CS365 project presentation

Automatic Music Generation for Indian Classical Music

10th March, 2010

Presented by:
Sarika Mohapatra
Ankit Awasthi
Department of CSE
IIT Kanpur

Supervised by:
Prof. Amitabha Mukherjee
Department of CSE
IIT Kanpur
Introduction

- Algorithmic composition is the technique of using algorithms to create music
- Six major categories of compositional algorithm:

<table>
<thead>
<tr>
<th>Mathematical models (e.g. Markov models)</th>
<th>Knowledge-based systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evolutionary methods (e.g. GAs)</td>
<td>Learning systems</td>
</tr>
<tr>
<td>Grammar</td>
<td>Hybrid systems</td>
</tr>
</tbody>
</table>

- Some samples: Martin Dostál's GeneticDrummer System, Computer program Randomusic
- Some softwares: Jonathan N. Middleton’s Musical Algorithms, cgMusic, WolframTones based on 1-dimensional cellular automata
Background & Related Work

- Finites state models for Indian Classical Music have been investigated (Dipanjan Das and Monujit Choudhary, 2004, IIT Kharagpur)
- Interactive Genetic Algorithms have been used in the past
- Automatic fitness evaluators, Hybrid models. E.g, Biles et al (1996) used ANN as a fitness evaluator without much success
Problem Statement

- Explore the use of Markov Models and Genetic Algorithms for composition of Indian Classical Music
Music Representation

• Fundamental elements
 – Melody: the primary sequence of notes in a song
 – Harmony: the secondary series of a particular sequence of notes or chords
 – Rhythm: The percussive and/or non-melodic sounds within a song

• Melody consists of a series of musical sounds (notes) or silences (rests) with different lengths and stresses, arranged in succession in a particular rhythmic pattern, to form recognizable unit

• Example: A piano has 88 different notes

• Thus a melody is represented as a sequence of integers (each integer representing a single note, 0 for silence) with length of a note represented by a multiple of the minimum unit of time
Hidden Markov Models

Basic Algorithms:
• Given the parameters of a model, compute the probability of a particular output sequence
• Given the parameters of a model and a particular output sequence, find the state sequence that is most likely to have generated that output sequence
• Given an output sequence or a set of such sequences, find the most likely set of state transition and output probabilities
HMMs for Music Generation

- Train the HMM using music data (other natural data with some inherent pattern has been used too)
- Generate similar (but not same) sequences while varying the input to the HMM
- Get sequences for different features of the music data
- Put the features together using a compositional tool to generate audio
Genetic Algorithms

A typical genetic algorithm requires:
- a genetic representation of the solution domain
- a fitness function to evaluate the solution domain

Simple generational genetic algorithm pseudocode:
- Choose the initial population of individuals
- Evaluate the fitness of each individual in that population
- Repeat on this generation until termination: (time limit, sufficient fitness achieved, etc.)
- Select the best-fit individuals for reproduction
- Breed new individuals through crossover and mutation operations to give birth to offspring
- Evaluate the individual fitness of new individuals
- Replace least-fit population with new individuals
Genetic Programming

- Genetic programming techniques allow for a certain degree of relaxation of the constraints upon the search space imposed by GAs by genetically producing the functions themselves that will solve a given problem.

- GP applications allow genetically evolved functions to adapt to the search space, depending on which of these functions solves the given problem best.
Evolutionary Music Generation

Parameters

- Search Domain
- Knowledge and rule representation
- Fitness function
 - Distance metrics
 - Trained evaluators - neural networks etc.
- Functions in GP
Distance Metrics

Normalised Information Distance

- \(\text{NID}(x, y) = \frac{\max\{K(x|y), K(y|x)\}}{\max\{K(x), K(y)\}} \)

where \(K(x|y) \) is the conditional Kolmogorov complexity of string \(x \) given string \(y \), whose value is the length of the shortest program (for some universal machine) which, when run on input string \(y \) outputs string \(x \). \(K(x) \) is the degenerate case \(K(x|\lambda) \), where \(\lambda \) is the empty string.

But unfortunately, both the conditional and the unconditional complexities happen to be incomputable functions.

A computable estimate of the NID is the

Normalised Compression Distance (NCD)

- \(\text{NCD}(x, y) = \frac{\max\{C(xy) - C(x), C(yx) - C(y)\}}{\max\{C(x), C(y)\}} \)

where \(xy \) is the concatenation of strings \(x \) and \(y \), and \(C(x) \) denotes the length of the text \(x \) compressed by some compression algorithm which approximates \(K(x) \) from above.

HMMs, n-gram models
Evaluation of the Compositions

- Comparison of generated compositions with random compositions in a raga
- Creativity in the compositions (subjective)
- Evaluation by an expert
- Categorization by trained models
Review of Objectives

- A comparative study of which methods and parameters lead to better results
- Relevance of methods and parameters for Indian classical music
- Improvising on existing methods if possible
References

