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Shannon’s incredible legacy

A mathematical theory
of communication

Channel capacity
Source coding
Channel coding
Cryptography
Sampling theory

(1916-2001)



And many more...

* Boolean logic for switching

circuits
(MS thesis 1937)

e Juggling theorem:
(F+D)H=(V+D)N

F: the time a ball spends in the air

D: the time a ball spends in a hand, V: the time
a hand is vacant

N: the number of balls juggled

H: the number of hands.

e The Ultimate Machine:
https://www.youtube.com/wat
ch?v=cZ34RDn34WSs

(1916-2001)


https://www.youtube.com/watch?v=cZ34RDn34Ws
https://www.youtube.com/watch?v=cZ34RDn34Ws
https://www.youtube.com/watch?v=cZ34RDn34Ws
https://www.youtube.com/watch?v=cZ34RDn34Ws

Story: Shannon meets Einstein

As narrated by Arthur Lewbell (2001):

“The story is that Claude was in the middle of giving a
lecture to mathematicians in Princeton, when the door in
the back of the room opens, and in walks Albert
Einstein.

Einstein stands listening for a few minutes, whispers
something in the ear of someone in the back of the
room, and leaves. At the end of the lecture, Claude
hurries to the back of the room to find the person that
Einstein had whispered too, to find out what the great
man had to say about his work.

The answer: Einstein had asked directions to the men’s
room.”




Shannon’s incredible legacy

A mathematical theory
of communication

Channel capacity
Source coding
Channel coding
Cryptography
Sampling theory

(1916-2001)



Outline: Four “personal” research stories

Chapter 1: Duality between source coding and
channel coding — with side-information (2002)

Chapter 2: Encryption and Compression —
swapping the order (2003)

Chapter 3: Sampling theory meets Coding theory
— spectrum-blind sampling (2015)

Chapter 4: Distributed Storage for massive data
centers: network coding (2010)
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Chapter 1

Duality

e source coding &
channel coding

with side-information

Jim Chou




Shannon’s celebrated 1948 paper

The Bell System Technical Journal

Vol. XXVII July, 1948 No.3

A Mathematical Theory of Communication

By C. E. SHANNON general theory of communication

IXTRODUCTION
HE recent development of various methods of modulation such as P, . . H .
and PPM which exchange bandwidth for signal-to-noise ratigdfas in- commun |cat|on SySte m as sou rCG/Ch anne |/d eStI n atIO n
tensified the interest in a general theory of communication. basis for
such a theory is contained in the important papers of Nyquist' and Hartley?
on this subject. In the present paper we will extend the theory to include a, .
number of new factors, in particular the effect of noise in the channel, d bSt ra CtIO n Of th e conce pt Of messa ge
the savings possible due to the statistical structure of the original message
and due to the nature of the final destination of the information.
The fundamental problem of communication is that of reproducing at

one point either exactly or approximately a message selected at another
point. Frequently the messages have meaning; that is they refer to or are

correlated according to some system with certain physical or conceptual INFORMATION
entities. These semantic aspects of communication are irrelevant to the SOURCE TRANSMITTER RECEIVER QESTINATION
engineering problem. The significant aspect is that the actual message is
one selected from a sel of possible messages. The system must be designed L] S i1 P -
to operate for each possible selection, not just the one which will actually SIGNAL RSE::(:}EI»::ED
be chosen since this is unknown at the time of design.
ME S5SAGE MESSAGE

If the number of messages in the set is finite then this number or any
monotonic function of this number can be regarded as a measure of the in-
formation produced when one message is chosen from the set, all choices
being equally likely. As was pointed out by Hartley the most natural
choice is the logarithmic function. Although this definition must be gen-
eralized copsiderably when we consider the influence of the statistics of the
message and when we have a continuous range of messages, we will in all S';?J':E €
cases use an essentially logarithmic measure.

The logarithmic measure is more convenient for various reasons:

1. Tt is practically more useful. Parameters of engineering importance

Fig. 1—Schematic diagram oi a general communication system.

! Nyquist, H., ““Certain Factors Affecting Telegraph Speed,”” Bell System Tec/nnml]om—
nal, ~\pnl 1924, p. 324; ““Certain Topics in Telegraph Transmission Fhenn, A.I.EE.
7mus ,v. 47, Apnl 1928 p. 617.

2 Hartley, R. V. L.. “Transmission of Tnformation.” Bell Svstem Technical Jowrnal, July
1928, p. 535,
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Source coding

Information Source
source encoder

- i)

/

Entropy of a random variable
= minimum number of bits required to represent the source



Rate-distortion theory - 1948

 Trade-off between lossy compression rate and the distortion

PART V: THE RATE FOR A CONTINUOUS SOURCE

27. FipELITY EVALUATION FUNCTIONS

In the case of a discrete source of information we were able to determine a
definite rate of generating information, namely the entropy of the under-
lying stochastic process. With a continuous source the situation is con-
siderably more involved. 1In the first place a continuously variable quantity
can assume an infinite number of values and requires, therefore, an infinite
number of binary digits for exact specification. This means that to transmit
the output of a continuous source with exact recovery at the receiving point
requires, in general, a channel of infinite capacity (in bits per second).
Since, ordinarily, channels have a certain amount of noise, and therefore a
finite capacity, exact transmission is impossible.

This, however, evades the real issue. Practically, we are not interested
in exact transmission when we have a continuous source, but only in trans-
mission fo within a certain tolerance. The question is, can we assign a
definite rate to a continuous source when we require only a certain fidelity
of recovery, measured in a suitable way. Of course, as the fidelity require-

H(X) — H(X|Y)

N\

min I(X;Y)
Py | x (y|z)

subject to Dp(Y,X) < D*

distortion measure

11



Channel coding

INFORMATION

SOURCE  TRANSMITTER RECEIVER TINATION
3
IGNA RECEIVED
SIGNAL SIGNAL

ME SSAGE MESSAGE

NOISE
SOURCE

Fig. 1—Schematic diagram of a general communication system.
capacity —_—
C' = max I(X;Y)
Px (x)
 For rates R < C, can achieve arbitrary small error probabilities
e Used to be thought one needsR - 0



Shannon (1959)

“There is a curious and provocative duality
between the properties of a source with a
distortion measure and those of a channel. This
duality is enhanced if we consider channels in
which there is a cost associated with the
different input letters, and it is desired to find
the capacity subject to the constraint that the
expected cost not exceed a certain quantity.....

13



Shannon (1959)

...This duality can be pursued further and is
related to a duality between past and future and
the notions of control and knowledge. Thus, we
may have knowledge of the past but cannot
control it; we may control the future but not

have knowledge of it.”

14



Functional duality

* When is the optimal encoder for one problem
functionally identical to the optimal decoder
for the dual problem?

input output

Quantized
Source bits bits Source
Encoder > Decoder >
bits bits
> Decoder >

15



Duality example: Channel coding

Va\

m .| Channel )( BSC )(

R-bit Encoder binary | Channel | binary
message input output
1 _
0 )
A p
X >< X
1 1
1—p
p=0.15
cost(0) =0
You want to send cost(1) =1

message M  otal budget < 5,000
#channel use = 10, 000

Channel
Decoder

A
m

R-bit
estimate

How many bits R
can you send?



What is the Shannon capacity?

) 0 >< 0 capacity(BSC,) =1 — h(p)
X ' X
1< 1 hp) = —plog(p) — (1 —p)log(1 - p)
— D
p=0.15 h(p)
cost(0) = X0
0.6
cost(1) =1

total budget < 5,000
#channel use = 10, 000

0.15 p

You can send 4,000 bits by using the channel 10,000 times!




How would you do it?

1) Create a codebook

Shannon’s random coding argument

1
< 0,000 . liDrandom B(1/2)
A entries
010101...
2) Encode your message
100110...
011100... Output the codeword in C corresponding to
24,000 the input index
110010... 3) Decode your message
v
Codebook C for Output the index corresponding to the
channel encoding codeword in C that is “closest” to the

input word



Dual source coding problem

X

Source
Encoder

A 4

m

Bitstream of

length 10,000 bits
Distributed B(1/2)

[
»

Compressed bitstream

4,000 bits

How would you do it?

Use channel decoder
as source encoder

Output the index corresponding
to the codeword in C “closest”
to the input word

m Source

010101...

100110...

011100...

110010...

Decoder

X

[
»

Want the Hamming distortion
to be less than 0.15

1

10, 000

dr(X,X) <0.15

Use channel encoder
as source decoder

Output the codeword in C corresponding

to the input index

19



Source coding

>
v

Encoder > Decoder

Source distribution:  P(X) A
Distortion measure d(X,X): X x X — R”
Distortion constraint D: Ed(x,X)<D

Rate-distortion function R(D)= nlm 1(X: X)
p(X]x)




Channel coding

A A
m m
»  Encoder —x~ Channel X Decoder >

Channel description:  P(X| X)
Cost measure W(X): X — R"
Cost constraint: Ew(X) <W

MmaX

Capacity-cost function C(W)= A
p(X)

1(X:X)

® Source Encoder & Channel Decoder have the same domain and range.
® Channel Encoder & Source Decoder have the same domain and range.




Duality between source and channel coding:

p(Xx)

—_—

X

Optimal
Quantizer

p*(X | X)

p*(X)

X

REVERSAL OF ORDER

p(X
: p%

Channel p*(XA)
X

p*(X | X)

Given a source coding problem with source distr. P(X), optimal quantizer p*()z | X)
distortion measure d (X, X) and distortion constraint D, (left) ,

3 a dual channel coding problem with channel p* (x| X), cost measure w(X), and
cost constraint W (right) s.t.:

()  R(D)=C(W);

(i) p*(x)=

where

arg max

1(X; X),

p(X):X|X ~ p*(x|X),Ew<W

W(R)=e,D(p*(x| %) [| P +6 |  and

W = E .5, W(X).

22



Interpretation of functional duality

For any given source coding prob., 7 a dual channel coding prob. s.t.

. both problems induce the same optimal joint distr. P* (X, X)

e the optimal encoder for one is functionally identical to the
optimal decoder for the other in the limit of large block length

e an appropriate channel-cost measure is associated

Key takeaway:

Source coding: distortion measure is as important as the source distribution

Channel coding: channel cost measure is as imp. as the channel conditional dist.




DUALITY BETWEEN SCSI & CCSI

Sensor networks, multiple descriptions (Slepian-Wolf ‘73, Wyner-Ziv '76)
coding, multi-view camera networks

Quantized

Source bits bits Source
»  Encoder > Decoder >
TSide—information

\(Eelfand-Pinsker ‘81, Costa ‘83)

bits bits

> > *» Decoder >
input output

Side-informationT

Watermarking, data hiding,
Cognitive radio, MIMO broadcast

Pradhan, Chou and R, 2003

24



Geometric illustration of SCSI

—Signal to decoder

OXOXOXONONORO,

Encoder




Example: geometric illustration

OXOXOXORORORO,




Practical Code Constructions

e Use a linear transformation (hash/bin)
* Design cosets to have maximal spacing
— State of the art linear codes (LDPC codes)
* Distributed Source Coding Using Syndromes (DISCUS)*

*Pradhan & R, 03
Source

Codewords Bin 1 Bin 2 Bin 3
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Chapter 2

Cryptography
e Compressing
encrypted data

MarkJohnson Prakash Ishwar

Vinod Prabhakaran




Cryptography — 1949

 Foundations of modern cryptography

e All theoretically unbreakable ciphers must have the properties
of one-time pad

Communication Theory of Secrecy Systems*
By C. E. SHANNON

1. INTRODUCTION AND SUMMARY

HE problems of cryptography and secrecy systems furnish an interest-

ing application of communication theory.! In this paper a theory of
secrecy systems is developed. The approach is on a theoretical level and is
intended to complement the treatment found in standard works on cryp-
tography.? There, a detailed study is made of the many standard types of
codes and ciphers, and of the ways of breaking them. We will be more con-
cerned with the general mathematical structure and properties of secrecy
systems.

31



Compressing Encrypted Data

“Correct” order

H(X) bits H(X) bits
X *| Compress " Encrypt >

Source

Cryptograhic ‘
Key :
K (H(X) bits)

Wrong order?

X Y H(X) bits
" Encrypt " Compress >

Source

Cryptograhic [

Key .
K <H(X> blts) Johnson & R, 2003



Example

Original Image

10,000 bits

Decoding compressed Image

AdGif - UNREGISTERED . .
Uecoding Using DISCUS Framewark (Key as Side Information)

o

20r

30F

40F

S0F

60

0r

B0 F

g

100 &

20

30

40

a0
Iteration 1

B0

7o

a0

a0 100

Final Reconstructed Image

Compressed

Imag

5,000
bits




Source Image

S CeE

10,000 bits

Encrypted Image

Key Insight!

Source

X "| Encrypter
IKey
K

A 4

Encoder

5,000 bits?

[ = R
1

ARTAR VIH oKW e el o
[

Decoded Image

Reconstructed
Source

Joint Decoder/Decrypter
U [ [
'| Decoder '| Decrypter
Syndrome - ‘Yp
Key

K

»

X



Compression of encrypted video

e\ideo offers both temporal and spatial prediction
eDecoder has access to unencrypted prior frames

SIEMENS.
a

Saves 33.00%

36
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Chapter 3

Sampling
e Sampling theory & coding
theory: an unexplored
union

rhancal Xiao Li

37



Sampling theorem

Whittaker
1915

Nyquist
1928

Kotelnikov
1933

Communication in the Presence of Noise

CLAUDE E. SHANNON, MEMBER, IRE

Theorem 1: If a functlon f(t) contains no frequencies

higher than W y giving
its ordinates at a series of points spaced 1/2 W/| seconds

apart. pointwise sampling!

Mathematically, this process can be described as follows.

Let x,, be the nth sample. Then the function f(¢) is
represented by

= sin7r (2Wt — n)
1(#8) = Z T(2Wt—=n) ™

linear interpolation!

38



Sampling theorem illustration

Time domain

Input signal
= J"ﬁ'"-.,l =
s ™ dj;fff
x/ \\_,_f/ \
t % t - |
() 1 7, §

Sampling at rate 1

Recovery
" 2 Y "rrll"'-.'ll 3 -\'-,
= Illlll' / h‘- : / ".H' /
N \/ R
- e 4 4 -
0 1 2 5

Frequency domain

Bandwidth of 1 Hz

Recovery by linear filtering

-

39



Aliasing phenomenon

Time domain Frequency domain
Input signal
j,f”_“\ /\ - .
'x\/ \/\ Bandwidth of 1 Hz
- - - — - v : Y = f
() 1 2 5 () 1 2

Sampling at rate 1
. No aliasing

| ]

0 1 2 5 0 1 2

Sampling at rate 1/2

. Spectrum is aliased!

0 1 2 5 0 1 2

.. _REAAAA

40



But what if the spectrum is sparsely occupied?

Frequency domain

W, Ws Ws Wy  Ws

5
foce =Y Wi = 100MHz

=1

Henry Landau [1967]
— Know the frequency support
— Sample at rate “occupied bandwidth” focc (Landau rate)

41



Filter bank approach

Input in frequency domain

?

?

?

Know the frequency support, filter and sample

-

?

Filtering |

|
?

?

Sampling
1/ ul /”
B .-_.HII" i /{\‘ -

?

no aliasing
thanks to filtering

- 7(’: ?.h E‘

Sampling spectrum-blind? Requires 2focc samples (Lu &Do, ‘08)

Q) Can we design a constructive scheme? (Ocal, Li & R, ‘15)

42



Key insights for spectrum-blind sampling

subsampling mmm) aliasing

“smart” filtering/subsampling  mmm) “removable” aliasing

* No need to avoid aliasing: linear interpolation
e Just to remove it: nonlinear channel decoding

 Filter bank design €=» capacity-achieving LDPC codes
e Aliasing removed by non-linear fast peeling-decoding

43



‘Sparse-graph-coded’ filter bank

KXol FIXF) o cee Xyqlf)
X(f) '
m filters T h T u—fl—-f
N bands
2 samples /sec Yo {E?"Iz?r‘r }l
00 oo o doe@o] 7S wkl | M-,
— 0071000 0:0:0:0[7 N mln] i;f
1000 0000 N _ y
MommMo oo To L S _
() 0o 000 N _
Mo MoMo 00 7N\ Ym-1ln] [Lf
/ Yoo 1 T'rjl
/00 000 1 1 0 1 0)
o 1 o 0 0 0 0 0 01 Xa(f)
3¢ j2x f 1 0 0 0 0 0 1 0 0 0] z . ¢y )
YET) =10 10100 0 1 1 ofX(B) where X(f)= ( :
g o 1 1 1 1 0 0 0 0 Xn-10f)
\1 01010010 1)

o= N matrix
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Main result

Any bandlimited signal x(t) € C whose spectrum has occupancy f,c.
can be sampled asymptotically at rate f; = 2f,.. by a randomized
“sparse-graph-coded filter bank” with probability 1 using O( foec) Op-
erations per unit time.

Remarks
» Computational cost O(focc) independent of bandwidth

e Requires mild assumptions (genericity)
e Can be made robust to sampling noise

Ocal, Li & R, 2016
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Beautiful connection

Coding theory Sampling theory

Sparse-graph coded filter bank

 Minimum-rate spectrum-blind sampling

 Coding theory and sampling theory
— Capacity-approaching codes for erasure channels

— Minimum-rate blind sampling of multiband signals

47



Shannon’s inspiration

 Pre-Shannon Communication:

— Linear filtering (Wiener) at receiver to remove noise
e Post-Shannon Communication:

— Capacity-approaching codes

— Non-linear estimation (MLE) at receiver

N\

Reliable transmission at rates
approaching channel capacity

48



Chapter 4

Distributed

Storage

 Network coding
for distributed
storage

Alex Diakis

Rashmi Vinayak “Nihar Shah




The Blg Data Age
GOQSIQ"‘

Social Networks

Data Centers

(i1 Tubej

NMUIWV

* \Web search
e Recommendation sys.
e Healthcare

NE'”:HK * Finance
* Genomics
Video on Demand Cloud Computing * Particle physics,...

Distributed storage systems form the backbone
of most big data applications

50



Fault Tolerance is Essential

e Machines become unavailable for various reasons
— unreliable components
— software issues
— power glitches
— maintenance operations

 Redundant storage needed for data reliability
and availability

— Current default solution (3x replication)
— Storage efficiency becomes critical



MDS codes

 The most popular, and also most efficient storage codes
— E.g. Reed-Solomon codes

e (n, k) MDS code:
— Afile is encoded into n blocks
— From any k blocks, one can recover the file

e E.g. (14, 10) MDS code:

640 MB file => 10 blocks

‘T T
T e

53



MDS codes

Good news:
We can now tolerate 4 node failures.

54



MDS codes

Good news:
We can now tolerate 4 node failures.

Most of the time we start with a
single failure.

55



MDS codes

Good news:
We can now tolerate 4 node failures.

Most of the time we start with a
single failure.

56



4

5

1 8
9
2
\/ 10
3

2 “l P4

3’

MDS codes

Good news:
We can now tolerate 4 node failures.

Most of the time we start with a single
failure.

P1

Read from any 10 nodes, send all data

re to 3’ who can repair the lost block.

57



MDS codes

Good news:
We can now tolerate 4 node failures.

Most of the time we start with a single
failure.

Read from any 10 nodes, send all data
to 3’ who can repair the lost block.

Bad news:

 High network traffic

e High disk read (10x more than the
lost information)

58



Replication vs. Erasure Codes

Repllcatlon RAID 6 (Reed-Solomon Code)
New node New node
n n
1 { i a ] - 1? E a i a
- 1MB
4 MB File
n, a Download n, b a+b
2 MB
Download
Ny b 41 a+2b
tolerates only 1 failure tolerates 2 failures

Reliability </

Bandwidth J

59



Best of both worlds possible ?

Can we have n[fa o, A8
- Storage eff./Reliability of codes n,|_b a+b
- Bandwidth eff. of replication 2 [am . Doumoad
Nyl a+2b
Almost...

... there exists (an optimal) tradeoff

Regenerating Codes

Dimakis, Godfrey, Wainwright & R, 2010
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RAID-6 (Reed-Solomon)

W

b

Download 2x

a+b

a+2b

61



RAID-6 (Reed-Solomon)

Download 2x

b d
a+b c+d
a+2b c+2d

62



Regenerating Codes

Download 1.5x

2a+b+2c 2b+c+d

a+b+2c a+2b+4d

63



Regenerating Codes

N, a x C a C
0
n, b d C

Kol Download 1.5x

N3 2a+b+2c 2b+c+d >

Ny a+b+2c a+2b+4d

e 25% savings in network bandwidth; much higher in general
e Same reliability as RAID/RS



Key ldea

Download 1.5x

2a+b+2c 2b+c+d

a+b+2c a+2b+4d

Code in blocks, and code cleverly across multiple blocks
Connect to more nodes & download less from each

65



Regenerating Codes

[nikld]l {BlalB}

Source data size is B

K I

/’ U
B/ ,/
%) e /7
IS - '
, 3
c ,'l = M
¢ AN\ e :¢’ .
c R ) o e Entire data
RAN Ptag )
______ - required
’I

~ O storage —,
space
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Storage-Bandwidth tradeoff

Cut-set bound of network coding:

B <Y ¥ ‘min{a, (d—1i)8}

Tradeoff between storage a and bandwidth B



Storage

Storage-Bandwidth tradeoff

File =20 MB, (n=40, k=20) code

MBR _ _
Min. Bandwidth Code  Storage Bandwidth  Savings

1\ regime RS 1 MB 20 MB
MSR 1 MB 2 MB 10x
MBR 1.33 MB 1.33 MB 15x

Min. Storage regime

MSR Reed-Solomon
O

Repair BW

68



From Shannon to Hadoop: Hitchhiker codes

Erasure coded storage system built on top of Hadoop
Distributed File System (HDFS)

Rides on top of the RS-based HDFS

— Reduces network transfer by 25-45% with same storage
space and fault tolerance

— For (14,10) saves 35% disk reads and network transfers

Hitchhiker will be a part of future releases of
Apache Hadoop 3.0

SOFTWARE FOUNDATION
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Conclusion : Shannon’s incredible legacy

e A mathematical theory of
communication

e Channel capacity
e Source coding

e Channel coding

e Cryptography

e Sampling theory

His legacy will last
many more centuries!

(1916-2001)
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