k instability predicted here. Hence, this new class of modes
would be absent for the plane Couette flow (Gkanis & Kumar 2003) and in two of
the configurations considered by Gkanis & Kumar (2005).
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