Tentative List of Topics - EE623 Detection and Estimation Theory

- 1. Basics of Random Signals and Probability Analysis
- 2. Introduction to Signal Estimation
 - a. Parameterized Likelihood Formulation
 - b. Optimal Estimation
 - c. Mean and Variance Characterization
- 3. Scalar Parameter Cramer-Rao Lower Bound
 - a. CRLB Derivation
 - b. CRLB for Gaussian Estimation
 - c. Practical Example: Communication Synchronization, CRLB
- 4. Vector Parameter Cramer-Rao Lower Bound
 - a. Vector parameter estimation formulation
 - b. Brief introduction to properties of positive definite and semi definite matrices
 - c. Vector parameter CRLB derivation
 - d. CRLB for Linear estimation in White Gaussian Noise
 - e. Practical Example: Image Filtering
- 5. Maximum-Likelihood Estimation
 - a. Optimal estimators for White and Colored Noise
 - b. Examples and Applications
 - c. MLE for parameter functions
 - d. Sequential Least Squares
 - e. Expectation-Maximization Algorithm and Examples
- 6. Bayesian Estimation
 - a. Minimum Mean Squared Estimation
 - b. Linear MMSE Approximation
 - c. Wiener and Optimal MMSE filtering
 - d. Bayesian Cramer-Rao Lower Bounds
 - e. Maximum Aposteriori Estimation
- 7. Kalman Filtering
 - a. Introduction to State-Space Modeling
 - b. Introduction to Kalman estimation and tracking
 - c. Derivation of the Forward and Backward Scalar Kalman Filter
 - d. Extension to vector Kalman filter.
 - e. Practical examples from Computer vision, robotics and Wireless Communications
- 8. Introduction to Signal Detection

- a. Formulation of the binary hypothesis testing problem
- b. Maximum Likelihood based Optimal Detection
- c. Likelihood Ratio Test and Performance
- d. Neyman Pearson Criterion for optimal detection
- e. Minimum probability of error detector
- f. Bayesian minimum risk detector

9. Detection of Deterministic Signals

- a. Matched Filter Detector
- b. Development of the optimal detector in white and colored Noise
- c. Performance of MF detection
- d. Multiple Hypothesis testing and asymptotic performance
- e. Practical examples: Synchronization, Face detection, Wireless Sensor Networks etc.

10. Detection of Random Signals

- a. Introduction of Random Signal Detection
- b. Derivation of the energy detector
- c. Estimator Correlator for Arbitrary covariance based optimal detection
- d. Performance analysis of Random signal detection
- e. Practical examples: Cognitive radio scenarios

11. Signals with unknown Parameters

- a. Deterministic Signals with unknown parameters
- b. Generalized Loglikelihood Ratio Test (GLRT)
- c. Bayesian Approach
- d. Practical Examples: Sinusoidal Detection
- e. GLRT for the Linear Model
- f. Asymptotic Performance of Energy Detection
- g. Asymptotic performance of GLRT for Linear Model
- h. Incompletely known Signal covariance based detection
- i. Weak signal detection

12. Sequential and Model Change Detection

- a. Sequential Likelihood Ratio Test
- b. Average number of Required Observations for Sequential Testing
- c. Introduction to Model Change detection
- d. Multiple Change time detection
- e. Time varying statistics based process detection